Inets and Floating Point
CSE 351 Winter 2017

http://xkcd.com/899/
Administrivia

- Lab 1 due Friday
 - How is it going?
- HW 1 out today
 - Numerical representation and executable inspection
Using Shifts and Masks

- Extract the 2nd most significant \textit{byte} of an \texttt{int}:
 - First shift, then mask: \((x\gg 16) \& \ 0\text{xFF}\)

<table>
<thead>
<tr>
<th>(x)</th>
<th>00000001 00000010 00000011 00000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x\gg 16)</td>
<td>00000000 00000000 00000001 00000010</td>
</tr>
<tr>
<td>(0\text{xFF})</td>
<td>00000000 00000000 00000000 11111111</td>
</tr>
<tr>
<td>((x\gg 16) & \ 0\text{xFF})</td>
<td>00000000 00000000 00000000 00000010</td>
</tr>
</tbody>
</table>
Using Shifts and Masks

- Extract the sign bit of a signed int:
 - First shift, then mask: \((x \gg 31) \& 0x1\)
 - Assuming arithmetic shift here, but works in either case
 - Need mask to clear 1s possibly shifted in

\[
\begin{array}{|c|c|}
\hline
x & 00000001 00000010 00000011 00000100 \\
\hline
x \gg 31 & 00000000 00000000 00000000 00000000 \\
\hline
0x1 & 00000000 00000000 00000000 00000000 00000001 \\
\hline
(x \gg 31) \& 0x1 & 00000000 00000000 00000000 00000000 00000000 \\
\hline
\end{array}
\]

\[
\begin{array}{|c|c|}
\hline
x & 10000001 00000010 00000011 00000100 \\
\hline
x \gg 31 & 11111111 11111111 11111111 11111111 \\
\hline
0x1 & 00000000 00000000 00000000 00000000 00000001 \\
\hline
(x \gg 31) \& 0x1 & 00000000 00000000 00000000 00000000 00000001 \\
\hline
\end{array}
\]
Using Shifts and Masks

- **Conditionals as Boolean expressions**
 - For `int x`, what does `(x<<31)>>31` do?

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>x=!!123</td>
<td>00000000 00000000 00000000 00000001</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>x<<31</td>
<td>10000000 00000000 00000000 00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x<<31)>>31</td>
<td>11111111 11111111 11111111 11111111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>!x</td>
<td>00000000 00000000 00000000 00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>!x<<31</td>
<td>00000000 00000000 00000000 00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(!x<<31)>>31</td>
<td>00000000 00000000 00000000 00000000</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Can use in place of conditional:
 - In C: `if(x) {a=y; } else {a=z; }` equivalent to `a=x?y:z;
 - `a=((x<<31)>>31)&y) | (((!x<<31)>>31)&z);`
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C
- Consequences of finite width representations
 - Overflow, sign extension
- Shifting and arithmetic operations
- Multiplication
Multiplication

- What do you get when you multiply 9×9?

- What about $2^{10} \times 2^{20}$?
Unsigned Multiplication in C

Operands:
- **w** bits

True Product:
- **2w** bits
- \(u \cdot v \)

Discard w bits:
- **w** bits
- \(\text{UMult}_w(u, v) \)

- Standard Multiplication Function
 - Ignores high order **w** bits
- Implements Modular Arithmetic
 - \(\text{UMult}_w(u, v) = u \cdot v \mod 2^w \)
Multiplication with shift and add

- Operation \(u << k \) gives \(u \times 2^k \)
 - Both signed and unsigned

Operands: \(w \) bits

True Product: \(w + k \) bits

Discard \(k \) bits: \(w \) bits

- **Examples:**
 - \(u << 3 \) \(\equiv u \times 8 \)
 - \(u << 5 - u << 3 \) \(\equiv u \times 24 \)
 - Most machines shift and add faster than multiply
 - Compiler generates this code automatically
Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses

- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10^{23})
 - Very small numbers (e.g. 6.626×10^{-34})
Fractional Binary Numbers

\[
\begin{array}{cccc}
1 & 0 & 1 & 1 \\
8 & 4 & 2 & 1 \\
\frac{1}{2} & \frac{1}{4} & \frac{1}{8} \\
2^3 & 2^2 & 2^1 & 2^0 \\
\end{array}
\]

\[
8 + 2 + 1 + \frac{1}{2} + \frac{1}{8} = \frac{11.625}{2} = 5.625
\]
Fractional Binary Numbers

