YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2017

CSE351: Memory, Data, & Addressing |

CSE 351 Winter 2017

MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME.
A FEW POINTERST

‘ 0x3A28213A
Ox6339292C,
Ox 73636832E.

[HATE YOU.

a5k

http://xkcd.com/138/

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I CSE351, Winter 2017

Administrivia

+ Start-of-Course survey due tomorrow at 5pm

% Lab 0 due Monday at 5pm
= Who tried it?

+ Consider taking CSE391 (System and Software tools)

+ All course materials can be found on the website
= Calendar link fixed, subscribe to it!
= Section materials sidebar
= Readings: try to do them before class
= Slides posted weekend before classes. Ink saved.
= Book: Sorry, really need 3™ edition.

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2017

Memory & data

Roadmap

C: Java:

car *c = malloc(sizeof(car)); Car ¢ = new Car();

c->miles = 100; c.setMiles(100);

c->gals = 17; c.setGals(17);

float mpg = get_ mpg(c); float mpg =

free(c); c.getMPG();
~ —

Assembly get mpg:

language: L] iy

movq %rsp, %rbp

popq %orbp

ret
v

Machine 0111010000011000
, 100011010000010000000010
code: 1000100111000010
110000011111101000011111
Computer

system:

YA/ UNIVERSITY of WASHINGTON

L02: Memory & Data |

CSE351, Winter 2017

Hardware: Logical View

CPU

Memory

Bus

Net

USB

Etc.

CSE351, Winter 2017

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data |

Hardware: Physical View

N USB...

\
(’}' PCl-Express Slots
< 1 PCI-E X16, 2 PCI-E X1 Back Panel Connectors

CPU
(empty slot)

Socket 775
Core2 Quad/
Core2 Extreme
Ready

Intel P45
Chipset

/O Intel ICH10 |

Chipset
controller

Serial ATA
Headers R

Storage connections

DDR2
1066+MHz
Dual Channel
Memory Slots

Memory

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I

Hardware: 351 View

CSE351, Winter 2017

instructions

~

\CPU / data

Memory

» CPU executes instructions; memory stores data

» To execute an instruction, the CPU must:
= fetch an instruction;
= fetch the data used by the instruction; and, finally,
= execute the instruction on the data...
= which may result in writing data back to memory

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I CSE351, Winter 2017

Hardware: 351 View

/ i-cache

take 470...

instructions

Memory

\CP U registers/ data

« The CPU holds instructions temporarily in the instruction cache
« The CPU holds data temporarily in a fixed number of registers
» Instruction and operand fetching is hardware-controlled

» Data movement is programmer-controlled (in assembly)

» We'll learn about the instructions the CPU executes —
take CSE/EE470 to find out how it actually executes them ,

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I

Hardware: 351 View

CSE351, Winter 2017

instructions

/ i-cache

take 470...

\

How are data and
instructions
;

epresented?

ctions temporarip~ \cw-md-@n—mg

» The CPU holds data temporarily in a{ How does a program
» Instruction and operand fetching is hf find its data in

» Data movement is programmer-cont

memory?

he

/

» We'll learn about the instructions the CPU executes —

take CSE/EE470 to find out how it actually executes them

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2017

Memory, Data, and Addressing

+» Representing information as bits and bytes
+» Organizing and addressing data in memory
+» Manipulating data in memory using C

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I CSE351, Winter 2017

Question 1:

/ i-cache

take 470...

instructions

Memory

How are data and
instructions

represented?
& P

10

YA/ UNIVERSITY of WASHINGTON

L02: Memory & Data |

Binary Representations

+» Base 2 number representation
= A base 2 digit (O or 1) is called a bit

" Represent 351,,as 0000000101011111, or 101011111,
. Why? \Leading Zeros

CSE351, Winter 2017

11

YA/ UNIVERSITY of WASHINGTON

L02: Memory & Data |

Binary Representations

+» Base 2 number representation
= A base 2 digit (O or 1) is called a bit
" Represent 351,,as 0000000101011111, or 101011111,

+ Electronic implementation

Leading zeros

= Easy to store with bi-stable elements

CSE351, Winter 2017

= Reliably transmitted on noisy and inaccurate wires

—— 0 1
3.3V —
2.8V — T TN
0.5V — /
/—W

0.0V —

12

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I CSE351, Winter 2017

Review: Number Bases

+ Key terminology: digit (d) and base (B)
" |n base B, each digit is one of B possible symbols

