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Administrivia

v Lab	1	due	today!
v Lab	2	out	Monday	J
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Mathematical	Properties	of	FP	Operations

v Exponent	overflow	yields	+∞	or	-∞

v Floats	with	value	+∞,	-∞,	and	NaN	can	be	used	in	operations
§ Result	usually	still	+∞,	-∞,	or	NaN;	sometimes	intuitive,	sometimes	not

v Floating	point	ops	do	not	work	like	real	math,	due	to	rounding!
§ Not	associative:	 (3.14 + 1e100) – 1e100 != 3.14 + (1e100 – 1e100)

§ Not	distributive:		 100 * (0.1 + 0.2) != 100 * 0.1 + 100 * 0.2

§ Not cumulative
• Repeatedly adding a very small number to a large one may do nothing
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Floating	Point	in	C
v C	offers	two	(well,	3)	levels	of	precision

float 1.0f   single	precision	(32-bit)
double 1.0    double	precision	(64-bit)
long double  1.0L   (double double, quadruple,	or	”extended”)	precision	(64-128	bits)

v #include <math.h> to	get	INFINITY and	NAN constants
v Equality	(==)	comparisons	between	floating	point	numbers	are	

tricky,	and	often	return	unexpected	results
§ Just	avoid	them!

!!!
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Floating	Point	in	C
v Conversions	between	data	types:

§ Casting	between	int,	float,	and	double changes the	bit	representation.
§ int→ float

• May	be	rounded	(not	enough	bits	in	mantissa:	23)
• Overflow	impossible

§ int → double or	float → double
• Exact	conversion	(32-bit	ints;	52-bit	frac +	1-bit	sign)

§ long → double
• Rounded	or	exact,	depending	on	word	size	(64-bit	→	52	bit	mantissa	⇒ round)

§ double or	float → int
• Truncates	fractional	part	(rounded	toward	zero)

– E.g.	1.999	→	1,	-1.99	→	-1
• “Not	defined”	when	out	of	range	or	NaN:	generally	sets	to	Tmin
(even	if	the	value	is	a	very	big	positive)

!!!
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Floating	Point	and	the	Programmer
#include <stdio.h>

int main(int argc, char* argv[]) {

float f1 = 1.0;
float f2 = 0.0;
int i;
for (i = 0; i < 10; i++) {
f2 += 1.0/10.0;

}

printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
printf("f1 = %10.8f\n", f1);
printf("f2 = %10.8f\n\n", f2);

f1 = 1E30;
f2 = 1E-30;
float f3 = f1 + f2;
printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );

return 0;
}

$ ./a.out
0x3f800000  0x3f800001
f1 = 1.000000000
f2 = 1.000000119

f1 == f3? yes
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Number	Representation	Really	Matters
v 1991:	Patriot	missile	targeting	error

§ clock	skew	due	to	conversion	from	integer	to	floating	point

v 1996:	Ariane 5	rocket	exploded		($1	billion)
§ overflow	converting	64-bit	floating	point	to	16-bit	integer

v 2000:	Y2K	problem
§ limited	(decimal)	representation:	overflow,	wrap-around

v 2038:	Unix	epoch	rollover
§ Unix	epoch	=	seconds	since	12am,	January	1,	1970
§ signed	32-bit	integer	representation	rolls	over	to	TMin in	2038

v other	related	bugs
§ 1982:	Vancouver	Stock	Exchange	10%	error	in	less	than	2	years
§ 1994:	Intel	Pentium	FDIV	(floating	point	division)	HW	bug	($475	million)
§ 1997:	USS	Yorktown	“smart”	warship	stranded:	divide	by	zero
§ 1998:	Mars	Climate	Orbiter	crashed:	unit	mismatch	($193	million)
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Summary
v As	with	integers,	floats	suffer	from	the	fixed	number	of	bits	

available	to	represent	them	
§ Can	get	overflow/underflow,	just	like	ints
§ Some	“simple	fractions”	have	no	exact	representation	(e.g.,	0.2)
§ Can	also	lose	precision,	unlike	ints

• “Every	operation	gets	a	slightly	wrong	result”

v Mathematically	equivalent	ways	of	writing	an	expression	may	
compute	different	results
§ Violates	associativity/distributivity

v Never test	floating	point	values	for	equality!
v Careful	when	converting	between	ints and	floats!
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Roadmap
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car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq   %rbp
movq    %rsp, %rbp
...
popq    %rbp
ret

Java:C:

Assembly 
language:

Machine 
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer 
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C
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Basics	of	Machine	Programming	&	Architecture

v What	is	an	ISA	(Instruction	Set	Architecture)?
v A	brief	history	of	Intel	processors	and	architectures
v C,	assembly,	machine	code
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Translation
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What	makes	programs	run	fast(er)?