- Representation
 - Bits to right of “binary point” represent fractional powers of 2
 - Represents rational number: \[\sum_{k=-j}^{i} b_k \cdot 2^k \]
Fractional Binary Numbers

- **Value**
 - 5.75
 - $\frac{21}{16}$ and $\frac{7}{8}$

- **Binary:**
 - $0.111111..._2$
 - $0.10111..._2$
 - $5 + \frac{7}{8} = \frac{41}{8} = \frac{49}{16} = 0.111111..._2$
 - $\frac{5}{8} + \frac{1}{2} + \frac{1}{4} = \frac{101111...}{2^n}$
Fractional Binary Numbers

- **Value**
 - Binary: 101.11₂
 - 5.75
 - 2 and 7/8

- **Observations**
 - Shift left = multiply by power of 2
 - Shift right = divide by power of 2
 - Numbers of the form 0.111111…₂ are just below 1.0
 - 1/2 + 1/4 + 1/8 + ... + 1/2ⁱ + ... → 1.0
 - Use notation 1.0 − ε
Limits of Representation

- Limitations:
 - Even given an arbitrary number of bits, can only **exactly** represent numbers of the form $x \times 2^y$ (y can be negative)
 - Other rational numbers have repeating bit representations

<table>
<thead>
<tr>
<th>Value</th>
<th>Binary Representation</th>
</tr>
</thead>
<tbody>
<tr>
<td>$1/3 = 0.333333\ldots_{10}$</td>
<td>$0.01010101[01]\ldots_2$</td>
</tr>
<tr>
<td>$1/5 = 0.001100110011\ldots$</td>
<td>$0.001100110011[0011]\ldots_2$</td>
</tr>
<tr>
<td>$1/10 = 0.0001100110011\ldots$</td>
<td>$0.0001100110011[0011]\ldots_2$</td>
</tr>
</tbody>
</table>
Fixed Point Representation

- Binary point has a fixed position
 - Position = number of binary digits before and after
- Implied binary point. Two example schemes:
 - #1: the binary point is between bits 2 and 3
 \[b_7 b_6 b_5 b_4 \; . \; b_2 b_1 b_0\]
 - #2: the binary point is between bits 4 and 5
 \[b_7 b_6 b_5 \; . \; b_4 b_3 b_2 b_1 b_0\]
- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision
- Fixed point = fixed range and fixed precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers
- Hard to pick how much you need of each!
- How do we fix this?

“Rarely” used in practice. Not built-in.
Scientific Notation (Decimal)

- **Normalized form**: exactly one digit (non-zero) to left of decimal point

- Alternatives to representing $1/1,000,000,000$
 - Normalized: 1.0×10^{-9}
 - Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$
Scientific Notation (Binary)

- Computer arithmetic that supports this called **floating point** due to the “floating” of the binary point
 - Declare such variable in C as **float**
IEEE Floating Point

- IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs

- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops
Floating Point Representation

- Numerical form:

\[V_{10} = (-1)^s \times M \times 2^E \]

- Sign bit \(s \) determines whether number is negative or positive
- Significand (mantissa) \(M \) normally a fractional value in range \([1.0, 2.0)\)
- Exponent \(E \) weights value by a (possibly negative) power of two
Floating Point Representation

- **Numerical form:**
 \[V_{10} = (-1)^s \times M \times 2^E \]
 - Sign bit \(s \) determines whether number is negative or positive
 - Significand (mantissa) \(M \) normally a fractional value in range \([1.0, 2.0)\)
 - Exponent \(E \) weights value by a (possibly negative) power of two

- **Representation in memory:**
 - MSB \(s \) is sign bit \(s \)
 - exp field encodes \(E \) (but is *not equal* to \(E \))
 - frac field encodes \(M \) (but is *not equal* to \(M \))
Precisions

- **Single precision:** 32 bits

 - `s exp frac`
 - 1 bit 8 bits 23 bits

- **Double precision:** 64 bits

 - `s exp frac`
 - 1 bit 11 bits 52 bits

- Finite representation means not all values can be represented exactly. Some will be approximated.
Normalization and Special Values

\[V = (-1)^S \times M \times 2^E \]

- "Normalized" = \(M \) has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 \(\times 2^5 \) and 1.1 \(\times 2^3 \) represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it

- How do we represent 0.0?
 Or special or undefined values like 1.0/0.0?
Normalization and Special Values

\[V = (-1)^s \times M \times 2^E \]

- “Normalized” = \(M \) has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 x 2^5 and 1.1 x 2^3 represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it.

