Ints and Floating Point

CSE 351 Winter 2017

Administrivia

- Lab 1 due Friday
 - How is it going?
- HW 1 out today
 - Numerical representation and executable inspection

Using Shifts and Masks

Extract the 2nd most significant byte of an int:

First shift, then mask: (x>>16) & 0xFF

L	1 2
0100	

153

x	00000001	00000010	00000011 00000100
x>>16	0000000	00000000	00000001 00000010
) 0xFF	00000000	00000000	00000000 111111111
(x>>16) & 0xFF	00000000	00000000	00000000 00000010

Using Shifts and Masks

- Extract the sign bit of a signed int:
 - First shift, then mask: (x>>31) & 0x1
 - Assuming arithmetic shift here, but works in either case
 - Need mask to clear 1s possibly shifted in

x	0000001 00000010 00000011 00000100
x>>31	0000000 00000000 0000000 000000
0x1	0000000 00000000 0000000 00000000000000
(x>>31) & 0x1	0000000 00000000 0000000 00000000

×	1 0000001 00000010 00000011 00000100
x>>31	11111111 11111111 11111111 111111 <mark>1</mark>
0x1	00000000 00000000 00000000 00000001
(x>>31) & 0x1	0000000 00000000 00000000 00000001

Using Shifts and Masks

- Conditionals as Boolean expressions
 - For int x, what does (x << 31) >> 31 do?

x=!!123	00000000 00000000 00000000 000000001
x<<31	19000000 00000000 00000000 00000000
(x<<31)>>31	11111111 11111111 11111111 11111111
!x	00000000 00000000 00000000 00000000
! x<<31	00000000 00000000 00000000 00000000
(!x<<31)>>31	0000000 0000000 0000000 00000000

• Can use in place of conditional: $\times = \delta$

• In C: if (x) {a=y;} else {a=z;} equivalent to a=x?y:z;

• a=(((x<<31)>>31)&y) | (((!x<<31)>>31)&z);

Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Overflow, sign extension
- Shifting and arithmetic operations
- Multiplication

Multiplication

What do you get when you multiply 9 x 9?

* What about
$$2^{10} \times 2^{20}$$
?
$$7^{10} + 7^{20} = 7$$

Unsigned Multiplication in C

- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic
 - UMult_w $(u, v) = u \cdot v \mod 2^w$

CSE351, Winter 2017

Multiplication with shift and add

- ❖ Operation u<<k gives u*2^k
 - Both signed and unsigned

 $TMult_{u}(u, 2^k)$

Examples:

- u<<3 == u * 8
- u << 5 u << 3 == u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses
- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10²³)
 - Very small numbers (e.g. 6.626×10⁻³⁴)

1

11

Representation

- Bits to right of "binary point" represent fractional powers of 2
- Represents rational number:

$$\sum_{k=-i}^{i} b_k \cdot 2^k$$

- Value
 - **5.75**
 - **and** 7/8

Binary:

Value Binary:

101.11₂

5.75

10.111₂

2 and 7/8

Observations

- Shift left = multiply by power of 2
- Shift right = divide by power of 2
- Numbers of the form $0.1111111..._2$ are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0 ε

Limits of Representation

Limitations:

- Even given an arbitrary number of bits, can only <u>exactly</u> represent numbers of the form x * 2^y (y can be negative)
- Other rational numbers have repeating bit representations

Value:

Binary Representation:

```
• 1/3 = 0.3333333..._{10} = 0.01010101[01]..._{2}
• 1/5 = 0.000110011[0011]..._{2}
• 1/10 = 0.000110011[0011]..._{2}
```

Fixed Point Representation

- Binary point has a <u>fixed</u> position
 - Position = number of binary digits before and after
- Implied binary point. Two example schemes:

```
#1: the binary point is between bits 2 and 3 b_7 b_6 b_5 b_4 b_3 [.] b_2 b_1 b_0 #2: the binary point is between bits 4 and 5 b_7 b_6 b_5 [.] b_4 b_3 b_2 b_1 b_0
```

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision
- Fixed point = fixed range and fixed precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers
- Hard to pick how much you need of each!
- How do we fix this?

