
CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

The	Hardware/Software	Interface
CSE	351	Winter	2017

http://xkcd.com/676/

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Welcome	to	CSE351!

v See	the	key	abstractions	“under	the	hood”	to	
describe	“what	really	happens”	when	a	program	runs
§ How	is	it	that	“everything	is	1s	and	0s”?
§ Where	does	all	the	data	get	stored	and	how	do	you	find	it?
§ How	can	more	than	one	program	run	at	once?
§ What	happens	to	a	Java	or	C	program	before	the	hardware	can	execute	

it?
§ And	much,	much,	much	more…

v An	introduction that	will:
§ Profoundly	change/augment	your	view	of	computers	and	programs	
§ Connect	your	source	code	down	to	the	hardware
§ Leave	you	impressed	that	computers	ever	work	J

2

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Who is Luis?

Approximate computing
New technologies and applications
DNA storage & computing

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

And	the	awesome	351	Wi’17	Staff	

4

Max Willsey
I'm a first-year PhD student focusing on programming
languages and architecture. I like reading, running, and
southern food (I'm from GA!).

Nick Mooney
I’m a third-year undergrad in the CS department, I’m particularly fond
of all things security and low-level, I’ve been a summer camp
counselor for the past three summers, and I think hydration is the
fundamental key to success in life

Yufang Sun
I am a senior CS student. Love discussing about security! I like
listening to rock and running. (Chop Suey is my absolute favorite!)

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

And	the	awesome	351	Wi’17	Staff	

5

Sarang Joshi. I'm a third-year student in CSE, and 351 is my
favorite class so far. I enjoy singing, playing and being bad at sports,
and staying up late nights in the labs. I'm super excited to be TA'ing,
so please come to my office hours to hang out and complain about
assembly.

Artem Minyaylov. I'm a Fifth Year Master's Computer Science
student working with Luis in the architecture lab. Outside of
school, I get great satisfaction out of electronic music, cooking,
and painting my own 3D-printed doohickeys.

Amrita Mazumdar. I'm a third year PhD student, working at the
intersection of computer architecture and computational
photography. I like reading books and drinking coffee, and was
once described as "actually a really interesting person".

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Who	are	You?

v ~	123	students	registered
§ See	me	if	you	are	interested	in	taking	the	class	but	are	not	
yet	registered

v CSE	majors,	EE	majors,	and	more
§ Most	of	you	will	find	almost	everything	in	the	course	new
§ But… anyone	written	code	in	C?	Multithreaded	code?

v Submit	Start-of-Quarter	Survey
§ https://catalyst.uw.edu/webq/survey/luisceze/321769

v Get	to	know	each	other	and	help	each	other	out!
§ More	productive,	more	fun!

6

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

7

<administrivia>

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Communication
v Website:		http://cs.uw.edu/351

§ Schedule,	policies,	sections,	links,	assignments,	etc.

v Discussion:	Catalyst	Go	Post
§ Announcements	made	here
§ Ask	and	answer	questions	– staff will	monitor	and	contribute

v Office	Hours:		spread	throughout	the	week
§ Can	also	e-mail	to	make	individual	appointments

v Anonymous	feedback:
§ Comments	about	anything	related	to	the	course	where	you	would	feel	

better	not	attaching	your	name

v Staff	mailing	list:	cse351-staff@cs.washington.edu
v Class-wide	mailing	list:	If	you	haven’t	received	a	welcome	

message,	please	contact	us.	
8

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Course	Components

v Lectures	(26)
§ Introduce	the	concepts;	supplemented	by	textbook

v Sections	(9-10)
§ Applied	concepts,	important	tools	and	skills	for	labs,	clarification	of	

lectures,	exam	review	and	preparation

v Written	homework	assignments	(4)
§ Mostly	problems	from	textbook	to	solidify	understanding

v Programming	lab	assignments	(6)	– START	EARLY!!
§ Provide	in-depth	understanding	(via	practice)	of	an	aspect	of	system

v Exams	(2)
§ Midterm:	Wednesday,	Feb	8,	in	class.
§ Final:	Wednesday,	March	15,	2017,830-1020, JHN 102	(here	J).

9

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Policies

v Exams: Midterm	(15%)	and	Final	(30%)
§ Many	old	exams	on	course	website	

v Homework: weighted	according	to	effort	(20%	total)
§ We’ll	try	to	make	these	about	the	same

v Labs: weighted	according	to	effort	(35%	total)
§ These	will	likely	increase	in	weight	as	the	quarter	

progresses

v Other	important	policies:		(details	on	website)
§ 3	allowed	late	days for	the	quarter
§ Collaboration and	academic	integrity
§ Assignment	and	exam	re-grades

10

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Textbooks

v Computer	Systems:	A	Programmer’s	Perspective
§ Randal	E.	Bryant	and	David	R.	O’Hallaron
§ Website:		http://csapp.cs.cmu.edu
§ Must	be	3rd	edition
• http://csapp.cs.cmu.edu/3e/changes3e.html
• http://csapp.cs.cmu.edu/3e/errata.html

§ This	book	really	matters	for	the	course!
• How	to	solve	labs
• Practice	problems	typical	of	exam	problems

v A	good	C	book	– any	will	do
§ The	C	Programming	Language (Kernighan	and	Ritchie)
§ C:	A	Reference	Manual		(Harbison	and	Steele)

11

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Videos	/	Online	course

v Gaetano	Borriello and	I	made	videos	in	2013	covering	
the	course	content	for	an	online	version
§ And	self-check	quiz	questions

v Watch	them!	[they	were	a	lot	of	work	to	make	J]
§ Generally	optional	unless	class	is	cancelled	or	something
§ Occasionallymay	“require	before	class”	so	you	don’t	get	lost	
in	an	example

v Warning: some	content	has	since	changed
§ Now	“all	64-bit”	so	some	videos	may	have	extra	information	
no	longer	relevant

§ When	in	doubt,	go	with	current	lectures	(but	do	ask	first)

12

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Other	details

v Consider	taking	CSE	391	Unix	Tools,	1	credit
§ Useful	skills	to	know	and	relevant	to	this	class
§ Available	to	all	CSE	majors	and	everyone	registered	in	
CSE351

v Everything	starts	now!
§ Including	section	and	office	hours	this	week

13

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

To-Do	List

v Explore	website	thoroughly:		http://cs.uw.edu/351
v Check	that	you	can	access	Go	Post/get	notifications
v Start-of-Course	survey	[Catalyst]	due	Saturday.
v Section	1	is	tomorrow

§ Install	the	virtual	machine	(VM)	before coming	to	section
§ Bring	your	computer	with	you	to	section

v Lab	0	released	today,	due	Monday	(1/9)	@	5pm
§ Basic	exercises	to	start getting	familiar	with	C	– need	the	VM
§ Credit/no-credit
§ Do	ASAP,	attending	Section	1	will	help

14

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

15

</administrivia>

•http://tinyurl.com/hz9sxzd

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100

The	Hardware/Software	Interface

v What	do	we	mean	by	hardware?	software?
v What	is	an	interface?
v Why	do	we	need	a	hardware/software	interface?
v Why	do	we	need	to	understand	both	sides	of	this	

interface?

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

C/Java,	assembly,	and	machine	code

17

High	Level	Language
(e.g.	C,	Java)

Assembly	Language

Machine	Code

if (x != 0) y = (y+z)/x;

cmpl $0, -4(%ebp)
je .L2
movl -12(%ebp), %eax
movl -8(%ebp), %edx
leal (%edx, %eax), %eax
movl %eax, %edx
sarl $31, %edx
idivl -4(%ebp)
movl %eax, -8(%ebp)

.L2:

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

Compiler

Assembler

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

C/Java,	assembly,	and	machine	code

18

if (x != 0) y = (y+z)/x;

cmpl $0, -4(%ebp)
je .L2
movl -12(%ebp), %eax
movl -8(%ebp), %edx
leal (%edx, %eax), %eax
movl %eax, %edx
sarl $31, %edx
idivl -4(%ebp)
movl %eax, -8(%ebp)

.L2:

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

Compiler

Assembler

v All	program	fragments	are	
equivalent	

v You’d rather	write	C!
(more	human-friendly)

v Hardware	executes	strings	
of	bits
§ In	reality	everything	is	voltages
§ The	machine	instructions	are	

actually	much	shorter	than	the	
number	of	bits	we	would	need	
to	represent	the	characters	in	
the	assembly	language

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

HW/SW	Interface:	Historical	Perspective

v Hardware	started	out	quite	primitive

19

Jean	Jennings	(left),	Marlyn Wescoff (center),	and	Ruth	Lichterman
program	ENIAC	at	the	University	of	Pennsylvania,	circa	1946.		
Photo:	Corbis
http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

https://s-media-cache-
ak0.pinimg.com/564x/91/37/23/91372375e2e6517f8af128aa
b655e3b4.jpg