- Special values (“denormalized”):
 - **Zero (0):** \(\text{exp} = 00...0, \text{frac} = 00...0 \)
 - **\(+\infty, -\infty \):** \(\text{exp} = 11...1, \text{frac} = 00...0 \)
 - \(1.0/0.0 = -1.0/-0.0 = +\infty \)
 - \(1.0/-0.0 = -1.0/0.0 = -\infty \)
 - **NaN (“Not a Number”):** \(\text{exp} = 11...1, \text{frac} \neq 00...0 \)
 - Results from operations with undefined result:
 - \(\sqrt{-1}, \infty-\infty, \infty\times0, \ldots \)
 - **Note:** exp=11...1 and exp=00...0 are reserved, limiting exp range...
Normalized Values

\[V = (-1)^S \times M \times 2^E \]

- **Condition:** \(exp \neq 000\ldots0 \) and \(exp \neq 111\ldots1 \)
- **Exponent coded as biased value:** \(E = exp - Bias \)
 - \(exp \) is an *unsigned* value ranging from 1 to \(2^{k-2} \) (\(k = \) # bits in \(exp \))
 - \(Bias = 2^{k-1} - 1 \)
 - Single precision: \(127 \) (so \(exp: 1\ldots254, E: -126\ldots127 \))
 - Double precision: \(1023 \) (so \(exp: 1\ldots2046, E: -1022\ldots1023 \))
 - These enable negative values for \(E \), for representing very small values
Normalized Values

\[V = (-1)^s \times M \times 2^E \]

- **Condition:** \(\text{exp} \neq 000\ldots0 \) and \(\text{exp} \neq 111\ldots1 \)
- **Exponent coded as biased value:** \(E = \text{exp} - \text{Bias} \)
 - \(\text{exp} \) is an *unsigned* value ranging from 1 to \(2^{k-2} \) (\(k \) == # bits in \(\text{exp} \))
 - \(\text{Bias} = 2^{k-1} - 1 \)
 - Single precision: 127 (so \(\text{exp}: 1\ldots254, \ E: -126\ldots127 \))
 - Double precision: 1023 (so \(\text{exp}: 1\ldots2046, \ E: -1022\ldots1023 \))
 - These enable negative values for \(E \), for representing very small values
 - Could have encoded with 2’s complement or sign-and-magnitude
 - This just made it easier for HW to do float-exponent operations
- **Mantissa coded with implied leading 1:** \(M = 1.xxx\ldots x_2 \)
 - \(xxx\ldots x \): the \(n \) bits of frac
 - Minimum when 000\ldots0 \((M = 1.0) \)
 - Maximum when 111\ldots1 \((M = 2.0 - \varepsilon) \)
 - Get extra leading bit for “free”
Distribution of Values

- 6-bit IEEE-like format
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is $2^{3-1} - 1 = 3$

- Notice how the distribution gets denser toward zero.

- Denormalized ▲ Normalized ▼ Infinity
Floating Point Operations

- Unlike the representation for integers, the representation for floating-point numbers is not exact.
- We have to know how to round from the real value.
Floating Point Operations: Basic Idea

\[V = (-1)^s \times M \times 2^E \]

- \[x +_f y = \text{Round}(x + y) \]
- \[x \times_f y = \text{Round}(x \times y) \]

Basic idea for floating point operations:

- First, **compute the exact result**
- Then, **round** the result to make it fit into desired precision:
 - Possibly overflow if exponent too large
 - Possibly drop least-significant bits of mantissa to fit into frac
Floating Point Addition

\[(-1)^{s_1} M_1 2^{E_1} + (-1)^{s_2} M_2 2^{E_2} \]

Assume \(E_1 > E_2 \)

- **Exact Result:** \((-1)^s M 2^E\)
 - Sign \(s \), mantissa \(M \):
 - Result of signed align & add
 - Exponent \(E \): \(E_1 \)

- **Fixing**
 - If \(M \geq 2 \), shift \(M \) right, increment \(E \)
 - if \(M < 1 \), shift \(M \) left \(k \) positions, decrement \(E \) by \(k \)
 - Overflow if \(E \) out of range
 - Round \(M \) to fit frac precision
Floating Point Multiplication

\[(-1)^{s_1} \times M_1 \times 2^{E_1} \times (-1)^{s_2} \times M_2 \times 2^{E_2} \]

- **Exact Result:** \((-1)^s \times M \times 2^E\)
 - **Sign** \(s\): \(s_1 \oplus s_2\)
 - **Mantissa** \(M\): \(M_1 \times M_2\)
 - **Exponent** \(E\): \(E_1 + E_2\)

Fixing
- If \(M \geq 2\), shift \(M\) right, increment \(E\)
- If \(E\) out of range, overflow
- Round \(M\) to fit frac precision
Rounding modes

Possible rounding modes (illustrated with dollar rounding):

<table>
<thead>
<tr>
<th>Value</th>
<th>$1.40</th>
<th>$1.60</th>
<th>$1.50</th>
<th>$2.50</th>
<th>$-1.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>Round-toward-zero</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>$-1</td>
</tr>
<tr>
<td>Round-down (-\infty)</td>
<td>$1</td>
<td>$1</td>
<td>$1</td>
<td>$2</td>
<td>$-2</td>
</tr>
<tr>
<td>Round-up (+\infty)</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$3</td>
<td>$-1</td>
</tr>
<tr>
<td>Round-to-nearest</td>
<td>$1</td>
<td>$2</td>
<td>??</td>
<td>??</td>
<td>??</td>
</tr>
<tr>
<td>Round-to-even</td>
<td>$1</td>
<td>$2</td>
<td>$2</td>
<td>$2</td>
<td>$-2</td>
</tr>
</tbody>
</table>

Round-to-even avoids statistical bias in repeated rounding.
- Rounds up about half the time, down about half the time.
- Default rounding mode for IEEE floating-point
Mathematical Properties of FP Operations

- Exponent overflow yields $+\infty$ or $-\infty$

- Floats with value $+\infty$, $-\infty$, and NaN can be used in operations
 - Result usually still $+\infty$, $-\infty$, or NaN; sometimes intuitive, sometimes not

- Floating point ops do not work like real math, due to rounding!
 - Not associative: $(3.14 + 1e100) - 1e100 \neq 3.14 + (1e100 - 1e100)$
 - Not distributive: $100 \times (0.1 + 0.2) \neq 100 \times 0.1 + 100 \times 0.2$
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing
Floating Point in C

- C offers two (well, 3) levels of precision

 float 1.0f single precision (32-bit)
 double 1.0 double precision (64-bit)
 long double 1.0L (double double, quadruple, or "extended") precision (64-128 bits)

- #include <math.h> to get INFINITY and NAN constants

- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results
 - Just avoid them!
Floating Point in C

- Conversions between data types:
 - Casting between int, float, and double changes the bit representation.
 - int → float
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
 - int → double or float → double
 - Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
 - long → double
 - Rounded or exact, depending on word size (64-bit → 52 bit mantissa ⇒ round)
 - double or float → int
 - Truncates fractional part (rounded toward zero)
 - E.g. 1.999 → 1, -1.99 → -1
 - “Not defined” when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)
Number Representation Really Matters

- 1991: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- 1996: Ariane 5 rocket exploded ($1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- 2000: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- 2038: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038
- other related bugs
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
 - 1997: USS Yorktown “smart” warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)
Floating Point and the Programmer

#include <stdio.h>

int main(int argc, char* argv[]) {

 float f1 = 1.0;
 float f2 = 0.0;
 int i;
 for (i = 0; i < 10; i++) {
 f2 += 1.0/10.0;
 }

 printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&f2);
 printf("f1 = %.10f\n", f1);
 printf("f2 = %.10f\n", f2);

 f1 = 1E30;
 f2 = 1E-30;
 float f3 = f1 + f2;
 printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no");

 return 0;
}

$./a.out
0x3f800000 0x3f800001
f1 = 1.000000000
f2 = 1.000000119
f1 == f3? yes
Q&A: THE PENTIUM FDIV BUG
(floating point division)

Q: What do you get when you cross a Pentium PC with a research grant?
A: A mad scientist.

Q: Complete the following word analogy:
 Add is to Subtract as Multiply is to:
 1) Divide
 2) ROUND
 3) RANDOM
 4) On a Pentium, all of the above
A: Number 4.

Q: What algorithm did Intel use in the Pentium's floating point divider?
A: "Life is like a box of chocolates."
(Source: F. Gump of Intel)

Q: According to Intel, the Pentium conforms to the IEEE standards 754 and 854 for floating point arithmetic. If you fly in aircraft designed using a Pentium, what is the correct pronunciation of "IEEE"?
A: Aaaaaaiiiiiiiiiieeeeeeee!
(Source: http://www.columbia.edu/~sss31/rainbow/pentium.jokes.html)

http://www.smbc-comics.com/?id=2999
Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some “simple fractions” have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - “Every operation gets a slightly wrong result”

- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity

- Never test floating point values for equality!
- Careful when converting between ints and floats!
More details for the curious. These slides expand on material covered today

- Tiny Floating Point Example
- Distribution of Values
Visualization: Floating Point Encodings

-∞ - ∞

-∞ - Normalized - Denorm + Denorm + Normalized + ∞

-0 +0 NaN NaN
Tiny Floating Point Example

- 8-bit Floating Point Representation
 - the sign bit is in the most significant bit.
 - the next four bits are the exponent, with a bias of 7.
 - the last three bits are the frac

- Same general form as IEEE Format
 - normalized, denormalized
 - representation of 0, NaN, infinity
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>s exp</th>
<th>frac</th>
<th>E</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>-6</td>
<td>0</td>
</tr>
<tr>
<td>0 0000 000</td>
<td>0 0000 001</td>
<td>0 0000 010</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
</tr>
<tr>
<td>0 0000 110</td>
<td>0 0000 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
</tr>
<tr>
<td>0 0001 000</td>
<td>0 0001 001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
</tr>
<tr>
<td>0 0110 110</td>
<td>0 0110 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
</tr>
<tr>
<td>0 0111 000</td>
<td>0 0111 001</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>8/8*1 = 1</td>
</tr>
<tr>
<td>0 0111 010</td>
<td>0 0111 010</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>9/8*1 = 9/8</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td>0</td>
<td>10/8*1 = 10/8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>14/8*128 = 224</td>
</tr>
<tr>
<td>0 1110 110</td>
<td>0 1110 111</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>15/8*128 = 240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>n/a</td>
<td>inf</td>
</tr>
</tbody>
</table>

- Denormalized numbers
- Normalized numbers
Distribution of Values

- 6-bit IEEE-like format
 - $e = 3$ exponent bits
 - $f = 2$ fraction bits
 - Bias is $2^{3-1} - 1 = 3$

- Notice how the distribution gets denser toward zero.
Distribution of Values (close-up view)

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 3

![Diagram showing distribution of values with a 6-bit format, including denormalized, normalized, and infinity values.](image-url)
Interesting Numbers

<table>
<thead>
<tr>
<th>Description</th>
<th>exp</th>
<th>frac</th>
<th>Numeric Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero</td>
<td>00...00</td>
<td>00...00</td>
<td>0.0</td>
</tr>
<tr>
<td>Smallest Pos. Denorm.</td>
<td>00...00</td>
<td>00...01</td>
<td>(2^{-23,52} \times 2^{-126,1022})</td>
</tr>
<tr>
<td>- Single (\approx 1.4 \times 10^{-45})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Double (\approx 4.9 \times 10^{-324})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Largest Denormalized</td>
<td>00...00</td>
<td>11...11</td>
<td>((1.0 - \varepsilon) \times 2^{-126,1022})</td>
</tr>
<tr>
<td>- Single (\approx 1.18 \times 10^{-38})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Double (\approx 2.2 \times 10^{-308})</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smallest Pos. Norm.</td>
<td>00...01</td>
<td>00...00</td>
<td>(1.0 \times 2^{-126,1022})</td>
</tr>
<tr>
<td>- Just larger than largest denormalized</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>One</td>
<td>01...11</td>
<td>00...00</td>
<td>1.0</td>
</tr>
<tr>
<td>Largest Normalized</td>
<td>11...10</td>
<td>11...11</td>
<td>((2.0 - \varepsilon) \times 2^{127,1023})</td>
</tr>
</tbody>
</table>
Special Properties of Encoding

- Floating point zero (0^+) exactly the same bits as integer zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^- = 0^+ = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity