
L02: Memory & Data I CSE351, Winter 2017

CSE351:	Memory,	Data,	&	Addressing	I
CSE	351	Winter	2017

1

http://xkcd.com/138/

L02: Memory & Data I CSE351, Winter 2017

Administrivia

v Start-of-Course	survey	due	tomorrow	at	5pm
v Lab	0	due	Monday	at	5pm

§ Who	tried	it?

v Consider	taking	CSE391	(System	and	Software	tools)

v All	course	materials	can	be	found	on	the	website
§ Calendar	link	fixed,	subscribe	to	it!
§ Section	materials	sidebar
§ Readings:	try	to	do	them	before	class	
§ Slides	posted	weekend	before	classes.	Ink	saved.
§ Book:	Sorry,	really	need	3rd edition.	

2

L02: Memory & Data I CSE351, Winter 2017

Roadmap

3

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

L02: Memory & Data I CSE351, Winter 2017

Hardware:	Logical	View

4

CPU Memory

Disks Net USB Etc.

Bus

L02: Memory & Data I CSE351, Winter 2017

Hardware:	Physical	View

5

CPU
(empty	slot)

USB…

I/O
controller

Storage	connections
Memory

L02: Memory & Data I CSE351, Winter 2017

Hardware:	351	View (version	0)

v CPU	executes	instructions;	memory	stores	data
v To	execute	an	instruction,	the	CPU	must:

§ fetch	an	instruction;
§ fetch	the	data	used	by	the	instruction;	and,	finally,
§ execute	the	instruction	on	the	data…
§ which	may	result	in	writing	data	back	to	memory

6

Memory

CPU

?
data

instructions

L02: Memory & Data I CSE351, Winter 2017

Hardware:	351	View (version	1)

v The	CPU	holds	instructions	temporarily	in	the	instruction	cache
v The	CPU	holds	data	temporarily	in	a	fixed	number	of	registers
v Instruction	and	operand	fetching	is	hardware-controlled
v Data	movement	is	programmer-controlled	(in	assembly)
v We’ll	learn	about	the	instructions	the	CPU	executes	–

take	CSE/EE470	to	find	out	how	it	actually	executes	them 7

Memory

data

instructions

CPU

take	470…

registers

i-cache

L02: Memory & Data I CSE351, Winter 2017

Hardware:	351	View (version	1)

8

Memory

data

instructions

CPU

take	470…

registers

i-cache

v The	CPU	holds	instructions	temporarily	in	the	instruction	cache
v The	CPU	holds	data	temporarily	in	a	fixed	number	of	registers
v Instruction	and	operand	fetching	is	hardware-controlled
v Data	movement	is	programmer-controlled	(in	assembly)
v We’ll	learn	about	the	instructions	the	CPU	executes	–

take	CSE/EE470	to	find	out	how	it	actually	executes	them

How	are	data	and	
instructions	
represented?

How	does	a	program	
find	its	data	in	
memory?

L02: Memory & Data I CSE351, Winter 2017

Memory,	Data,	and	Addressing

v Representing	information	as	bits	and	bytes
v Organizing	and	addressing	data	in	memory
v Manipulating	data	in	memory	using	C

9

L02: Memory & Data I CSE351, Winter 2017

Question	1:

10

Memory

data

instructions

CPU

take	470…

registers

i-cache

How	are	data	and	
instructions	
represented?

L02: Memory & Data I CSE351, Winter 2017

Binary	Representations

v Base	2	number	representation
§ A	base	2	digit	(0	or	1)	is	called	a	bit
§ Represent	35110 as	00000001010111112	 or		1010111112

v Why?

11

Leading	zeros

L02: Memory & Data I CSE351, Winter 2017

Binary	Representations

v Base	2	number	representation
§ A	base	2	digit	(0	or	1)	is	called	a	bit
§ Represent	35110 as	00000001010111112	 or		1010111112

v Electronic	implementation
§ Easy	to	store	with	bi-stable	elements
§ Reliably	transmitted	on	noisy	and	inaccurate	wires	

12

0.0V
0.5V

2.8V
3.3V

0 1 0

Leading	zeros

L02: Memory & Data I CSE351, Winter 2017

Review:		Number	Bases

v Key	terminology: digit	(d)	and	base	(B)
§ In	base	B,	each	digit	is	one	of	B	possible	symbols

v Value	of	𝑖-th digit	is	𝑑×𝐵% where	𝑖 starts	at	0	and	
increases	from	right	to	left
§ n digit	number	dn-1dn-2 ...	d1d0
§ value	=	dn-1´Bn-1	+	dn-2´Bn-2 +	...	+	d1´B1 +	d0´B0