Hardware
User

program
in	C

AssemblerC
compiler

Code	Time Compile	Time Run	Time

.exe file.c file
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C	Language

Translation
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x86-64

Intel	Pentium 4

Intel	Core	2

Intel Core	i7

AMD	Opteron

AMD	Athlon

GCC

ARMv8
(AArch64/A64)

ARM	Cortex-A53

Apple	A7

Clang

Your	
program

Program	
B

Program	
A

CompilerSource	code Architecture
Different	applications
or	algorithms

Perform	optimizations,
generate	instructions

Different	
implementations

Hardware
Instruction	set
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Instruction	Set	Architectures

v The	ISA	defines:
§ The	system’s	state	(e.g.	registers,	memory,	program	
counter)

§ The	instructions	the	CPU	can	execute
§ The	effect	that	each	of	these	instructions	will	have	on	the	
system	state
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CPU

MemoryPC

Registers
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Instruction	Set	Philosophies

v Complex	Instruction	Set	Computing (CISC):		Add	more	
and	more	elaborate	and	specialized	instructions	as	
needed	
§ Lots	of	tools	for	programmers	to	use,	but	hardware	must	be	
able	to	handle	all	instructions

§ x86-64	is	CISC,	but	only	a	small	subset	of	instructions	
encountered	with	Linux	programs

v Reduced	Instruction	Set	Computing	(RISC):		Keep	
instruction	set	small	and	regular
§ Easier	to	build	fast	hardware
§ Let	software	do	the	complicated	operations	by	composing	
simpler	ones
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General	ISA	Design	Decisions

v Instructions
§ What	instructions	are	available?	What	do	they	do?
§ How	are	they	encoded?

v Registers
§ How	many	registers	are	there?
§ How	wide	are	they?

v Memory
§ How	do	you	specify	a	memory	location?
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Mainstream	ISAs

Macbooks &	PCs
(Core	i3,	i5,	i7,	M)
x86-64	Instruction	Set

Smartphone-like	devices
(iPhone,	iPad,	Raspberry	Pi)
ARM	Instruction	Set

Digital	home	&	networking	
equipment
(Blu-ray,	PlayStation	2)
MIPS	Instruction	Set
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Intel	x86	Evolution:		Milestones
Name Date Transistors MHz

v 8086 1978 29K 5-10
§ First	16-bit	Intel	processor.		Basis	for	IBM	PC	&	DOS
§ 1MB	address	space

v 386 1985 275K 16-33
§ First	32	bit	Intel	processor	,	referred	to	as	IA32
§ Added	“flat	addressing,”	capable	of	running	Unix

v Pentium	4E 2004 125M 2800-3800
§ First	64-bit	Intel	x86	processor,	referred	to	as	x86-64

v Core	2 2006 291M 1060-3500
§ First	multi-core	Intel	processor

v Core	i7 2008 731M 1700-3900
§ Four	cores

17



CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Autumn 2016L01: Introduction CSE351, Winter 2017L07:  Machine Programming

Intel	x86	Processors
v Machine	Evolution

§ 486 1989 1.9M
§ Pentium 1993 3.1M
§ Pentium/MMX 1997 4.5M
§ Pentium	Pro 1995 6.5M
§ Pentium	III 1999 8.2M
§ Pentium	4 2001 42M
§ Core	2	Duo 2006 291M
§ Core	i7 2008 731M

v Added	Features
§ Instructions	to	support	multimedia	operations

• Parallel	operations	on	1,	2,	and	4-byte	data	(“SIMD”)
§ Instructions	to	enable	more	efficient	conditional	operations
§ Hardware	support	for	virtualization	(virtual	machines)
§ More	cores!

18

Intel	Core	i7
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More	information

v References	for	Intel	processor	specifications:
§ Intel’s	“automated	relational	knowledgebase”:

• http://ark.intel.com/

§ Wikipedia:
• http://en.wikipedia.org/wiki/List_of_Intel_microprocessors
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x86	Clones:	Advanced	Micro	Devices	(AMD)

v Same	ISA,	different	implementation

v Historically	AMD	has	followed	just	behind	Intel
§ A	little	bit	slower,	a	lot	cheaper

v Then	recruited	top	circuit	designers	from	Digital	
Equipment	Corporation	(DEC)	and	other	downward-
trending	companies
§ Built	Opteron:		tough	competitor	to	Pentium	4
§ Developed	x86-64,	their	own	extension	of	x86	to	64	bits
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Intel’s	Transition	to	64-Bit
v Intel	attempted	radical	shift	from	IA32	to	IA64	(2001)

§ Totally	different	architecture	(Itanium)	and	ISA	than	x86
§ Executes	IA32	code	only	as	legacy
§ Performance	disappointing

v AMD	stepped	in	with	evolutionary solution	(2003)
§ x86-64	(also	called	“AMD64”)

v Intel	felt	obligated	to	focus	on	IA64
§ Hard	to	admit	mistake	or	that	AMD	is	better

v Intel	announces	“EM64T”	extension	to	IA32	(2004)
§ Extended	Memory	64-bit	Technology
§ Almost	identical	to	AMD64!

v Today:		all	but	low-end	x86	processors	support	x86-64
§ But,	lots	of	code	out	there	is	still	just	IA32
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Our	Coverage	in	351

v x86-64
§ The	new	64-bit	x86	ISA	– all	lab	assignments	use	x86-64!
§ Book	covers	x86-64

v Previous	versions	of	CSE	351	and	2nd edition	of	
textbook	covered	IA32	(traditional	32-bit	x86	ISA)	
and x86-64
§ We	will	only	cover	x86-64	this	quarter
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Definitions

v Architecture	(ISA): The	parts	of	a	processor	design	
that	one	needs	to	understand	to	write	assembly	code
§ “What	is	directly	visible	to	software”

v Microarchitecture: Implementation	of	the	
architecture
§ CSE/EE	469,	470

v Are	the	following	part	of	the	architecture?
§ Number	of	registers?
§ How	about	CPU	frequency?
§ Cache	size?	Memory	size?
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CPU

Assembly	Programmer’s	View

v Programmer-visible	state
§ PC:		the	Program	Counter	(%rip in	x86-64)

• Address	of	next	instruction
§ Named	registers

• Together	in	“register	file”
• Heavily	used	program	data

§ Condition	codes
• Store	status	information	about	most	recent	
arithmetic	operation

• Used	for	conditional	branching 24

PC Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

v Memory
§ Byte-addressable	array
§ Code	and	user	data
§ Includes	the	Stack	(for	

supporting	procedures)
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Turning	C	into	Object	Code
v Code	in	files p1.c p2.c
v Compile	with	command:	 gcc -Og p1.c p2.c -o p

§ Use	basic	optimizations	(-Og)		[New	to	recent	versions	of	GCC]
§ Put	resulting	machine	code	in	file	p

25

text

text

binary

binary

Compiler	(gcc –Og -S)

Assembler	(gcc or	as)

Linker	(gcc or	ld)

C	program	(p1.c p2.c)

Asm program	(p1.s p2.s)

Object	program	(p1.o p2.o)

Executable	program	(p)

Static	libraries	(.a)
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v C	Code	(sum.c)

v x86-64	assembly		(gcc –Og –S sum.c)
§ Generates	file	sum.s (see	https://godbolt.org/g/pQUhIZ)

Warning:	You	may	get	different	results	with	other	versions	of	gcc
and	different	compiler	settings

Compiling	Into	Assembly

26

void sumstore(long x, long y, long *dest) {
long t = x + y;
*dest = t;

}

sumstore(long, long, long*):
addq    %rdi, %rsi
movq    %rsi, (%rdx)  
ret
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Machine	Instruction	Example
v C	Code

§ Store	value	t where	designated	by	
dest

v Assembly
§ Move	8-byte	value	to	memory

• Quad	word	(q)	in	x86-64	parlance
§ Operands:

t Register		%rsi
dest Register		%rdx
*dest Memory		M[%rdx]

v Object	Code
§ 3-byte	instruction	(in	hex)
§ Stored	at	address	0x40059e

27

*dest = t;

movq %rsi, (%rdx)

0x400539:  48 89 32
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Object	Code
v Assembler translates	.s into	.o

§ Binary	encoding	of	each	instruction
§ Nearly-complete	image	of	executable	code
§ Missing	linkages	between	code	in	different	

files

v Linker resolves	references	between	
files
§ Combines	with	static	run-time	libraries

