Please read through the entire examination first!

- You have 110 minutes for this exam. Don’t spend too much time on any one problem!
- The last page is a reference sheet. Feel free to detach it from the rest of the exam.
- The exam is CLOSED book and CLOSED notes (no summary sheets, no calculators, no mobile phones).

There are 8 problems for a total of 65 points. The point value of each problem is indicated in the table below. Write your answer neatly in the spaces provided.

Please do not ask or provide anything to anyone else in the class during the exam. Make sure to ask clarification questions early so that both you and the others may benefit as much as possible from the answers.

POINTS WILL BE DEDUCTED if you are writing/erasing after the final bell has rung!

Good Luck!

Your Name: __Sample Solution________

UWNet ID: _____woof2017___________

Name of person to your left | Name of person to your right
|________________________|________________________|

<table>
<thead>
<tr>
<th>Problem</th>
<th>Topic</th>
<th>Max Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Caches</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>Processes</td>
<td>6</td>
</tr>
<tr>
<td>3</td>
<td>Virtual Memory</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Memory Allocation</td>
<td>8</td>
</tr>
<tr>
<td>5</td>
<td>Java</td>
<td>9</td>
</tr>
<tr>
<td>6</td>
<td>Compilation</td>
<td>7</td>
</tr>
<tr>
<td>7</td>
<td>Representation</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>Assembly to C</td>
<td>9</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>65</td>
</tr>
</tbody>
</table>
1. Caches (11 points)

You are using a byte-addressed machine where physical addresses are 22-bits. You have a 4-way associative cache of total size 1 KiB with a cache block size of 32 bytes. It uses LRU replacement and write-back policies.

a) Give the number of bits needed for each of these:

Cache Block Offset: _____5______ Cache Tag: _____14_______

b) How many sets will the cache have? _____8_____

c) Assume that everything except the array x is stored in registers, and that the array x starts at address 0x0. Give the hit rate (as a fraction or a %) for the following code, assuming that the cache starts out empty. Also give the total number of hits.

```c
#define LEAP 1
#define SIZE 256
int x[SIZE][8];
... // Assume x has been initialized to contain values.
... // Assume the cache starts empty at this point.
for (int i = 0; i < SIZE; i += LEAP) {
    x[i][0] += x[i][4];
}
```

Hit Rate: ___2/3______ Total Number of Hits: ____512_____

d) If we increase the cache block size to 64 bytes (and leave all other factors the same) what would the hit rate be?

Hit Rate: ____5/6_______ Total Number of Hits: ____640_______

e) For each of the changes proposed below, indicate how it would affect the hit rate of the code above in part c) assuming that all other factors remained the same as they were in the original cache:

- Change associativity from 4-way to 2-way: increase / no change / decrease
- Change LEAP from 1 to 4: increase / no change / decrease
- Change cache size from 1 KiB to 2 KiB: increase / no change / decrease
2. Processes (6 points)

```c
#include <unistd.h>
#include <stdio.h>

int x = 0;

void say_hi(int *y) {
    if (fork() > 5000) {
        char *argv[2] = {"/bin/echo", "Hello"};
        int n = execv("/bin/echo", argv);
        printf("%d", *y);
    } else {
        printf("%d", x);
    }
}

int main(void) {
    int y = 5;
    if (fork() != 0) {
        y++;
        say_hi(&y);
    } else {
        x++;
    }
}
```

For the program above, list all of the possible outputs.

Hint: `execv(path, arg)` - replaces current process image with a new image. `/bin/echo` simply prints the 2nd argument (in this case "Hello") to the screen.

Answer: (3 possibilities)

Hello0

0Hello

00

Note: You should check the return values of `fork()` and `execv()` for errors. `execv()` will not return UNLESS it has an error.

If `execv()` returns with an error, such as not being able to find the command echo, then two more possible outputs are possible: 06 and 60.

We did not take off points missing these two outputs.
3. Virtual Memory (9 points)

Assume we have a virtual memory detailed as follows:

- 256 MiB Physical Address Space
- 4 GiB Virtual Address Space
- 1 KiB page size
- A TLB with 4 sets that is 8-way associative with LRU replacement

For the following questions it is fine to leave your answers as powers of 2.

a) How many bits will be used for:

Page offset? ______10______

Virtual Page Number (VPN)? ______22______ Physical Page Number (PPN)? ___18______

TLB index? ______2__________ TLB tag? ______20__________

b) How many entries in this page table?

$$2^{22}$$

c) We run the following code with an empty TLB. Calculate the TLB miss rate for data (ignore instruction fetches). Assume i and sum are stored in registers and cool is page-aligned.

```c
#define LEAP 8
int cool[512];
... // Some code that assigns values into the array cool
... // Now flush the TLB. Start counting TLB miss rate from here.
int sum;
for (int i = 0; i < 512; i += LEAP) {
    sum += cool[i];
}
```

TLB Miss Rate: (fine to leave you answer as a fraction) ______1__________

$$\frac{1}{32}$$
4. Memory Allocation (8 points)

a) In Garbage Collection, describe what it means (in 1-2 sentences) for a block to be “reachable”. Be specific.

A block is reachable if a process has a path from any root (register, stack location, global variable) to that block. Non-reachable blocks are garbage.

b) TRUE / FALSE: In a C program, freeing the same address multiple times will be detected by the memory allocator and ignored.

c) The following two C functions have errors:

```c
int* foo() {
    int val;
    return &val;
}
```

What is the error? _____ Returning a pointer/address to memory on the stack

Why is this bad? _____ Stack memory is "deallocated" after the function returns and the value at the address may be overridden by another function call

```c
void bar() {
    int *x = (int *) malloc( 10 * sizeof(int) );
    return;
}
```

What is the error? _____ Memory Leak

Why is this bad? _____ If bar is called enough times in the lifespan of a program, you may run out of heap memory.