§ In	a	fixed-width representation,	left-most	digit	is	called	the	
most-significant and	the	right-most	digit	is	called	the	least-
significant

v Notation: Base	is	indicated	using	either	a	prefix	or	a	
subscript

13

L02: Memory & Data I CSE351, Winter 2017

Describing	Byte Values
v Binary	(000000002 – 111111112)

§ Byte	=	8	bits	(binary	digits)

v Decimal		(010 – 25510)
v 10	is	not	a	power	of	2	L.

14

0 0 1 0 1 1 0 1
0*27 0*26 1*25 0*24 1*23 1*22 0*21 1*20

32 8 4 1 = 4510

LSBMSB

L02: Memory & Data I CSE351, Winter 2017

Describing	Byte Values
v Binary	(000000002 – 111111112)

§ Byte	=	8	bits	(binary	digits)

v Decimal		(010 – 25510)
v Hexadecimal		(0016 – FF16)

§ Byte	=	2	hexadecimal	(or	“hex”	or	base	16)	digits
§ Base	16	number	representation
§ Use	characters	‘0’	to	‘9’	and	‘A’	to	‘F’
§ Write	FA1D37B16 in	the	C	language	

• as			0xFA1D37B or			0xfa1d37b

v More	on	specific	data	types	later…
15

0 0 0000
1 1 0001
2 2 0010
3 3 0011
4 4 0100
5 5 0101
6 6 0110
7 7 0111
8 8 1000
9 9 1001
A 10 1010
B 11 1011
C 12 1100
D 13 1101
E 14 1110
F 15 1111

0 0 1 0 1 1 0 1
0*27 0*26 1*25 0*24 1*23 1*22 0*21 1*20

32 8 4 1 = 4510

LSBMSB

L02: Memory & Data I CSE351, Winter 2017

Question	2:

16

Memory

data

instructions

CPU

take	470…

registers

i-cache

How	does	a	program	
find	its	data	in	
memory?

L02: Memory & Data I CSE351, Winter 2017

Byte-Oriented	Memory	Organization

v Conceptually,	memory	is	a	single,	large	array	of	bytes,
each	with	a	unique	address (index)

v The	value	of	each	byte	in	memory	can	be	read	and	written
v Programs	refer	to	bytes	in	memory	by	their	addresses

§ Domain	of	possible	addresses	=	address	space

v But	not	all	values	(e.g.,	351)	fit	in	a	single	byte…
§ Store	addresses	to	“remember”	where	other	data	is	in	memory
§ How	much	memory	can	we	address	with	1-byte	(8-bit)	addresses?

v Many	operations	actually	use	multi-byte	values

17

• • •

L02: Memory & Data I CSE351, Winter 2017

Machine	Words

v Word	size	=	address	size	=	register	size
v Word	size	bounds	the	size	of	the	address	space	and	
memory
§ word	size		=		𝑤 bits		→ 2𝑤 addresses

v Current	x86	systems	use	64-bit	(8-byte)	words
§ Potential	address	space:	𝟐𝟔𝟒 addresses
264 bytes	» 1.8	x	1019 bytes
=	18	billion	billion	bytes	
=	18	EB	(exabytes)	=	16	EiB (exbibytes)

§ Actual	physical	address	space:		48	bits

18

L02: Memory & Data I CSE351, Winter 2017

Aside:		Units	and	Prefixes

v Here	focusing	on	large	numbers	(exponents	>	0)
v Note	that	103 ≈	210

v SI	prefixes	are	ambiguous	if	base	10	or	2
v IEC	prefixes	are	unambiguously	base	2

19

L02: Memory & Data I CSE351, Winter 2017

Word-Oriented	Memory	Organization
v Addresses	specify	

locations	of	bytes	in	memory
§ Address	of	word

=	address	of	first	byte	in	word
§ Addresses	of	successive	words	

differ	by	word	size	(in	bytes):
e.g.,	4	(32-bit)	or	8	(64-bit)

§ Address	of	word	0,	1,	…	10?

20

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B

32-bit
Words

Bytes

0x0C
0x0D
0x0E
0x0F

64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr.
(hex)

L02: Memory & Data I CSE351, Winter 2017

Word-Oriented	Memory	Organization
v Addresses	still	specify	

locations	of	bytes in	memory
§ Address	of	word

=	address	of	first	byte	in	word
§ Addresses	of	successive	words	

differ	by	word	size	(in	bytes):
e.g.,	4	(32-bit)	or	8	(64-bit)

§ Address	of	word	0,	1,	…	10?
§ Alignment

21

32-bit
Words

Bytes64-bit
Words

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

Addr
=
??

0000

0004

0008

0012

0000

0008

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07
0x08
0x09
0x0A
0x0B
0x0C
0x0D
0x0E
0x0F

Addr.
(hex)

L02: Memory & Data I CSE351, Winter 2017

A	Picture	of	Memory	(64-bit	view)

v A	“64-bit	(8-byte)	word-aligned”	view of	memory:
§ In	this	type	of	picture,	each	row	is	composed	of	8	bytes
§ Each	cell	is	a	byte
§ A	64-bit	pointer	
will	fit	on	one	row

22

0x00
0x
0x
0x
0x
0x
0x
0x
0x
0x

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

one	word

Address

L02: Memory & Data I CSE351, Winter 2017

A	Picture	of	Memory	(64-bit	view)

v A	“64-bit	(8-byte)	word-aligned”	view of	memory:
§ In	this	type	of	picture,	each	row	is	composed	of	8	bytes
§ Each	cell	is	a	byte
§ A	64-bit	pointer	
will	fit	on	one	row

23

0x0D 0x0E 0x0F0x0C

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

Address

0x09 0x0A 0x0B0x08

one	word

0x04 0x05 0x06 0x070x00 0x01 0x02 0x03

L02: Memory & Data I CSE351, Winter 2017

Addresses	and	Pointers

v An	address is	a	location	in	memory
v A	pointer is	a	data	object	that	holds	an	address

§ Address	can	point	to	any data

v Value	351	stored	at	
address	0x08
§ 35110 =	15F16
=	0x	00	00	01	5F

v Pointer	stored	at
0x38 points	to	
address	0x08

24

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

64-bit example
(pointers are 64-bits wide)

Address

00 00 00 00 00 00 01 5F

00 00 00 00 00 00 00 08

L02: Memory & Data I CSE351, Winter 2017

Addresses	and	Pointers

v An	address is	a	location	in	memory
v A	pointer is	a	data	object	that	holds	an	address

§ Address	can	point	to	any data

v Pointer	stored	at
0x48 points	to	
address	0x38
§ Pointer	to	a	pointer!

v Is	the	data	stored
at	0x08 a	pointer?
§ Could	be,	depending
on	how	you	use	it

25

0x00
0x08
0x10
0x18
0x20
0x28
0x30
0x38
0x40
0x48

64-bit example
(pointers are 64-bits wide)

Address

00 00 00 00 00 00 01 5F

00 00 00 00 00 00 00 08

00 00 00 00 00 00 00 38

L02: Memory & Data I CSE351, Winter 2017

v Sizes	of	data	types	(in	bytes)

Data	Representations

26To	use	“bool”	in	C,	you	must	#include <stdbool.h>

Java Data Type C Data Type 32-bit (old) x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
int int 4 4
float float 4 4

long int 4 8
double double 8 8
long long 8 8

long double 8 16
(reference) pointer * 4 8(reference) pointer * 4 8

address size = word size

L02: Memory & Data I CSE351, Winter 2017

More	on	Memory	Alignment	in	x86-64

v For	good	memory	system	performance,	Intel	
recommends	data	be	aligned	
§ However	the	x86-64	hardware	will	work	correctly	regardless	
of	alignment	of	data

§ Design	choice:		x86-64	instructions	are	variable bytes	long

v Aligned: Primitive	object	of	𝐾 bytes	must	have	an	
address	that	is	a	multiple	of	𝐾
§ More	about	alignment	later	in	the	course

27

𝐾 Type
1 char
2 short
4 int, float
8 long, double, pointers

L02: Memory & Data I CSE351, Winter 2017

Byte	Ordering

v How	should	bytes	within	a	word	be	ordered	in	
memory?
§ Example:	store	the	4-byte	(32-bit)	int:	
0x a1 b2 c3 d4

v By	convention,	ordering	of	bytes	called	endianness
§ The	two	options	are	big-endian	and	little-endian
§ Based	on	Gulliver’s	Travels:		tribes	cut	eggs	on	different	
sides	(big,	little)

28

L02: Memory & Data I CSE351, Winter 2017

Byte	Ordering

v Big-endian	(SPARC,	z/Architecture)
§ Least	significant	byte	has	highest	address

v Little-endian	(x86,	x86-64)
§ Least	significant	byte	has	lowest	address

v Bi-endian	(ARM,	PowerPC)
§ Endianness	can	be	specified	as	big	or	little

v Example: 4-byte	data	0xa1b2c3d4	at	address	0x100

29

0x100 0x101 0x102 0x103

01 23 45 67
0x100 0x101 0x102 0x103

67 45 23 01

Big Endian

Little Endian

a1 b2 c3 d4

d4 c3 b2 a1

L02: Memory & Data I CSE351, Winter 2017

Byte	Ordering	Examples

30

Decimal: 12345
Binary:		 0011 0000 0011 1001
Hex: 3 0 3 9

39
30
00
00

IA32,	x86-64
(little	endian)

00
00
00
00

39
30
00
00

x86-64

39
30
00
00

IA32

30
39

00
00

SPARC
(big	endian)

30
39

00
00

32-bit
SPARC

30
39

00
00

64-bit
SPARC

00
00
00
00

int x = 12345;
// or x = 0x3039;

long int y = 12345;
// or y = 0x3039;

(A	long int is	
the	size	of	a	word)

0x00
0x01
0x02
0x03

0x00
0x01
0x02
0x03

0x00
0x01
0x02
0x03

0x00
0x01
0x02
0x03

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

0x00
0x01
0x02
0x03
0x04
0x05
0x06
0x07

L02: Memory & Data I CSE351, Winter 2017

Endianness

v Often	programmer	can	ignore	endianness	because	it	
is	handled	for	you
§ Bytes	wired	into	correct	place	when	reading	or	storing	from	
memory	(hardware)

§ Compiler	and	assembler	generate	correct	behavior	
(software)

v Endianness	still	shows	up:
§ Logical	issues:		accessing	different	amount	of	data	than	how	
you	stored	it	(e.g.	store	int,	access	byte	as	a	char)

§ When	running	down	memory	errors,	need	to	know	exact	
values

§ Manual	translation	to	and	from	machine	code	(in	351)
31

L02: Memory & Data I CSE351, Winter 2017

Reading	Byte-Reversed	Listings
v Disassembly

§ Take	binary	machine	code	and	generate	an	assembly	code	version
§ Does	the	reverse	of	the	assembler

v Example	instruction	in	memory	
§ add	value	0x12ab	to	register	‘ebx’	(a	special	location	in	the	CPU)

32

Address Instruction	Code Assembly	Rendition
8048366: 81	c3	ab	12	00	00				 add				$0x12ab,%ebx

32-bit example

Deciphering	numbers

L02: Memory & Data I CSE351, Winter 2017

Reading	Byte-Reversed	Listings
v Disassembly

§ Take	binary	machine	code	and	generate	an	assembly	code	version
§ Does	the	reverse	of	the	assembler

v Example	instruction	in	memory	
§ add	value	0x12ab	to	register	‘ebx’	(a	special	location	in	the	CPU)

33

Address Instruction	Code Assembly	Rendition
8048366: 81	c3	ab 12	00	00				 add				$0x12ab,%ebx

Deciphering	numbers
n Value:	 0x12ab

n Pad	to	32	bits:	 0x000012ab

n Split	into	bytes:	 00 00 12 ab

n Reverse	(little-endian):	 ab 12 00 00

32-bit example

L02: Memory & Data I CSE351, Winter 2017

Question:

v We	store	the	value	0x 00 01 02 03 as	a	word at	
address	0x100 and	then	get	back	0x00 when	we	read	
a	byte at	address	0x102

v What	machine	setup	are	we	using?

34

32-bit,	big-endian(A)
32-bit,	little-endian(B)
64-bit,	big-endian	(C)

(D)

L02: Memory & Data I CSE351, Winter 2017

Summary

v Memory	is	a	long,	byte-addressed array
§ Word	size	bounds	the	size	of	the	address	space	and	memory
§ Different	data	types	use	different	number	of	bytes
§ Address	of	chunk	of	memory	given	by	address	of	lowest	byte	
in	chunk

§ Object	of	𝐾 bytes	is	aligned if	it	has	an	address	that	is	a	
multiple	of	𝐾

v IEC	prefixes	refer	to	powers	of	2-.

v Pointers	are	data	objects	that	holds	addresses
v Endianness	determines	storage	order	for	multi-byte	
objects

35

