LO06: Floating Point

W UNIVERSITY of WASHINGTON

CSE351, Winter 2017

Ints and Floating Point
CSE 351 Winter 2017

v N : (\ r
Lo 0.9 (AcTuAuY NUMBER INDIGTING ~ IFYOU ENCOUNTER
| 00000000372 RRIODEN GRD-AXEPEDAS A FACTOD 15 MADELP A NOMBER HIGHER
([LESSTHAN 1) REGION CANON BY ORHODOX ("evERY 7 vemrs... ‘suece THAN THIS, YOURE
(| (| e T MAHEMATCANS __ . -~ \ 5 “f?% NOT DOING REAL MATH
2\ a3l IR .’ N
+- + H - ~ Y + H UNEX ORED — —r t
1 0 1 2 [S Q "1\ AN FL ;7 9 10
Lo -— R
SITEOF
NEGATIVE ¢h-PARTHENON 2-9299372 LARGEST
("IMITATOR” %uNFstRs (e Anp 1T, BATLE
/ OF Y.lo8 EVEN PRME
NUMBERS GOLDEN RATI) OBSERVED)
\ s (DONOTUSE) WAIT COME BACK,
T HAVE FACTS!

http://xkcd.com/899/

//((/

W UNIVERSITY of WASHINGTON L06: Floating Point

Administrivia

% Lab 1 due Friday
" How is it going?
+» HW 1 out today

= Numerical representation and executable inspection

CSE351, Winter 2017

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Using Shifts and Masks

4

. Extract the 2" most significant byte of an int:

L)

" First shift, theafmask: (x>>16) & OxFEF ok
x 00000001 00000010200900011%aou09100
x>>16 00000000 00000000 0000000TT00000010
OxFF 00000000 OO0OO0O0O0O0O OOOOO0O0O0O 1111111
(x>>16) & OxFF [00000000 00000000 00000000 00000010

W UNIVERSITY of WASHINGTON

LO06: Floating Point

Using Shifts and Masks

CSE351, Winter 2017

+ Extract the sign bit of a signed int:

" First shift, then mask: (x>>31)

& 0Ox1

- Assuming arithmetic shift here, but works in either case

- Need mask to clear 1s possibly shifted in

/

X OpOOOOOl 00000010 00000011 00000100
x>>31 00000000 00000000 00000000 OOOOO@TO)
Ox1 00000000 00000000 00000000 000000Q1

(x>>31) & Ox1

00000000 00000000

00000000 00000000

X 1p000001 00000010 00000011 00000100
x>>31 11111111 11111111 11111111 11111111
O0x1 00000000 00000000 00000000 00000001

(x>>31) & Ox1

00000000 00000000

00000000 00000001

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Using Shifts and Masks

+» Conditionals as Boolean expressions
" For int x,whatdoes (x<<31)>>31 do?

x=11123 00000000 00000000 00000000 00000001

x<<31 19000000 00000000 00000000 00000000

(x<<31)>>31) [T1111111 11111111 11111111 11111111

1% 00000000 00000000 00000000 00000000

1 x<<31 00000000 00000000 00000000 00000000

(1x<<31)>>31 |00000000 00000000 00000000 00000000
W= @

= Canusein pIaceFJf conditional: X™=

=4

- InC: 1f(x) {a=y;} else {a=z;} equivalenttoa=x?vy:z;

c a=(((x<<31)>>31) &y)

(((!X<<§})>>31)&Z);

CSE351, Winter 2017

W UNIVERSITY of WASHINGTON L06: Floating Point

Integers

0.0

Binary representation of integers
®" Unsigned and signed
= Castingin C

*

Consequences of finite width representations

= Qverflow, sign extension

.0

Shifting and arithmetic operations

000

Multiplication

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Multiplication

+» What do you get when you multiply 9 x 97

+» What about 210 x 2207

2> S0

lo _
L 1 -1

W UNIVERSITY of WASHINGTON L06: Floating Point

Unsigned Multiplication in C

Operands:
jw bits \

CSE351, Winter 2017

True Product:

Z 2w bits |

Discard w bits: UMult, (u , v)
w bits

+ Standard Multiplication Function

= |gnores high order w bits

+» Implements Modular Arithmetic

= UMult,(u, v)=u-v|mod 2%

W UNIVERSITY of WASHINGTON L06: Floating Point

Multiplication with shift and add

+» Operation u<<k gives u*2k

" Both signed and unsigned

CSE351, Winter 2017

u o o
Operands: w bits %
« Dk [o] XN [0] K1 [0] XX mg
True Product: w + k bits u - 2k o[-~ _J0JO
Discard k bits: w bits UMult,(u ,2%) [eee 0] --- {0]0

TMult, (u , 2%)
+» Examples:
" u<<3 == u * 8
B u<<h - uk3 == u * 24

" Most machines shift and add faster than multiply

- Compiler generates this code automatically

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Number Representation Revisited

+~ What can we represent in one word?

= Signed and Unsigned Integers

= Characters (ASCII)

= Addresses

+» How do we encode the following:
= Real numbers (e.g. 3.14159)
= Very large numbers (e.g. 6.02x102%3)

= Very small numbers (e.g. 6.626x10-34)

10

W UNIVERSITY of WASHINGTON . Floating Point CSE351, Winter 2017

Fractional Binary Numbers

L
1011, 101

—_——
8 4 2 1 Va8
23 22 21 20 - 2 -2 2 -3

FHOTHH ot /A;FL}I:@/S 625

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Fractional Binary Numbers
21’

+~ Representation
= Bits to right of “binary point” represent fractional powers of 2

= Represents rational number: i
i > by 2"
k=—j

12

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Fractional Binary Numbers

+ Value Binary: e 3T

= 5.75 (ol If 4l 4]

- . (I
*|2)and 7/8 1oy

0.1 [([¢

—

O I TR

13

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Fractional Binary Numbers

+» Value Binary:
101.11,
= 575
10.111
= 2and 7/8 ?

+ Observations
= Shift left = multiply by power of 2
= Shift right = divide by power of 2

®= Numbers of the form 0.111111..., are just below 1.0
= 1/2+1/4+1/8+..+1/2'+..=> 1.0
= Use notation 1.0 —¢

14

W UNIVERSITY of WASHINGTON

LO06: Floating Point

CSE351, Winter 2017

Limits of Representation

<« Limitations:

= Even given an arbitrary number of bits, can only exactly
represent numbers of the form x * 2V (y can be negative)

= Other rational numbers have repeating bit representations

Value: Binary Representation:
- 1/3 =0.333333...,,= 0.01010101[01]...,
- 1/5 = 0.001100110011[0011]...,

- 1/10 = 0.0001100110011[001T]...,

15

W UNIVERSITY of WASHINGTON

LO06: Floating Point

CSE351, Winter 2017

Fixed Point Representation

Binary point has a fixed position
= Position = number of binary digits before and after

Implied binary point. Two example schemes:

#1: the binary point is between bits 2 and 3
b, bg bcb, by [.] b, b, b,

#2: the binary point is between bits 4 and 5
b, bg b [.] b, by b, by by

Wherever wé put the binary point, with fixed point representations there is
a trade off between the amount of range and precision

Fixed point = fixed range and fixed precision

range: difference between largest and smallest numbers possible
precision: smallest possible difference between any two numbers
Hard to pick how much you need of each!

How do we fix this?)

[“Rarely” used in practice. Not built-in. J

16

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

.. N lil "i
L

TR ————

0y :

%Hhu“/il *.".:'MM‘% r

-

17

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Scientific Notation (Decimal)

mantissa __—exponent
T~6.02,,x 1073

T N\

decimal point radix (base)

= Normalized form: exactly one digit (non-zero) to left
of decimal point B

+ Alternatives to representing 1/1,000,000,000
= Normalized: 1.0x107
= Not normalized: 0.1x10%10.0x1010

In binary?