For bar, which of the following is most true (circle ONLY one):

i. This error will always be detected by the compiler.

ii. If this code runs, the error will always (eventually) cause the program to stop running unexpectedly.

iii. If this code runs, the error could potentially go undetected.
5. Java (9 points)

Given the class hierarchy above and the following additional code:

```java
class Vehicle {
    int passengers;
    public void makeNoise() {
        System.out.println("Vroom");
    }
}

class Boat extends Vehicle {
    int propellers;
}

class PirateShip extends Boat {
    int pirates;
    public void makeNoise() {
        System.out.println("Aaarrr");
    }
}

class Car extends Vehicle {
    int wheels;
    public void doWheelie() {
        System.out.println("wheeee");
    }
}

class FinalExam {
    public static void main(String[] args) {
        Boat b1 = new Boat();
        PirateShip ps1 = new Boat();
        Boat b2 = new PirateShip();
        Vehicle v = new PirateShip();
        PirateShip ps2 = (PirateShip) b1;
        PirateShip ps3 = (PirateShip) v;
    }
```

<table>
<thead>
<tr>
<th>Compiler Error?</th>
<th>Runtime Error?</th>
<th>No Error</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>x</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a) Mark the appropriate column(s) of the table above to indicate if the line will cause a compiler and/or runtime error or no error.

b) Given our discussion in class, circle whether you would expect the following to be True or False:

i. **TRUE** / **FALSE**: A Car object will be the same size as a Boat object.

ii. **TRUE** / **FALSE**: A PirateShip object will be the same size as a Boat object.

iii. **TRUE** / **FALSE**: The vtable for a Car will be the same size as the vtable for a Boat.

iv. **TRUE** / **FALSE**: The vtable for a PirateShip will be the same size as the vtable for a Car.

v. **TRUE** / **FALSE**: The code for doWheelie will be on the heap.

c) Given: Vehicle v2 = new PirateShip();

v2.makeNoise(); will print __________ Aaarr _____________
6. Compiling and Running Programs (7 points)

a) Assume you were given a file fact.c identical to the one used in Homework 3, containing two functions factorial and main. Fill in the missing parts of the table below:

<table>
<thead>
<tr>
<th>Tool Name (gcc command)</th>
<th>Type of file Produced (Give a description, not just file name or extension)</th>
<th>Can you run this file directly (yes/no)?</th>
<th>Can you easily edit this file in a text editor (yes/no)?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linker (gcc fact.o)</td>
<td>Executable (a.out)</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Compiler (gcc -S fact.c)</td>
<td>Assembly (fact.s)</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>Assembler (gcc -c fact.s)</td>
<td>Object file (fact.o)</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>

b) In C, who determines whether an array is allocated on the stack or the heap?

Programmer Compiler Language (Java) Runtime Operating System

c) In C, who determines whether local variables are allocated on the stack or stored in registers?

Programmer Compiler Language (C) Runtime Operating System

d) Who/what assigns process IDs to individual processes?

Programmer Compiler Language (C, Java) Runtime Operating System

e) Who/what finds data in the L1 cache and brings it into a register?

Hardware Compiler Language (C, Java) Runtime Operating System
7. Representation (6 points)

a) Given the following declaration:

 int x = ...; // x < 0

For each of the following, indicate if it is TRUE for all possible values of \(x < 0 \). If not, select FALSE and give a BRIEF one sentence justification for your answer—BE SPECIFIC. You do not need to give a justification for true answers.

i) \(x == (\text{int})(\text{float}) x \) \hspace{1cm} TRUE \hspace{1cm} FALSE

The float type only has 23 bits for precision vs. 32 bits in int, so when converting from int to float we may lose precision.

ii) \(x == (\text{int})(\text{double}) x \) \hspace{1cm} TRUE \hspace{1cm} FALSE

b) On a 64-bit word machine, you are given the following array declaration in C: \text{int} a[6][3]. If \(a \) starts at address 0, what will the expression \&(a[2][5]) evaluate to? (If “unknown” or “cannot be guaranteed”, state that. Otherwise give your answer in decimal.)

\[2 \times 3 \times 4 + 5 \times 4 = 24 + 20 = 44 \quad (0x2c \text{ in hex}) \]

c) Given the following struct in x86-64:

 struct student {
 char name[10];
 int id;
 char color[7];
 double weight;
 }

What is the total size of this struct in bytes? \hspace{1cm} 32

As a programmer, could you have declared this struct differently so that it uses less memory? If no, explain why not. If yes, show how you would declare it and give the new total size in bytes.

NO - there is no way to reorder the fields that will not still have 3 wasted bytes of padding somewhere.
8. Assembly to C (9 points)
Fill in the rest of the C code for the assembly code given below:

```c
int sunny (int* n, int k) {
    if (____ k == 1 ________) {
        _______ return *n; __________________________
    }
    else if (____ k <= 4 ________) { // or k < 5
        _______ return sunny(n++, 4 * k - 1); ______
    }
    else if (____ n == 0 ________) {
        _______ return 7 * k;____________________
    }
    else {
        _______ return (*n) << 4;___________ // or (*n) * 16
    }
}
```