1940s

1970s

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

HW/SW	Interface:	Historical	Perspective

v Hardware	started	out	quite	primitive
§ Programmed	with	very	basic	instructions	(primitives)
§ e.g.,	a	single	instruction	for	adding	two	integers

v Software	was	also	very	basic
§ Closely	reflected	the	actual	hardware	it	was	running	on
§ Specify	each	step	manually

20

Architecture	Specification	(Interface)

Hardware

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

HW/SW	Interface:	Assemblers

v Life	was	made	a	lot	better	by	assemblers
§ 1	assembly	instruction	=	1	machine	instruction
§ More	human-readable	syntax

• Assembly	instructions	are	character	strings,	not	bit	strings

§ Can	use	symbolic	names

21

Hardware

Assembler	specification

Assembler
User	

program	in	
assembly	
language

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

HW/SW	Interface:	Higher-Level	Languages

v Higher	level	of	abstraction
§ 1	line	of	a	high-level	language	is	compiled into	many	
(sometimes	very	many)	lines	of	assembly	language

22

Hardware

C	language	specification

AssemblerC	Compiler
User	

program	
in	C

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

HW/SW	Interface:	Compiled	Programs

23

HardwareAssemblerC	Compiler

Code	Time Compile	Time Run	Time

How	can	you	make	a	C	program	run	faster?

.exe file.c file

User	
program	
in	C

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

HW/SW	Interface:	Compiled	Programs

24

HardwareAssemblerC	Compiler

Code	Time Compile	Time Run	Time

Note: The	compiler	and	assembler	are	just	programs,	developed	using	this	
same	process.

.exe file.c file

User	
program	
in	C

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Big	Theme:	Abstractions	and	Interfaces

v Computing	is	about	abstractions
§ (but	we	can’t	forget	reality)

v Why	do	we	need	abstractions?	Which	ones	do	we	
use?

v What	do	you need	to	know	about	them?
§ When	do	they	break	down	and	you	have	to	peek	under	the	
hood?

§ What	bugs	can	they	cause	and	how	do	you	find	them?

v How	does	the	hardware	relate	to	the	software?
§ Become	a	better	programmer	and	begin	to	understand	the	
important	concepts	that	have	evolved	in	building	ever	more	
complex	computer	systems

25

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Roadmap

26

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures &
stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Little	Theme	1:	Representation

v All	digital	systems	represent	everything	as	0s	and	1s
§ The	0	and	1	are	really	two	different	voltage	ranges	in	the	wires
§ Or	magnetic	positions	on	a	disc,	or	hole	depths	on	a	DVD,	or	even	DNA…

v “Everything”	includes:
§ Numbers	– integers	and	floating	point
§ Characters	– the	building	blocks	of	strings
§ Instructions	– the	directives	to	the	CPU	that	make	up	a	program
§ Pointers	– addresses	of	data	objects	stored	away	in	memory

v Encodings	are	stored	throughout	a	computer	system
§ In	registers,	caches,	memories,	disks,	etc.

v They	all	need	addresses	(a	way	to	locate)
§ Find	a	new	place	to	put	a	new	item	
§ Reclaim	the	place	in	memory	when	data	no	longer	needed

27

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Little	Theme	2:	Translation

v There	is	a	big	gap	between	how	we	think	about	
programs	and	data	and	the	0s	and	1s of	computers
§ Need languages to	describe	what	we	mean
§ These	languages	need	to	be	translated one	level	at	a	time

v We	know	Java	as	a	programming	language
§ Have	to	work	our	way	down	to	the	0s	and	1s	of	computers
§ Try	not	to	lose	anything	in	translation!
§ We’ll	encounter	Java	byte-codes,	C	language,	assembly	
language,	and	machine	code	(for	the	x86	family	of	CPU	
architectures)
• Not	in	that	order,	but	will	all	connect	by	the	last	lecture!!!

28

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Little	Theme	3:	Control	Flow
v How	do	computers	orchestrate	everything	they	are	doing?
v Within	one	program:

§ How	do	we	implement	if/else,	loops,	switches?
§ What	do	we	have	to	keep	track	of	when	we	call	a	procedure,	and	then	

another,	and	then	another,	and	so	on?
§ How	do	we	know	what	to	do	upon	“return”?

v Across	programs	and	operating	systems:
§ Multiple	user	programs
§ Operating	system	has	to	orchestrate	them	all	

• Each	gets	a	share	of	computing	cycles
• They	may	need	to	share	system	resources	(memory,	I/O,	disks)

§ Yielding	and	taking	control	of	the	processor
• Voluntary	or	“by	force”?

29

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Writing	Assembly	Code?		In	2017???
v Chances	are,	you’ll	never	write	a	program	in	assembly

§ Compilers	are	much	better	and	more	patient	than	you	are
§ Unless	you	are	writing	delicate,	“special”	code	J

v But	understanding	assembly	is	the	key	to	the	machine-level	
execution	model
§ Behavior	of	programs	in	presence	of	bugs

• High-level	language	model	breaks	down
§ Tuning	program	performance

• Understand	optimizations	done/not	done	by	the	compiler
• Understanding	sources	of	program	inefficiency

§ Implementing	system	software
• Operating	systems	must	manage	process	state

§ Fighting	malicious	software
§ Using	special	units	(timers,	I/O	co-processors,	etc.)	inside	processor!

30

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Course	Outcomes
v Understanding	of	some	of	the	abstractions	that	exist	between	

programs	and	the	hardware	they	run	on,	why	they	exist,	and	
how	they	build	upon	each	other

v Knowledge	of	some	of	the	details	of	underlying	
implementations
§ Less	important	later,	but	cannot	“get	it”	without	“doing	it”	and	“doing	

it”	requires	details

v Become	more	effective	programmers
§ Understand	some	of	the	many	factors	that	influence	program	

performance
§ More	efficient	at	finding	and	eliminating	bugs
§ Facility	with	more	languages	that	we	use	to	describe	programs	and	data
§ Better	understand	new	hardware

v Prepare	for	later	classes	in	CSE
31

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

CSE351’s	role	in	the	CSE	Curriculum

v Pre-requisites
§ 142	and	143	– Intro	Programming	I	and	II
§ Recommended:		391	– System	and	Software	Tools

v Complementary	to:
§ CSE311→CSE369→CSE371:	hardware	design	“below	us”
§ EE/CSE474	embedded	systems:	CSE351	invaluable	but	not	a	pre-req [EE]
§ CSE331/332/341:	high-level	software	design	and	structures

v Essential	pre-req for:
§ CSE401	– Compilers:	write	a	program to	do	CSE351	
translations

§ CSE333:		building	well-structured	systems	in	C/C++
§ Beyond	333:		OS,	networks,	distributed	systems,	graphics,	…

32

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Course	Perspective
v CSE351	will	make	you	a	better	programmer

§ Purpose	is	to	show	how	software	really	works
§ Understanding	the	underlying	system	makes	you	more	effective

• Better	debugging
• Better	basis	for	evaluating	performance
• How	multiple	activities	work	in	concert	(e.g.,	OS	and	user	programs)

§ Not	just	a	course	for	hardware	enthusiasts!
• What	every CSE	major	needs	to	know	(plus	many	more	details)
• See	many	patterns that	come	up	over	and	over	in	computing	(like	
caching)

§ “Stuff	everybody	learns	and	uses	and	forgets	not	knowing”

v CSE351	presents	a	world-view	that	will	empower	you
§ The	intellectual	and	software	tools	to	understand	the	trillions+	of	1s	and	

0s	that	are	“flying	around”	when	your	program	runs
33

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Some	fun	topics	that	we	will	touch	on

v Which	of	the	following	seems	the	most	interesting	to	
you?		

a) What	is	a	GFLOP	and	why	is	it	used	in	computer	benchmarks?
b) How	and	why	does	running	many	programs	for	a	long	time	

eat	into	your	memory	(RAM)?
c) What	is	stack	overflow	and	how	does	it	happen?
d) Why	does	your	computer	slow	down	when	you	run	out	of	

disk space?
e) What	was	the	flaw	behind	the	original	Internet	worm	and	the	

Heartbleed	bug?
f) What	is	the	meaning	behind	the	different	CPU	specifications?	

(e.g.	#	of	cores,	#	and	size	of	cache,	supported	memory	types)
g) What	is	going	on	in	computer	architecture	research? 34

CSE369, Autumn 2016L01: Intro, Combinational Logic CSE351, Winter 2017L01: Introduction

Acknowledgements

v Many	thanks	to	the	people	whose	course	content	we	
are	liberally	reusing	with	at	most	minor	changes
§ CMU:		Randy	Bryant,	David	O’Halloran,	Gregory	Kesden,	
Markus	Püschel

§ Harvard:	Matt	Welsh	(now	at	Google-Seattle)
§ UW:	Gaetano	Borriello,	Luis	Ceze,	Peter	Hornyack,	Hal	
Perkins,	Ben	Wood,	John	Zahorjan,	Katelin	Bailey,	Ruth	
Anderson,	Dan	Grossman,	Brandon	Holt,	Justin	Shia

§ Not	listed:		hundreds	of	TAs

35