» Value of i-th digit is d X B! where i starts at 0 and
increases from right to left
= ndigit numberd,d, ... d;d,

" value=d, ;xB™+d, ,xB"2 + ...+ d;xB!+ d,xBC

" |n a fixed-width representation, left-most digit is called the

most-significant and the right-most digit is called the least-
significant

+ Notation: Base is indicated using either a prefix or a
subscript

13

W UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2017

Describing Byte Values

Binary (00000000, — 11111111,)

= Byte = 8 bits (binary digits) LSB
MSB\

A

0 0 1 0 1 1 0 1
0%27 | 0%26 | 1%25 | 0*24 | 1*23 | 1*22 | 0*21 | 1%20
32 8 4 1 | =45

10 is not a power of 2 ®.

14

YA/ UNIVERSITY of WASHINGTON

L02: Memory & Data |

Describing Byte Values

+ Binary (00000000, — 11111111,)

= Byte = 8 bits (binary digits) LSB
MSB\

“0 o0 | 1|0 | 1| 1] o0]1
0%27 | 0%26 | 1%25 | 0%2¢ | 1%23 | 1%22 | 0*2! | 1%20
32 8 4 1
X DECIma| (010 - 25510)
+ Hexadecimal (00, — FFy)

= Byte = 2 hexadecimal (or “hex” or base 16) digits

— 4510

= Base 16 number representation
= Use characters ‘0’ to ‘9" and ‘A’ to ‘F
= Write FA1D37B,, in the Clanguage

- as OxFA1D37B or Oxfald3'7b

« More on specific data types later...

CSE351, Winter 2017

S o
Q@*<ﬁ§§®&§
0] 00000
1|1]0001
2 | 210010
330011
440100
51510101
660110
717 10111
8 | 8 | 1000
9 | 9 1001
A |10]1010
B |11|11011
C|12]11100
D|13]1101
E [141 1110
F 11511111

15

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2017

Question 2:

T icache instructions

\CPU registersj data ﬁ//\\
~

How does a program

find its data in
memory?

\ J

16

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I

Byte-Oriented Memory Organization

» Conceptually, memory is a single, large array of bytes,
each with a unique address (index)

» The value of each byte in memory can be read and written

Programs refer to bytes in memory by their addresses
= Domain of possible addresses = address space

But not all values (e.g., 351) fit in a single byte...

= Store addresses to “remember” where other data is in memory
"= How much memory can we address with 1-byte (8-bit) addresses?

Many operations actually use multi-byte values

CSE351, Winter 2017

17

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2017

Machine Words

«» Word size = address size = register size
« Word size bounds the size of the address space and
memory

= word size = w bits > 2Y¥ addresses

+ Current x86 systems use 64-bit (8-byte) words

= Potential address space: 2% addresses
24 bytes ~ 1.8 x 10%° bytes
= 18 billion billion bytes
= 18 EB (exabytes) = 16 EiB (exbibytes)

= Actual physical address space: 48 bits

18

YA/ UNIVERSITY of WASHINGTON

L02: Memory & Data |

Aside: Units and Prefixes

+ Here focusing on large numbers (exponents > 0)
+» Note that 103 = 210
- S| prefixes are ambiguous if base 10 or 2

SIZE PREFIXES (10* for Disk, Communication; 2* for Memory)

» |EC prefixes are unambiguously base 2

SI Size Prefix Symbol | IEC Size Prefix Symbol
103 Kilo- K 210 Kibi- Ki
10© Mega- M 249 Mebi- Mi
10° Giga- G 220 Gibi- Gi
10~ Tera- T 240 Tebi- Ti
1015 Peta- P 250 Pebi- Pi
1018 Exa- E 299 Exbi- Ei1

1041 Zetta- Z 270 Zebi- Z1
10%4 Yotta- ¥ 250 Y obi- ¥

CSE351, Winter 2017

19

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I CSE351, Winter 2017

Word-Oriented Memory Organization

. 64-bit 32-bit Byteg ddr.
«» Addresses specify Words Words YIS (hex)
locations of bytes in memory 0x00
= Address of word Addr 0x01
= address of first byte in word ?? 0x02
Addr OXO3
= Addresses of successive words s 0x04
differ by word size (in bytes): ?? Addr 0§05
e.qg., 4 (32-bit) or 8 (64-bit) =

27 0x06
= Address of word O, 1, ... 10? “ 0x07
0x08
Addr 0x09
o 2? Ox0A
" 0x0B
7? O0x0C
Addr 0x0D
2? OxOE

OxOF

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I CSE351, Winter 2017

Word-Oriented Memory Organization

_ . 64-bit 32-bit Byteg ddr.

» Addresses still specify Words Words YIS (hex)

locations of bytes in memory 0x00

= Address of word Addr 0x01

= address of first byte in word rddr 0000 0x02

= Addresses of successive words = 8)(82

differ by word size (in bytes): 0000 Addr OXOS

e.g., 4 (32-bit) or 8 (64-bit) - oio -
0004

= Address of word O, 1, ... 10? 0x07

= Alignment Ox08

Addr 0x09

rddr 0008 Ox0A

- Ox0B

0008 0x0C

Addr 0x0D

0012 OxOE

OxOF ,

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I CSE351, Winter 2017

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:
" |n this type of picture, each row is composed of 8 bytes

= Each cell is a byte one word

= A 64-bit pointer 1 : \

WI” fl t on one row 0x00 O0x01 O0x02 Ox03 0x04 Ox05 Ox06 O0x07
y 1! ¥, ¥ ¥ y y

Address
¥ | 0x00
Ox
Ox
Ox
Ox
Ox
Ox
Ox
Ox
Ox

22

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I CSE351, Winter 2017

A Picture of Memory (64-bit view)

+» A “64-bit (8-byte) word-aligned” view of memory:
" |n this type of picture, each row is composed of 8 bytes
= Each cell is a byte

one word

= A 64-bit pointer 1 : \
will fit on one row O:,OOE 020; 020? 0;‘,0? 0‘:'045 ‘::,055 ‘::,055 °:,°7 gid(;gs
s 'z 'z 3 1z iz 'z |Ox08
P//ﬂ,//ﬁZ/i 0x10
r A A 0x18
/ A A AT 0x20
| R 0x28
0x08 0x09 OXxOA 0x0OB OX)C OXOD OXOE OXOF | | i | 0x30
IR 0x38
IR 0x40
IR 0x48

23

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I CSE351, Winter 2017

. 64-bit 1
Addresses and Pointers oo e 4 bit it

» An address is a location in memory

+» A pointer is a data object that holds an address
= Address can point to any data

Address

+» Value 351 stored at I R A 0x00

R 0x10

" 351,5=15F IR Ox18

= 0x 00 00 01 5F IR 0x20

. IR 0x28

« Pointer stored at S S S — O))§3O
. NG A S A SN S S —

0x38 points to 00:00:00:00:00:00:00:08| 0x38

R 0x40

address 0x08 — T T T T oxas8

24

YA/ UNIVERSITY of WASHINGTON

Addresses and Pointers (pointors are 64-bits wide)

L02: Memory & Data | CSE351, Winter 2017

64-bit example

» An address is a location in memory

+» A pointer is a data object that holds an address
= Address can point to any data

«» Pointer stored at
0x48 points to
address 0x38

= Pointer to a pointer!
+ |s the data stored
at Ox08 a pointer?

= Could be, depending
on how you use it

Address

i i i i i i i 0x00

r"OOEOOEOOEOOEOOEOOEOli5F 0x08

| Ox10

Ox18

0x20

O0x28

&

| 0x30

(-POOEOOEOOEOOEOOEOOEOOEOS 0x38

I I I I I I I OX4O

\—

'00500500300500500500538 0x48

25

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2017

Data Representations

+ Sizes of data types (in bytes)

Java Data Type C Data Type 32-bit (old) x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short 1int 2 2
int int 4 4
float float 4 4
long int 4 8
double double 8 8
long long 8 8
long double 8 16

q

address size = word size

To use “bool” in C, you must #include <stdbool.h> -

YA/ UNIVERSITY of WASHINGTON

L02: Memory & Data | CSE351, Winter 2017

More on Memory Alignment in x86-64

+» For good memory system performance, Intel
recommends data be aligned

= However the x86-64 hardware will work correctly regardless
of alignment of data

= Design choice: x86-64 instructions are variable bytes long

+ Aligned: Primitive object of K bytes must have an
address that is a multiple of K

= More about alignment later in the course

1

2
4
38

char

short

int, float

long, double, pointers

27

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I

CSE351, Winter 2017

Byte Ordering

+» How should bytes within a word be ordered in
memory?

= Example: store the 4-byte (32-bit) int:
Ox al b2 c3 d4

L)

4

+» By convention, ordering of bytes called endianness
" The two options are big-endian and little-endian

= Based on Gulliver’s Travels: tribes cut eggs on different
sides (big, little)

28

YA/ UNIVERSITY of WASHINGTON

Byte Ordering

L02: Memory & Data |

» Big-endian (SPARC, z/Architecture)

= |east significant byte has highest address

+ Little-endian (x86, x86-64)

= Least significant byte has lowest address
+ Bi-endian (ARM, PowerPC(C)

" Endianness can be specified as big or little

+» Example: 4-byte data Oxal

0x100

0x101

CSE351, Winter 2017

n2c3d4 at address 0x100

0x102 0x103

Big Endian

al

b2

c3

4

0x100 0x101

0x102 0x103

Little Endian

d4

c3

b2

al

29

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data | CSE351, Winter 2017

Decimal: 12345
0011 0000 0011 1001

Byte Ordering Examples |2 °°0 20 0 ™%

IA32, x86-64 SPARC
(little endian) (big endian)
int x = 12345; 0x00 0x00
// or x = 0x3039; 0x01 0x01
0x02 0x02
0x03 0x03
32-bit 64-bit
long int y = 12345; IA32 x86-64 SPARC SPARC
// or yv = 0x3039; 0x00| 39 [=—| 39 | 0x00 oxo00| 00 00 |ox00
O0x01] 30 = 30 | 0x01 oxo01] 0O 00 |Ox01
0x02] 00 [00 | 0x02 ox02| 30 00 [0x02
0x031 00 [—| 00 | 0Ox03 ox03| 39 00 |0x03
(A long int is 00 | 0x04 00 [ox04
: 00 | 0x05 00 |oxos
the size of a word) 50 oo 20 oroc
00 | ox07 39 |0x07

30

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I CSE351, Winter 2017

Endianness

+» Often programmer can ignore endianness because it
is handled for you

= Bytes wired into correct place when reading or storing from
memory (hardware)

= Compiler and assembler generate correct behavior
(software)
+» Endianness still shows up:

= |ogical issues: accessing different amount of data than how
you stored it (e.g. store int, access byte as a char)

®" When running down memory errors, need to know exact
values

= Manual translation to and from machine code (in 351)

31

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I

Reading Byte-Reversed Listings

Disassembly 32-bit example

= Take binary machine code and generate an assembly code version
= Does the reverse of the assembler

Example instruction in memory

= add value Ox12ab to register ‘ebx’ (a special location in the CPU)

Address Instruction Code Assembly Rendition
8048366: 81c3ab 120000 add S$SO0x12ab,%ebx

Deciphering numbers

32

CSE351, Winter 2017

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I CSE351, Winter 2017

Reading Byte-Reversed Listings

32-bit example

Disassembly
= Take binary machine code and generate an assembly code version
= Does the reverse of the assembler

Example instruction in memory

= add value Ox12ab to register ‘ebx’ (a special location in the CPU)

Address Instruction Code Assembly Rendition
8048366: 81c3ab 120000 add SOx12ab,%ebx

Deciphering numbers

m Value: Ox12ab
m Pad to 32 bits: 0x000012ab
m Split into bytes: 00 00 12 ab

m Reverse (little-endian): ab 12 00 00

33

YA/ UNIVERSITY of WASHINGTON CSE351, Winter 2017

Question:

«» We store the value O0x 00 01 02 03 as a word at

address 0x100 and then get back 0x00 when we read
a byte at address 0x102

+» What machine setup are we using?

(A)
(B) 32-bit, little-endian
(C)
(D) 64-bit, little-endian

34

YA/ UNIVERSITY of WASHINGTON L02: Memory & Data I

CSE351, Winter 2017

Summary

» Memory is a long, byte-addressed array

= Word size bounds the size of the address space and memory
= Different data types use different number of bytes

= Address of chunk of memory given by address of lowest byte
in chunk

= Object of K bytes is aligned if it has an address that is a
multiple of K

» |EC prefixes refer to powers of 21
+ Pointers are data objects that holds addresses

+» Endianness determines storage order for multi-byte
objects

35

