W UNIVERSITY of WASHINGTON

Memory, Data, & Addressing Il

CSE 351 Winter 2017

L03: Memory & Data II

OKAY, HUMAN.

HUH? 3
BEFORE YOU
HIT QOMPILE,
LISTEN Up.

YOU KNOW WHEN YOURE
FALLING ASLEER AND
YOU IMAGINE YOURSELF
WALKING OR
M SOMETHING,

http://xkcd.com/371/

AND SUDDENLY YOU
NISSTEP, STUMBLE,
AND JOLT AWAKE?

YEAH!
J

i

)

CSE351, Winter 2017

WELL, THAT'S WHAT A
SEGFAULT FEELS LIKE.

v
DOUBLE - CHECK YOUR
DAMN POINTERS, OKAY?

| Sul




CSE351, Winter 2017

W UNIVERSITY of WASHINGTON L.03: Memory & Data II

Administrivia

% Lab O due tomorrow @ 5pm
= Credit/no credit — we’ll talk about topics in depth later

+» Lab 1 released later today @ 5pm

% Survey results:
= More detail how computers work, learn C, get a CE/CS major

©

= People from most continents!



W UNIVERSITY of WASHINGTON

Review

>

*

L03: Memory & Data II

An address is a location in memory

CSE351, Winter 2017

(pointers are 64-bits wide)

64-bit example

A pointer is a data object that holds an address

= Address can point to any data

Pointer stored at
O0x48 points to
address 0x38

= Pointer to a pointer!

Is the data stored
at Ox08 a pointer?

]

00

00

00

00

00

00 + 01 « 5F

00

00

00

00

00

00 : 00 : 08

[ 3l

00

00

00

00

00

00 : 00 : 38

Address
0x00

0x08
0x10
Ox18
0x20
O0x28
0x30
Ox38
0x40
0x48



W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

Memory, Data, and Addressing

+~ Representing information as bits and bytes
+ QOrganizing and addressing data in memory
%+ Manipulating data in memory using C

+~ Boolean algebra and bit-level manipulations



W UNIVERSITY of WASHINGTON

L03: Memory & Data II CSE351, Winter 2017

Addresses and Pointers in C

R

» & = “address of” operator
*

* is also used with
variable declarations

Z—

+» * =“value at address” or “dereference” operator

int* ptr; -<:{

Declares a variable, ptr, that is a pointer to
(i.e. holds the address of) an int in memory

Declares two variables, x and vy, that hold ints,
and sets them to 5 and 2, respectively

int x = 5H;
int y = 2;
ptr = &x;

Sets ptr to the address of x
(“ptr points to x”)

y = 1 + *ptr;

“Dereference ptr”

What is * (&) ?

Sets y to “1 plus the value stored at the
address held by ptr. Because ptr
points to x, this is equivalent to y=1+x;




W UNIVERSITY of WASHINGTON

L03: Memory & Data II

Assignmentin C

int x,

Ox00 Ox01 0x02 O0x03

+» A variable is represented by a memory location

" xis at address 0x04, v is at 0x18

A7

00

32

00

00

01

29

F3

EE

EE

EE

EE

FA

CE

CA

FE

26

00

00

00

00

00

10

00

01

00

00

00

FF

00

F4

96

DE

AD

BE

EF

00

00

00

00

CSE351, Winter 2017

+ Declaration # initialization (initially holds “garbage”)

Ox00
0Ox04
Ox08
Ox0C
0x10
Ox14
Ox18
Ox1C
0x20
Ox24



W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

32-bit example

ASS i g nme nt i 1] c (pointers are 32-bits wide)

+» A variable is represented by a memory location
+ Declaration # initialization (initially holds “garbage”)
» 1nt x, Vy;

" xis at address 0x04, v is at 0x18

Ox00 Ox01 0x02 O0x03

Ox00
F3 | Ox04 X
Ox08
Ox0C
0x10
Ox14
00 | Ox18 VY
Ox1C
0x20
Ox24

00 ; 01} 29

01 ;00 | 00




W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

32-bit example

ASSign ment in c (pointers are 32-bits wide)
& = “address of”
= left-hand side = right-hand side; " = "dereference

" |HS must evaluate to a memory location
= RHS must evaluate to a value (could be an address)
= Store RHS value at LHS location 0x00 0x01 0x02 0x03

Ox00
00 | Ox04 X
Ox08
Ox0C
0x10
Ox14
00 | Ox18 VY
Ox1C
0x20
Ox24

» 1nt x, Vy;

00 ! 00 OO

» x = 07

01 ;00 | 00




W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

32-bit example

ASSign ment in c (pointers are 32-bits wide)
& = “address of”
= left-hand side = right-hand side; " = "dereference

" |HS must evaluate to a memory location
= RHS must evaluate to a value (could be an address)
= Store RHS value at LHS location 0x00 0x01 0x02 0x03

Ox00
00 | Ox04 X
Ox08
Ox0C
0x10
Ox14
3C | 0x18 Vv
Ox1C
0x20
Ox24

» 1nt x, Vy;

00 ; 00 } OO

»x = 0;
R 0x3CD02700;

little endian!

N

27 | DO




W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

32-bit example

ASSign ment in c (pointers are 32-bits wide)
& = “address of”
= left-hand side = right-hand side; " = "dereference

" |HS must evaluate to a memory location
= RHS must evaluate to a value (could be an address)

= Store RHS value at LHS location 0x00 0xO1 0x02 O0x03
' : L 0x00
# 1nt X, y; 03 1 27 ' DO ! 3C | Ox04 X
» x = 0; 0x08
: : : Ox0C
» vy = 0x3CD02700; R 0x10
. — 3. i i i Ox14
X =y TS 00 ! 27 ! DO : 3C | Ox18 VY
" Get value at vy, add 3, store in x L 0x1C
L 0x20
| | | Ox24

10



W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

32-bit example

ASSign ment in c (pointers are 32-bits wide)
& = “address of”
= left-hand side = right-hand side; " = "dereference

" |HS must evaluate to a memory location
= RHS must evaluate to a value (could be an address)

= Store RHS value at LHS location 0x00 0xO1 0x02 O0x03
. : P 0x00
» 1nt x, Vy; 0327 ! DO!3C|0x04 X
» x = 0; 0x08
: : ! Ox0C
» v = 0x3CD02700; C1 0x10
o = _|_ 3 o i i i OX14
Px T Y ’ 00 | 27 | DO | 3C | Ox18 Y
" Get value at vy, add 3, store in x L 0x1C
. DE ! AD ! BE ! EF | Ox20 Z
# 1nt* Z; T loxa

= 7 is at address 0x20

11



W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

32-bit example

ASSign ment in c (pointers are 32-bits wide)
& = “address of”
= left-hand side = right-hand side; " = "dereference

" |HS must evaluate to a memory location
= RHS must evaluate to a value (could be an address)

= Store RHS value at LHS location 0x00 0x01 0x02 0x03
N : R 0x00
» 1nt x, Vy; 0327 ! DO!3C|0x04 X
» x = 0; 0x08
: : ! 0Ox0C
» vy = 0x3CD02700; R 0x10
o = _|_ 3 o i i i OX14
Px T Y ’ 00 | 27 | DO | 3C | Ox18 Y
" Get value at vy, add 3, store in x L 0x1C
. 24 100! 00! 00]|0x20 Z
o ll’lt* Z = &y + 3; i i i O§24

= Get address of v, “add 3”, store in z

\/L Pointer arithmetic ] 12




W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

Pointer Arithmetic

+» Pointer arithmetic is scaled by the size of target type
" |n this example, sizeof (int) =4
» 1nt* z = &y + 3;
" Get address of yv,add 3*sizeof (int), storein z
" gy = 0x18 = 1*161 + 8*16° = 24
=24 + 3*(4) = 36 = 2*16l + 4*x16Y = 0x24

% Pointer arithmetic can be dangerous!
" Can easily lead to bad memory accesses
= Be careful with data types and casting

13



W UNIVERSITY of WASHINGTON

L03: Memory & Data II

Assignmentin C

int x, v;

x = 0;

y = 0x3CD02700;

X =y + 3;

= Getvalue at y, add 3, store in x
int* z = &y + 37

" Get address of v, add 12, store in z

*z

Yr
= What does this do?

Ox00 Ox01 0x02 O0x03

CSE351, Winter 2017

32-bit example
(pointers are 32-bits wide)

& = “address of”
* = “dereference”

03 127 1 DO ! 3C
00 ! 27 ' DO ! 3C
24 100! 00 ! 00

Ox00
0Ox04
Ox08
Ox0C
0x10
Ox14
Ox18
Ox1C
0x20
Ox24

14



W UNIVERSITY of WASHINGTON

L03: Memory & Data II

Assignmentin C

int x, v;

x = 0;

y = 0x3CD02700;

X =y + 3;

= Getvalue at y, add 3, store in x
int* z = &y + 37

= Get address of v, add 12, store in z

(The target of a pointer 1s
7 kalso a memory location
’

= Get value of y, put in address
stored in z

*7Z

Ox00 Ox01 0x02 O0x03

CSE351, Winter 2017

32-bit example
(pointers are 32-bits wide)

& = “address of”
* = “dereference”

03 127 1 DO ! 3C
00 ! 27 ' DO ! 3C
24 100! 00 ! 00
00 ! 27 1 DO ! 3C

Ox00
0Ox04
Ox08
Ox0C
0x10
Ox14
Ox18
Ox1C
0x20
Ox24

15



W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

Arrays are adjacent locations in memory
storing the same type of data object

Arrays in C

a is a name for the array’s address

Declaration: int a| 64-bit example
(pointers are 64-bits wide)
element type all]
number of
elements al3]
aldb]
Ox0O Ox1 Ox2 Ox4 Ox5 O0x6 Ox7
Ox8 O0x9 OxA O OxC OxD OxE OxF
T T TW T T T Jowo
L b W\ 0X08
a[0] R \\EEE 0x10
al2] T NEE 0x18
al4] L1 MR 0x20
T S S O A 2
I I I I I I I 0x30
R 0x38
o
I I I I I I I Ox48

16



W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

Arrays are adjacent locations in memory
storing the same type of data object

Arrays in C

a is a name for the array’s address

The address of a [1] is the address of a [0 ]

Declaration: int a[6]; plus i times the element size in bytes

Indexing: al[0] = 0x015f;
aldb] = al0];

OxO Ox1 Ox2 Ox3 Ox4 Ox5 Ox6 Ox7
Ox8 O0x9 OxA OxB OxC OxD OxE OxF

0x00
0x08
O0x10
Ox18
00 | 0x20
Ox28
0x30
Ox38
0x40
0x48

al[O0] | 5F101}00];00

5F 10100

17



W UNIVERSITY of WASHINGTON

L03: Memory & Data II

CSE351, Winter 2017

Arrays in C

Declaration: int al[6];

Arrays are adjacent locations in memory
storing the same type of data object

a is a name for the array’s address

The address of a [1] is the address of a [0]
plus i times the element size in bytes

Indexing: al0] = 0x015f;
ald] = al0];
No bounds a[6] = OxBAD;
. OxO Ox1 Ox2 Ox3 Ox4 Ox5 Ox6 Ox7
checking: al-1] = OxBAD; 0x8 O0x9 OxA OxB OxC OxD OxE OxF
IR 0x00
‘1 1 TAD!'OB! 00! 00| oxo8
al[0]|5F101:!00' 00 R 0x10
al2] R R 0x18
al4] R S5F 101! 00! 00 | 0x20
AD'OB'00'00:! ' I 1 0x28
R 0x30
IR 0x38
IR 0x40
T T O T O O I

18



W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

Arrays are adjacent locations in memory
storing the same type of data object

Arrays in C

a is a name for the array’s address

The address of a [1] is the address of a [0 ]

Declaration: int a[6]; plus i times the element size in bytes

Indexing: al[0] = 0x015f;
aldb] = al0];

No bounds a[6] = OxBAD;
OxO Ox1 Ox2 Ox3 Ox4 Ox5 Ox6 Ox7

checking: al-1] = OxBAD; 0x8 O0x9 OxA OxB OxC OxD OxE OxF

Pointers: int* - i i i i i i i 0x00
| - . ! ! TAD!O0B!00 00| 0x08
b / 0wWJoato0lo0 00 T Ox10

p = &a [O] ; | | 1 | 1 |
[2 N N 0x18

*p == OXA; ! ! ! ! ! !
al4 ! : : 5F 101 100! 00| 0x20
AD'OB!00!'00! ' 1 0x28
R 0x30
L bbb | ox3s
o 10'00!00!00!00!00'00'O00]| Ox40
I 0x48

19



W UNIVERSITY of WASHINGTON

CSE351, Winter 2017

Arrays in C

Declaration: int al[6];

L03: Memory & Data II

Arrays are adjacent locations in memory
storing the same type of data object

a is a name for the array’s address

The address of a [1] is the address of a [0]
plus i times the element size in bytes

Indexing: al[0] = 0x015f;

aldb] = al0];

No bounds a[6] = OxBAD;

. OxO Ox1 Ox2 Ox3 Ox4 Ox5 Ox6 Ox7
checking: al-1] = 0xBAD; 0x8 O0x9 OxA OxB OxC OxD OxE OxF
Pointers: int* p; i i i i i i i 0x00

' - " __TAD OB 00 00| 0x08
P ’ al0}of OAT00!00:!00|0OB:!00':00' 00| Ox10

p = &a [O] ; i i ) | I |
al2 ! ! ! ! ! : Ox18

*p - OXA; I I I ! ! !

y ” " al4 ! : : 5F 101 100! 00| 0x20
array indexing = address arithmetic ! ! ; ; ; : :

(both scaled by the size of the type) AD : 0B : 00 : 00 : : ! : O0x28
pI1] = OxB; 1
*(p+1) = OxB; AR FUNI L W S X

p~10:!00!'00!'00!'00 00 0000} Ox40
P=p + 2 b 0x48

20



W UNIVERSITY of WASHINGTON

Arrays in C

Declaration: int al[6];

L03: Memory & Data II

CSE351, Winter 2017

a is a name for the array’s address

The address of a [1] is the address of a [0]
plus i times the element size in bytes

Indexing: al[0] = 0x015f;
al[b] = al[0];
No bounds a[6] = OxBAD;

] Ox0O Ox1 Ox2 Ox3 O0x4 Ox5 Ox6 O0Ox7
checking: al-1] = OxBAD; 0x8 O0x9 OxA OxB OxC OxD OxE OxF
nters: int* ps RN N N S S
rointers: st ;f’ . i i 1AD;0B:00:00

p:&;[o]' 2[0] | OA} 00! 0000 |OB;00:00:00
r .. 2[2p0CT007007 00| & i
d df —— a4 . 1 |s5Fiol'o00:00
array indexing = address arithmetic ! ! ! ! ! : !
(both scaled by the size of the type) AD : 0B : 00 : 00 : : : :
p[l] = OxB; — T T T
*(p+l) = 0xB; ' ! ! ! ! ! !
p~18:00!'00!00!00:00!00 ! 00
p =p + 2; i i i i i ! I
*p = all] + 1;

Arrays are adjacent locations in memory
storing the same type of data object

0x00
0x08
O0x10
Ox18
0x20
Ox28
0x30
Ox38
0x40
0x48

21



W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

Representing strings

+» C-style string stored as an array of bytes (char *)

" Elements are one-byte ASCII codes for each character
= No “String” keyword, unlike Java

32 space 48 0 64 @ 80 P 96 : 112 p
33 ! 49 1 65 A 81 Q 97 a 113 q
34 7 50 2 66 B 82 R 98 b 114 r
35 # 51 3 67 C 83 S 99 C 115 s
36 S 52 4 68 D 84 T 100 d 116 t
37 % 53 5 69 E 85 U 101 e 117 u
38 & 54 6 70 F 86 \'} 102 f 118 v
39 ’ 55 71|71 G| |87 w] |103 g 119 w
40 ( 56 8 72 H 88 X 104 h 120 X
41 ) 57 9] |73 1| | 89 Y 105 | 121 y
42 * 58 : 74 J 90 YA 106 j 122 z
43 + 59 175 k| |91 [ 107 k 123 {
44 , 60 < 76 L 92 \ 108 I 124 |
45 - 61 = 77 M 93 ] 109 m 125 }
46 . 62 > 78 N 94 A 110 n 126 ~
47 / 63 ? 79 (0) 95 _ 111 o 127 del

ASCIl: American Standard Code for Information Interchange 22



W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

Null-Terminated Strings

+» Example: “Life is good” stored as a 13-byte array

Decimal: | 76 | 105| 102( 101| 32 | 105] 115| 32 (103|111|111}|100| O
Hex: | Ox4c| 0x69]| 0x66| Ox65| 0x20[ 0x69| 0x73| 0x20]| Ox67| Ox6f| Ox6f | OXx64| OX00
Text: L i f e i S g o o d \O

+ Last character followed by a 0 byte (*\0')
(a.k.a. “null terminator”)

"= Must take into account when allocating space in memory
= Notethat ‘0’ # “\0’ (i.e. character O has non-zero value)

+» How do we compute the length of a string?

= Traverse array until null terminator encountered

23



W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

. . C (char = 1 byte)
Endianness and Strings

char s[6] = "12345"; IA32,x86-64 SPARC
(little endian)  (big endian)
String literal

oxo0[ 31 | { 31 [oxo0 1’
/om 32 f | 32 |oxo1 2’
0x31 = 49 decimal = ASCII ‘1’ 0x02{ 33 ¢ [ 33 [ox02 37
0x03] 34 | { 34 [ox03 4’
0x04| 35 | » 35 |ox04 5’
0x05| 00 |« »y 00 |0x05 ‘\O’

+» Byte ordering (endianness) is not an issue for 1-byte values
" The whole array does not constitute a single value
" |ndividual elements are values; chars are single bytes

+» Unicode characters — up to 4 bytes/character
= ASCII codes still work (just add leading zeros)

= Unicode can support the many characters in all languages in the world
= Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)



W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

Examining Data Representations

+» Code to print byte representation of data
= Any data type can be treated as a byte array by casting it to char
" Chas unchecked casts !l DANGER !!

vold show bytes(char* start, int len) {
int 1;
for (1 = 0; 1 < len; i++)
printf ("$p\t0x%.2x\n", start+i, *(start+i));
printf ("\n") ;
}

printf directives:
3¢ Print pointer
\t Tab
$x  Print value as hex
\n Newline

25



W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

Examining Data Representations

+» Code to print byte representation of data
= Any data type can be treated as a byte array by casting it to char
" Chas unchecked casts !l DANGER !!

vold show bytes(char* start, int len) {
int 1;
for (1 = 0; i < len; i++)
printf ("$p\t0x%.2x\n", start+i, *(start+i));
printf ("\n") ;
}

vold show int (int x) {
show bytes( (char *) &x, sizeof (int));

}

26



W UNIVERSITY of WASHINGTON

L03: Memory & Data II

show bytes Execution Example

CSE351, Winter 2017

a = 12345;
printf ("int a

show int(a);

// 0x00003039
= 12345;\n");
// show bytes((char *) &a,

sizeof (1nt));

+» Result (Linux x86-64):

" Note: The addresses will change on each run (try it!), but
fall in same general range

int a = 12345;
Ox7fffb7f71dbc
Ox7fffb7f71dbd
Ox7fffb7f71dbe
Ox7fffb7f71dbf

0x39
0x30
0x00
0x00

27



W UNIVERSITY of WASHINGTON L03: Memory & Data II CSE351, Winter 2017

Summary

0.0

Assignment in C results in value being put in memory
location

00

+» Pointer is a C representation of a data address
= & ="“address of” operator

= * = “value at address” or “dereference” operator

» Pointer arithmetic scales by size of target type
" Convenient when accessing array-like structures in memory

= Be careful when using — particularly when casting variables

% Arrays are adjacent locations in memory storing the
same type of data object

= Strings are null-terminated arrays of characters (ASCII)

L)

28