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Scientific Notation (Binary)

mantissa __—exponent

x21
/‘fL

binary point radix (base)

« Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

® Declare such variablein Cas float

19

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

IEEE Floating Point

« |EEE 754 O TP «

Established in 19 iform standard for floating point arithmetic

" Main idea: make numerically sensitive programs portable

= Specifies two things: representation and result of floating operations
= Now supported by all major CPUs

+ Driven by numerical concerns

= Scientists/numerical analysts want them to be as real as possible

Engineers want them to be easy to implement and fast
In the end:
- Scientists mostly won out
Nice standards for rounding, overflow, underflow, but...
Hard to make fast in hardware
- Float operations can be an order of magnitude slower than integer ops

20

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Floating Point Representation

«» Numerical form:

= Sign bit s determines whether number is negative or positive
= Significand (mantissa) M normally a fractional value in range [1.0, 2.0)

= Exponent E weights value by a (possibly negative) power of two

—

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Floating Point Representation

«» Numerical form:
Vip = (1) *M* zEm

= Sign bit s determines whether number is negative or positive
= Significand (mantissa) M normally a fractional value in range [1.0, 2.0)
= Exponent E weights value by a (possibly negative) power of two

+» Representation in memory:
= MSB s is sign bit s
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equaL’gM)

S /{' exp aD frac ﬁ

— = -/

22

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Precisions

« Singl ision: 32 bit
ingle precision: 3- |s\
s | exp frac \

I bit @ 23 bits

+ Double precision: 64 bits

s |exp frac
1 bit 11 bits 52 bits

+ Finite representation means not all values can be represented
exactly. Some will be approximated.

23

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Normalization and Special Values

E ——
V= (—l)s'>x< M *2 s |exp (Lfrac >

J
. (]
+ “Normalized” = M has the form 1}xxxx8 et
; 1] 4
/74 < " —

v T
= 0.011x 2° and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

= As in scientific notation, but in binary

= Since we know the mantissa starts with a 1, we don't bother to store it

+» How do we represent 0.0?
Or special or undefined values like 1.0/0.07?

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Normalization and Special Values

V= (—1)S *M * 2E s |exp frac

» “Normalized” = M has the form 1.xxxxx

= As in scientific notation, but in binary

= 0.011 x 2> and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

= Since we know the mantissa starts with a 1, we don't bother to store it.

+» Special values (“denormalized”):

= Zero(0): exp==00...0, frac ==00...0

" +4o0,-c0: exp==11...1, frac == 00...0
1.0/0.0 = -1.0/-0.0 = +00, 1.0/-0.0 =-1.0/0.0 = -00

* (NaN (“Not a Number”):] exp==11..1 frac !=00...0

Results from operations with undefined result:
sqrt(-1), 00o—o0, 00*(), ...

= Note: exp=11...1 and exp=00...0 are reserved, limiting exp range... ’e

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Normalized Values 4

V= (—1)S *M * 2E s |exp frac

AP
k n

+» Condition: exp #000...0 andexp # 111...1
- Exponent coded as biased value: E = exp - Bias
" exp is an unsigned value ranging from 1 to 2%-2 (k == # bits in exp)
" Bigs =2k1-1
- Single precision: 127 (so exp: 1..254, E:-126...127) '/’Z;C
- Double precision: 1023 (so exp: 1...2046, E: -1022...1023) Z

" These enable negative values for E, for representing very small values

>

L)

L)

1 (l: 254
1

0 127 255

26

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Normalized Values

0

>

0

L)

V= (—1)S *M * 2E s |exp frac

k n
Condition: exp # 000...0 and exp # 111...1
Exponent coded as biased value: E = exp - Bias
" exp is an unsigned value ranging from 1 to 2%-2 (k == # bits in exp)
= Bigs = 2k1-1
- Single precision: 127 (soexp: 1..254, E:-126...127)
- Double precision: 1023 (so exp: 1...2046, E: -1022...1023)

" These enable negative values for E, for representing very small values
- Could have encoded with 2’s complement or sign-and-magnitude

- This just made it easier for HW to do float-exponent operations
Mantissa coded with implied leading 1: M = 1.xxX...X,
" XXX...X:the n bits of frac
= Minimum when 000...0 (M = 1.0)
= Maximum when 111...1 (M =2.0—¢)

" Get extra leading bit for “free” ’r

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Distribution of Values

» 6-bit IEEE-like format
= e =3 exponent bits S | exp frac
= f=2fraction bits 1 3 2
" Biasis231-1=3

» Notice how the distribution gets denser toward zero.

—h—k A— A A A A AAAAMMEBERBMMAALL A A A A — A —A —A

-15 -10 -5 0 3) 10 15
¢ Denormalized A Normalized Infinity

e

28

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Floating Point Operations

+ Unlike the representation for integers, the
representation for floating-point numbers is not exact

+ We have to know how to round from the real value

29

W UNIVERSITY of WASHINGTON L06: Floating Point

Floating Point Operations: Basic Idea

V= (—1)S *M * 2E s |exp frac

« X +py = Round(x + y)//

——————

+» X *;y =Round(x * y)

+ Basic idea for floating point operations:
" First, compute the exact result

—_

" Then, round the result to make it fit into desired precision:
- Possibly overflow if exponent too large

- Possibly drop least-significant bits of mantissa to fit into frac

30

CSE351, Winter 2017

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Floating Point Addition

*72) %2
C1SIEMT#2ED + (21)32% NV *)DE2 1.010%22 1.0100*2
(—1)s*M1*2ET + (-1)s2%M2%*2 L1000 +.0.0001

Assume E1 > E2 77 1.0101*22
- T e Y(- ’Y“‘ E
M= M/?
Exact Result: (—1)s*M*2F f— E1-E2 ——]
= Signs, mantissa__l\i[:’ (—1)s! M1 L =
- Result of signed align & add
= ExponentE: El + (=1)> M2
.. (=1 M
Fixing

If M > 2, shift M right, increment £

if M <1, shift M left k positions, decrement £ by k
Overflow if E out of range
Round M to fit frac precision

31

W UNIVERSITY of WASHINGTON L06: Floating Point

Floating Point Multiplication

(—1)sI*MI1*2El * (—])s2%\M2*DE2
» Exact Result: (—1)s*M*2F
= Sign s: sl s2
" MantissaM: ~ MI * M2
" Exponent E: El + E2

+ FIXing
" If M 22, shift M right, increment E
= |f E out of range, overflow
= Round M to fit frac precision

CSE351, Winter 2017

32

W UNIVERSITY of WASHINGTON

CSE351, Winter 2017

Rounding modes

LO06: Floating Point

Possible rounding modes (illustrated with dollar rounding):

Round-toward-zero
Round-down (-o)
Round-up (+<°)
Round-to-nearest
Round-to-even

$1.40
51
51
52
51
51

$1.60
S1
S1
$2
S2
$2

$1.50
S1
S1
52

2?7

$2

$2.50
S2
S2
S3

P?

S2

—S$1.50
—Sl
_Sz
_Sl

P?

42

+» Round-to-even avoids statistical bias in repeated rounding.

" Rounds up about half the time, down about half the time.

Default rounding mode for IEEE floating-point

33

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Mathematical Properties of FP Operations

+» Exponent overflow yields +eo or -o0

+ Floats with value +oo, -0, and NaN can be used in operations

= Result usually still +eo, -o0, or NaN; sometimes intuitive, sometimes not

+ Floating point ops do not work like real math, due to rounding!

= Not associative: (3.14 + 1e100) — 1€100 1= 3.14 + (1100 — 1e100)
= Not distributive: 100 * (0.1 +0.2) 1= 100 * 0.1 + 100 * 0.2
30.000000000000003553 30

= Not cumulative

- Repeatedly adding a very small number to a large one may do nothing

34

W UNIVERSITY of WASHINGTON L06: Floating Point

CSE351, Winter 2017

Floating Point in C AR

» C offers two (well, 3) levels of precision
float 1.0f single precision (32-bit)
double 1.0 double precision (64-bit)

long double 1.0L (double double, quadruple, or “extended”) precision (64-128 bits)

» #include <math.h> to get INFINITY and NAN constants

Equality (==) comparisons between floating point numbers are
tricky, and often return unexpected results
= Just avoid them!

35

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Floating Point in C AR

+» Conversions between data types:
= Casting between int, float, and double changes the bit representation.

= int — float
May be rounded (not enough bits in mantissa: 23)
- Overflow impossible

= int - double or float - double
Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
= long - double
Rounded or exact, depending on word size (64-bit - 52 bit mantissa = round)
= double or float - int
- Truncates fractional part (rounded toward zero)
— E.g.1999->1,-1.99 > -1

- “Not defined” when out of range or NaN: generally sets to Tmin
(even if the value is a very big positive)

36

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Number Representation Really Matters

1991: Patriot missile targeting error

= clock skew due to conversion from integer to floating point

1996: Ariane 5 rocket exploded (S1 billion)

= overflow converting 64-bit floating point to 16-bit integer

2000: Y2K problem

= |imited (decimal) representation: overflow, wrap-around

2038: Unix epoch rollover
= Unix epoch = seconds since 12am, January 1, 1970
= signed 32-bit integer representation rolls over to TMin in 2038

other related bugs

= 1982: Vancouver Stock Exchange 10% error in less than 2 years

= 1994: Intel Pentium FDIV (floating point division) HW bug (S475 million)
= 1997: USS Yorktown “smart” warship stranded: divide by zero

= 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)

37

W UNIVERSITY of WASHINGTON

LO06: Floating Point

CSE351, Winter 2017

Floating Point and the Programmer

#include <stdio.h>
int main(int argc, char* argv[]) {

float f1 =1.0;

float 2 = 0.0;

nt 1;

for(1=0;1<10;1++) {
2 +=1.0/10.0;

}

printf("0x%08x 0x%08x\n", *(int*)&f1, *(int*)&L2);
printf("f1 = %10.8f\n", f1);
printf("f2 = %10.8f\n\n", £2);

f1 = 1E30;

2 = 1E-30;

float f3 = {1 + £2;

printf("f1 == 37 %s\n", f1 == 13 ? "yes" : "no");

return O;

$./a.out

0x31800000 0x3f800001
f1 = 1.000000000

2 =1.000000119

f1 == 137 yes

38

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Q&A: THE PENTIUM EFDIV BUG

(floating point division)

Q: What do you get when you cross a Pentium PC with a
research grant?
A: A mad scientist.

Q: Complete the following word analogy:
Add is to Subtract as Multiply is to:
1) Divide
2) ROUND
3) RANDOM
4) On a Pentium, all of the above
A: Number 4.

Q: What algorithm did Intel use in the Pentium's floating
point divider?

A: "Life 1s like a box of chocolates."

(Source: F. Gump of Intel)

Prove you are human:

01+02=7?

WELCOME TO
THE SECRET 0.30000000000000004|

ROBOT INTERNET

Q: According to Intel, the Pentium conforms to the IEEE
standards 754 and 854 for floating point arithmetic. If you
fly in aircraft designed using a Pentium, what is the
correct pronunciation of "IEEE"?

.........

Source: http://www.columbia.edu/~sss3 1/rainbow/pentium.jokes.html

http://www.smbc-comics.com/?1d=2999

39

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Summary

+~ As with integers, floats suffer from the fixed number of bits
available to represent them

= Can get overflow/underflow, just like ints
= Some “simple fractions” have no exact representation (e.g., 0.2)

= Can also lose precision, unlike ints
- “Every operation gets a slightly wrong result”

+» Mathematically equivalent ways of writing an expression may
compute different results
= Violates associativity/distributivity

+» Never test floating point values for equality!
+» Careful when converting between ints and floats!

40

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

BONUS SLIDES

More details for the curious. These slides expand on
material covered today

+ Tiny Floating Point Example
+ Distribution of Values

41

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Visualization: Floating Point Encodings

_o0 +o0
| -Normalized |-Denorm : | ;+Denorm, +Normalized
I I /l\ I I
NaN
NaN
— -0 +0 |

42

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Tiny Floating Point Example

s | exp frac
1 4 3

+ 8-bit Floating Point Representation
" the sign bit is in the most significant bit.
" the next four bits are the exponent, with a bias of 7.
= the last three bits are the frac

+» Same general form as IEEE Format
" normalized, denormalized
" representation of 0, NaN, infinity

43

W UNIVERSITY of WASHINGTON

LO06: Floating Point

Dynamic Range (Positive Only)

Denormalized
numbers

Normalized
numbers

s exp frac

0 0000 000
0 0000 001
0 0000 010

0 0000 110
0 0000 111
00001 000
0 0001 001

00110110
00110 111
00111 000
00111 001
00111 010

01110 110
01110 111
01111 000

E

n/a

Value

0
1/8%1/64 = 1/512
2/8*1/64 = 2/512

6/8*%1/64 = 6/512
7/8%1/64 ="1/512
8/8%1/64 = 8/512
9/8*%1/64 = 9/512

14/8*1/2 = 14/16
15/8*1/2 = 15/16
8/8*1 =1
9/8*1 =9/8
10/8*1 =10/8

14/8*128 =224
15/8*128 = 240
inf

CSE351, Winter 2017

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm

44

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Distribution of Values

«» 0-bit IEEE-like format

= e =3 exponent bits

s | exp frac
= f =2 fraction bits 1 3 7

" Biasis 23-1-1=3

+» Notice how the distribution gets denser toward zero.

—h—k A— A A A A AAAAMMEBERBMMAALL A A A A — A —A —A

-15 -10 -5 0 3) 10 15
¢ Denormalized A Normalized Infinity

45

W UNIVERSITY of WASHINGTON L06: Floating Point

Distribution of Values (close-up view)

«» 0-bit IEEE-like format

= e =3 exponent bits

s | exp frac
= { =2 fraction bits) 7
" Biasis 3
—_—— %% %0
-1 -0.5 0 0.5 1

¢ Denormalized A Normalized B Infinity

CSE351, Winter 2017

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Interesting Numbers {single,double}
Description exp frac Numeric Value

« Zero 00...00 00...00 0.0

+ Smallest Pos. Denorm. 00...00 00...01 2~ 123,52} * - {126,1022}

" Single=1.4*10%
" Double=4.9 * 1034
+ Largest Denormalized 00..00 11..11 (1.0 —) * 2~ {126,1022}
" Single=1.18 * 10738
" Double =2.2 * 107308

= Smallest Pos. Norm. 00..01 00...00 1.0 * 2~ 1126,1022}
= Just larger than largest denormalized
+ One 01..11 00...00 1.0
» Largest Normalized 11..10 11..11 (2.0 — g) * 2{127,1023}

" Single = 3.4 * 1038
®" Double=1.8 * 10308

47

W UNIVERSITY of WASHINGTON L06: Floating Point CSE351, Winter 2017

Special Properties of Encoding

+ Floating point zero (0*) exactly the same bits as integer zero
= All bits=0

+ Can (Almost) Use Unsigned Integer Comparison
= Must first compare sign bits
= Must consider0"=0*=0
= NaNs problematic

- Will be greater than any other values
- What should comparison yield?

= Otherwise OK
- Denorm vs. normalized
- Normalized vs. infinity

48