"Rarely" used in practice. Not built-in.

Scientific Notation (Decimal)

- Normalized form: exactly one digit (non-zero) to left of decimal point
- Alternatives to representing 1/1,000,000,000
 - Normalized:
 1.0×10⁻⁹
 - Not normalized: 0.1×10⁻⁸,10.0×10⁻¹⁰

Scientific Notation (Binary)

- Computer arithmetic that supports this called floating point due to the "floating" of the binary point
 - Declare such variable in C as float

IEEE Floating Point

- Established in 1985 as uniform standard for floating point arithmetic
- Main idea: make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
- Now supported by all major CPUs
- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - · Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops

Floating Point Representation

Numerical form:

$$V_{10} = (-1)^{\frac{s}{2}} * M * 2^{\frac{E}{2}}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0, 2.0)
- Exponent E weights value by a (possibly negative) power of two

L

21

Floating Point Representation

Numerical form:

$$V_{10} = (-1)^{s} * M * 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0, 2.0)
- Exponent E weights value by a (possibly negative) power of two
- Representation in memory:
 - MSB s is sign bit s
 - exp field encodes *E* (but is *not equal* to E)
 - frac field encodes M (but is not equal to M)

Precisions

Single precision: 32 bits.

Double precision: 64 bits

 Finite representation means not all values can be represented exactly. Some will be approximated.

Normalization and Special Values

$$V = (-1)^{\mathbf{S}} * \mathbf{M} * 2^{\mathbf{E}}$$

- "Normalized" = M has the form 1.xxxxx
 - As in scientific notation, but in binary

- 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
- Since we know the mantissa starts with a 1, we don't bother to store it
- How do we represent 0.0?
 Or special or undefined values like 1.0/0.0?

Normalization and Special Values

$$V = (-1)^{S} * M * 2^{E}$$

s exp frac

- "Normalized" = M has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it.
- Special values ("denormalized"):
 - **Zero (0):** exp == 00...0, frac == 00...0
 - $+\infty$, $-\infty$: exp == 11...1, frac == 00...0 $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -1.0/0.0 = -\infty$
 - NaN ("Not a Number"): $\exp == 11...1$ frac != 00...0 Results from operations with undefined result: $\operatorname{sqrt}(-1), \infty \infty, \infty \bullet 0, ...$
 - Note: exp=11...1 and exp=00...0 are reserved, limiting exp range...

Normalized Values

1

$$V = (-1)^{S} * M * 2^{E}$$

- Condition: $\exp \neq 000...0$ and $\exp \neq 111...1$
- Exponent coded as biased value: E = exp Bias
 - exp is an *unsigned* value ranging from 1 to $2^{k}-2$ (k == # bits in exp)
 - $Bias = 2^{k-1} 1$
 - Single precision: 127 (so *exp*: 1...254, *E*: -126...127)

- Double precision: 1023 (so *exp*: 1...2046, *E*: -1022...1023)
- These enable negative values for E, for representing very small values

Normalized Values

$$V = (-1)^{S} * M * 2^{E}$$

- Condition: $\exp \neq 000...0$ and $\exp \neq 111...1$
- Exponent coded as biased value: E = exp Bias
 - exp is an *unsigned* value ranging from 1 to 2^k-2 (k == # bits in exp)
 - $Bias = 2^{k-1} 1$
 - Single precision: 127 (so *exp*: 1...254, *E*: -126...127)
 - Double precision: 1023 (so exp: 1...2046, E: -1022...1023)
 - These enable negative values for E, for representing very small values
 - Could have encoded with 2's complement or sign-and-magnitude
 - This just made it easier for HW to do float-exponent operations
- Mantissa coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: the n bits of frac
 - Minimum when 000...0 (*M* = 1.0)
 - Maximum when 111...1 ($M = 2.0 \varepsilon$)
 - Get extra leading bit for "free"

CSE351, Winter 2017

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is $2^{3-1}-1=3$

Notice how the distribution gets denser toward zero.