• e.g.,	code	for	malloc,	printf
§ Some	libraries	are	dynamically	linked

• Linking	occurs	when	program	begins	
execution

28

0x00400536 <sumstore>:  
0x48
0x01
0xfe
0x48
0x89
0x32
0xc3

Total	of	7	bytes
• Each	instruction	
here	is	1-3	bytes	
long

Function	starts at	
this	address
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Disassembling	Object	Code

v Disassembled:

v Disassembler (objdump -d sum)
§ Useful	tool	for	examining	object	code		(man 1 objdump)
§ Analyzes	bit	pattern	of	series	of	instructions
§ Produces	approximate	rendition	of	assembly	code
§ Can	run	on	either	a.out (complete	executable)	or	.o file

29

0000000000400536 <sumstore>:  
400536:  48 01 fe      add    %rdi,%rsi  
400539:  48 89 32      mov %rsi,(%rdx)  
40053c:  c3            retq
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$ gdb sum
(gdb) disassemble sumstore
Dump of assembler code for function sumstore:   

0x0000000000400536 <+0>: add    %rdi,%rsi
0x0000000000400539 <+3>: mov %rsi,(%rdx)   
0x000000000040053c <+6>: retq

End of assembler dump.

(gdb) x/7bx sumstore
0x400536 <sumstore>:0x48 0x01 0xfe 0x48 0x89 0x32 0xc3

Alternate	Disassembly	in	GDB

v Within	gdb debugger	(gdb sum):
§ disassemble sumstore:		disassemble	procedure
§ x/7bx sumstore:		show	7	bytes	starting	at	sumstore
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What	Can	be	Disassembled?

v Anything	that	can	be	interpreted	as	executable	code
v Disassembler	examines	bytes	and	attempts	to	reconstruct	

assembly	source
31

% objdump -d WINWORD.EXE

WINWORD.EXE:   file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000:  55             push   %ebp
30001001:  8b ec mov %esp,%ebp
30001003:  6a ff          push   $0xffffffff
30001005:  68 90 10 00 30 push   $0x30001090
3000100a:  68 91 dc 4c 30 push   $0x304cdc91

Reverse	engineering	forbidden	by
Microsoft	End	User	License	Agreement
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Summary

v Converting	between	integral	and	floating	point	data	
types	does change	the	bits	

v Floating	point	rounding	is	a	HUGE	issue!
§ Limited	mantissa	bits	cause	inaccurate	representations
§ In	general,	floating	point	arithmetic	is	NOT	associative	or	
distributive

v x86-64	is	a	complex	instruction	set	computing	(CISC)	
architecture

v An	executable	binary	file	is	produced	by	running	code	
through	a	compiler,	assembler,	and	linker

32
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More	details	for	the	curious.		
v Rounding	strategies
v Floating	Point	Puzzles

33



CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Autumn 2016L01: Introduction CSE351, Winter 2017L07:  Machine Programming

Closer	Look	at	Round-To-Even
v Default	Rounding	Mode

§ Hard	to	get	any	other	kind	without	dropping	into	assembly
§ All	others	are	statistically	biased

• Sum	of	set	of	positive	numbers	will	consistently	be	over- or	under- estimated

v Applying	to	Other	Decimal	Places	/	Bit	Positions
§ When	exactly	halfway	between	two	possible	values

• Round	so	that	least	significant	digit	is	even
§ E.g.,	round	to	nearest	hundredth

1.2349999 1.23 (Less	than	half	way)
1.2350001 1.24 (Greater	than	half	way)
1.2350000 1.24 (Half	way—round	up)
1.2450000 1.24 (Half	way—round	down)
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Rounding	Binary	Numbers

v Binary	Fractional	Numbers
§ “Half	way”	when	bits	to	right	of	rounding	position	=	100…2

v Examples
§ Round	to	nearest	1/4	(2	bits	right	of	binary	point)

Value Binary Rounded Action Round	Val

2 + #
#$

10.000112 10.002 (<1/2—down) 2

2 + #
%&

10.001102 10.012 (>1/2—up) 2 + %
'

2 + (
)

10.111002 11.002 (		1/2—up) 3

2 + +
)

10.101002 10.102 (		1/2—down) 2 + %
$
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Floating	Point	Puzzles

v For	each	of	the	following	C	expressions,	either:
§ Argue	that	it	is	true	for	all	argument	values
§ Explain	why	not	true

36

1) x == (int)(float) x

2) x == (int)(double) x

3) f == (float)(double) f

4) d == (double)(float) d

5) f == -(-f);

6) 2/3 == 2/3.0

7) (d+d2)-d == d2

int x = …;
float f = …;
double d = …;
double d2 = …;

Assume	neither	d nor	
f is	NaN

s exp mantissa
1	bit 8	bits 23	bits

s exp mantissa
1	bit 11	bits 52	bits