Floating Point Operations

- Unlike the representation for integers, the representation for floating-point numbers is <u>not exact</u>
- We have to know how to round from the real value

Floating Point Operations: Basic Idea

$$x *_f y = Round(x * y)$$

- Basic idea for floating point operations:
 - First, compute the exact result
 - Then, round the result to make it fit into desired precision:
 - Possibly overflow if exponent too large
 - Possibly drop least-significant bits of mantissa to fit into frac

Floating Point Addition

$$(-1)^{s1}*M1*2^{E1} + (-1)^{s2}*M2*2^{E2}$$

Assume *E1* > *E2*

- Exact Result: (-1)s*M*2E
 - Sign s, mantissa M:
 - Result of signed align & add
 - Exponent E: E1

- Fixing
 - If $M \ge 2$, shift M right, increment E
 - if M < 1, shift M left k positions, decrement E by k
 - Overflow if E out of range
 - Round M to fit frac precision

0

Floating Point Multiplication

$$(-1)^{s1}$$
*M1*2^{E1} * $(-1)^{s2}$ *M2*2^{E2}

- ❖ Exact Result: (−1)^s*M*2^E
 - Sign s: s1 ^ s2
 - Mantissa M: M1 * M2
 - Exponent E: E1 + E2
- Fixing
 - If $M \ge 2$, shift M right, increment E
 - If E out of range, overflow
 - Round M to fit frac precision

Rounding modes

Possible rounding modes (illustrated with dollar rounding):

	\$1.40	\$1.60	\$1.50	\$2.50	- \$1.50
Round-toward-zero	\$1	\$1	\$1	\$2	- \$1
Round-down (-∞)	\$1	\$1	\$1	\$2	- \$2
Round-up (+∞)	\$2	\$2	\$2	\$3	-\$1
Round-to-nearest	\$1	\$2	??	??	??
Round-to-even	\$1	\$2	\$2	\$2	- \$2

- Round-to-even avoids statistical bias in repeated rounding.
 - Rounds up about half the time, down about half the time.
 - Default rounding mode for IEEE floating-point

Mathematical Properties of FP Operations

- Exponent overflow yields +∞ or -∞
- ❖ Floats with value $+\infty$, $-\infty$, and NaN can be used in operations
 - Result usually still $+\infty$, $-\infty$, or NaN; sometimes intuitive, sometimes not
- Floating point ops do not work like real math, due to rounding!
 - Not associative: (3.14 + 1e100) 1e100! = 3.14 + (1e100 1e100)
 - Not distributive: 100 * (0.1 + 0.2) != 100 * 0.1 + 100 * 0.2
 - Not cumulative 30.00000000000003553 30
 - Repeatedly adding a very small number to a large one may do nothing

Floating Point in C

C offers two (well, 3) levels of precision

```
float 1.0f single precision (32-bit) double 1.0 double precision (64-bit)
```

long double 1.0L (double double, quadruple, or "extended") precision (64-128 bits)

- #include <math.h> to get INFINITY and NAN constants
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results
 - Just avoid them!

Floating Point in C

- Conversions between data types:
 - Casting between int, float, and double changes the bit representation.
 - int \rightarrow float
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - int \rightarrow double or float \rightarrow double
 - Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
 - long \rightarrow double
 - Rounded or exact, depending on word size (64-bit → 52 bit mantissa ⇒ round)
 - double or float \rightarrow int
 - Truncates fractional part (rounded toward zero)
 - E.g. 1.999 \rightarrow 1, -1.99 \rightarrow -1
 - "Not defined" when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)

Number Representation Really Matters

- 1991: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- 1996: Ariane 5 rocket exploded (\$1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- 2000: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- 2038: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038
- other related bugs
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
 - 1997: USS Yorktown "smart" warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Floating Point and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
 float f1 = 1.0;
 float f2 = 0.0;
 int i:
 for (i = 0; i < 10; i++)
  f2 += 1.0/10.0;
 printf("0x\%08x 0x\%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = \%10.8f \ n", f1);
 printf("f2 = \%10.8f \ n', f2);
 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf("f1 == f3? \%s\n", f1 == f3? "ves" : "no");
 return 0;
```

```
$./a.out

0x3f800000 0x3f800001

f1 = 1.0000000000

f2 = 1.000000119

f1 == f3? yes
```

Q&A: THE PENTIUM FDIV BUG

(floating point division)

Q: What do you get when you cross a Pentium PC with a research grant?

A: A mad scientist.

Q: Complete the following word analogy: Add is to Subtract as Multiply is to:

- 1) Divide
- 2) ROUND
- 3) RANDOM
- 4) On a Pentium, all of the above

A: Number 4.

Q: What algorithm did Intel use in the Pentium's floating point divider?

A: "Life is like a box of chocolates."

(Source: F. Gump of Intel)

Q: According to Intel, the Pentium conforms to the IEEE standards 754 and 854 for floating point arithmetic. If you fly in aircraft designed using a Pentium, what is the correct pronunciation of "IEEE"?

A: Aaaaaaaiiiiiiiiieeeeeeeeeee! Source: http://www.columbia.edu/~sss31/rainbow/pentium.jokes.html

http://www.smbc-comics.com/?id=2999

Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some "simple fractions" have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity
- Never test floating point values for equality!
- Careful when converting between ints and floats!

BONUS SLIDES

More details for the curious. These slides expand on material covered today

- Tiny Floating Point Example
- Distribution of Values

Visualization: Floating Point Encodings

Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit.
 - the next four bits are the exponent, with a bias of 7.
 - the last three bits are the frac

- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity

Dynamic Range (Positive Only)

	s exp frac	E	Value	
Denormalized numbers	0 0000 000 0 0000 001 0 0000 010	-6 -6 -6	0 $1/8*1/64 = 1/512$ $2/8*1/64 = 2/512$	closest to zero
	0 0000 110 0 0000 111	-6 -6	6/8*1/64 = 6/512 7/8*1/64 = 7/512	largest denorm
	0 0001 000 0 0001 001	-6 -6	8/8*1/64 = 8/512 9/8*1/64 = 9/512	smallest norm
Normalized numbers	 0 0110 110 0 0110 111 0 0111 000	-1 -1 0	14/8*1/2 = 14/16 15/8*1/2 = 15/16 8/8*1 = 1	closest to 1 below
	0 0111 000 0 0111 001 0 0111 010	0	9/8*1 = 9/8 10/8*1 = 10/8	closest to 1 above
	0 1110 110 0 1110 111 0 1111 000	7 7 n/a	14/8*128 = 224 15/8*128 = 240 inf	largest norm

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 23-1-1 = 3

Notice how the distribution gets denser toward zero.

Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

Interesting Numbers

{single,double}

Description

exp frac

Numeric Value

Zero

00...00 00...00

0.0

Smallest Pos. Denorm.

00...00 00...01

7- {23,52} * **7**- {126,1022}

■ Single $\approx 1.4 * 10^{-45}$

■ Double $\approx 4.9 * 10^{-324}$

Largest Denormalized

00...00 11...11

 $(1.0 - \varepsilon) * 2^{-\{126,1022\}}$

• Single $\approx 1.18 * 10^{-38}$

■ Double $\approx 2.2 * 10^{-308}$

Smallest Pos. Norm.

00...01 00...00

 $1.0 * 2^{-\{126,1022\}}$

Just larger than largest denormalized

One

01...11 00...00

1.0

Largest Normalized

11...10 11...11

 $(2.0 - \varepsilon) * 2^{\{127,1023\}}$

■ Single $\approx 3.4 * 10^{38}$

■ Double $\approx 1.8 * 10^{308}$

Special Properties of Encoding

- ❖ Floating point zero (0⁺) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity