YA UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Spring 2017

Caches |
CSE 351 Spring 2017

Instructor:
Ruth Anderson

Teaching Assistants:
Dylan Johnson

Kevin Bi

Linxing Preston Jiang
Cody Ohlsen

Yufang Sun

Joshua Curtis

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Administrivia

+» Homework 3, due next Friday (5/5)
+» Midterm, Monday (5/8)
% Lab 3, due Thursday (5/11)

YA UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Spring 2017

Roadmap

Memory & data
Integers & floats

C: Java:
. x86 assembly
car *c = malloc(sizeof (car)); Car c = new Car () ; Procedures & stacks
c->miles = 100; c.setMiles (100);
Executables
c->gals = 17; c.setGals (17); A o
float mpg = get_mpg(c); float mpg = rrays & structs
free(c); c.getMPG () ; Memory & caches
~ / Processes
Assembly get mpg: Virtual memory
language: pushg %rbp Memory allocation
) movq $rsp, %rbp

Java vs. C

pPopg srbp

ret I

\ 4

Machine 0111010000011000
de: 100011010000010000000010

coge. 1000100111000010
110000011111101000011111

v

Computer

system:

YW UNIVERSITY of WASHINGTON L16: Caches!|

CSE351, Spring 2017

How does execution time grow with SIZE?

int array[SIZE];

int sum = 0O;
for (int 1 = 0; 1 < 200000; i++) {

for (int J = 0; j < SIZE; j++) {
sum += arrayl[]];

} Time |

Plot

SIZE

WA UNIVERSITY of WASHINGTON

Actual Data

Time

L16: Caches|

45

40

35

30

25

20

15

10

2000

4000

6000

8000

10000

SIZE

CSE351, Spring 2017

YW UNIVERSITY of WASHINGTON L16: Caches!|

Making memory accesses fast!

+» Cache basics

+ Principle of locality
+» Memory hierarchies
+ Cache organization

+» Program optimizations that consider caches

CSE351, Spring 2017

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Processor-Memory Gap

1989 first Intel CPU with cache on chip
1998 Pentium Ill has two cache levels on chip

UProc
10000 A 55%/year
(2X/1.5yr)
g 1000)
= Processor-Memory
€ 100 Performance Gap
£ “Moore’s Law” (grows 50%/year)
Q
& 10
,\ DRAM
1 B I] I [| 7%/year
S » HO O L o H L N X |(2X/10yrs)

YA UNIVERSITY of WASHINGTON

L16: Caches| CSE351, Spring 2017

Problem: Processor-Memory Bottleneck

Processor performance
doubled about
every 18 months

CPU | Reg

Core 2 Duo:
Can process at least
256 Bytes/cycle

Bus latency / bandwidth
evolved much slower

|

Core 2 Duo:

Bandwidth

2 Bytes/cycle

Latency

100-200 cycles (30-60ns)

cycle: single machine step (fixed-time) 8

YA UNIVERSITY of WASHINGTON

L16: Caches |

CSE351, Spring 2017

Problem: Processor-Memory Bottleneck

Processor performance

doubled about
every 18 months

CPU | Reg

Core 2 Duo:
Can process at least
256 Bytes/cycle

Bus latency / bandwidth
evolved much slower

|

Core 2 Duo:

Bandwidth

2 Bytes/cycle

Latency

100-200 cycles (30-60ns)

Solution: caches

cycle: single machine step (fixed-time)

Main
Memory

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Cache &

« Pronunciation: “cash”

= \We abbreviate this as “S”

+» English: A hidden storage space
for provisions, weapons, and/or treasures

+» Computer: Memory with short access time used for
the storage of frequently or recently used instructions
(i-cache/IS) or data (d-cache/DS)

= More generally: Used to optimize data transfers between
any system elements with different characteristics (network
interface cache, 1/0 cache, etc.)

10

YW UNIVERSITY of WASHINGTON

L16: Caches| CSE351, Spring 2017

General Cache Mechanics

Cache

Memory

* Smaller, faster, more expensive

memory.

7 3 14 3 * Caches a subset of the blocks
(a.k.a. lines)

Data is copied in block-sized

transfer units
0 1 > 3 * Larger, slower, cheaper memory.

* Viewed as partitioned into “blocks”
4 5 6 7 or “lines”
8 9 10 11
12 13 14 15
0000000000 0OCOCOEOS OO

11

YW UNIVERSITY of WASHINGTON

L16: Caches |

General Cache Concepts: Hit

Cache

Memory

Request: 14
7 9 14 3
0 1 2 3
4 5 6 7
8 9 10 11
12 13 14 15

CSE351, Spring 2017

Data in block b is needed

Block b is in cache:
Hit!

Data is returned to CPU

12

YW UNIVERSITY of WASHINGTON

L16: Caches |

CSE351, Spring 2017

General Cache Concepts: Miss

Cache

Memory

Request: 12

7 12 14 3
12 Request: 12

0 1 2 3

4 5 6 7
8 9 10 11
12 13 14 15

Data in block b is needed

Block b is not in cache:
Miss!

Block b is fetched from
memory

Block b is stored in cache

* Placement policy:
determines where b goes

* Replacement policy:
determines which block
gets evicted (victim)

Data is returned to CPU
13

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Why Caches Work

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used
recently

14

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Why Caches Work

+ Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

recently Q

block

+» Temporal locality:

= Recently referenced items are likely
to be referenced again in the near future

15

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Why Caches Work

» Locality: Programs tend to use data and instructions
with addresses near or equal to those they have used

recently
. g block
+» Temporal locality:
= Recently referenced items are likely
to be referenced again in the near future ﬂ
+» Spatial locality: block

" |tems with nearby addresses tend
to be referenced close together in time

How do caches take advantage of this?

/
000

16

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Example: Any Locality?

sum = 0;
for (1 =

{

O0; 1 < n; 1++)

sum += alf[i];

}

return sum;

<+ Data:
" Temporal:
= Spatial:

+ lnstructions:
" Temporal:

= Spatial:

17

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Example: Any Locality?

sum = 0;
for (1 =
{

sum += alf[i];

}

return sum;

O0; 1 < n; 1++)

<+ Data:
" Temporal: sumreferenced in each iteration

= Spatial: array a [] accessed in stride-1 pattern

+ Instructions:
" Temporal: cycle through loop repeatedly

= Spatial: reference instructions in sequence

18

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Locality Example #1

int sum array rows (int a[M] [N])
{
int i, j, sum = 0;
for (i = 0; i < M; i++)
for (j = 0; j < N; J++)
sum += al[il[3];
return sum;
}

19

YW UNIVERSITY of WASHINGTON

Locality Example #1

L16: Caches| CSE351, Spring 2017

int sum array rows (int a[M] [N])
{

int i, j, sum = 0;

for (1 = 0; 1 < M; 1++)

for (J = 0;] < Ny
sum += al[il[3];

return sum;

}

M = 3, N=4

Access Pattern:
stride =7?

Layout in Memory

I I I
76 92 108

=
N B O W 0 1 o U W N K

S N N N N S N S SN SN SN ~—
[S o S Y Y I Sl g NN ey SN D SO D S D [U S e S D S—
rm r—/—m / /g /o g/ /o /o

W N P oOoOJlw N P OoOfw DD P O

D NN DR RO O O O

rm r—/m —/ /g /o o g/ /o /o

O v Y 9l Y Y YIY O O Y

[

Note: 76 is just one possible starting address of array a

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Locality Example #2

int sum array cols(int a[M] [N])
{
int i, j, sum = 0;
for (j = 0; J < N; Jj++)
for (1 = 0; 1 < M; 1++)
sum += al[il[3];
return sum;
}

21

YW UNIVERSITY of WASHINGTON

Locality Example #2

L16: Caches| CSE351, Spring 2017

int sum array cols(int a[M] [N])
{

int i, j, sum = 0;

for (j = 0; J < N; Jj++)

for (1 = 0; i < M;
sum += al[il[3];

return sum;

}

M = 3, N=4

Access Pattern:
stride =7?

Layout in Memory

=

N P O W 0 J o O b W DN -
S N N N N S N S SN SN SN ~—
—_ e P B e B B e e P B
g/ g g g g B p R R R g

WIWITWININDINIRPIRPIR]IO|O] O

NDIFRJIOINIRIOINDIFRIOINIR]O

Lo B B B B B B B B B o B o B B o B o B B B B o B B s |

(URN ORN RO VRN ICVRY OV OB IORN VRY TR [OVRY D)

[

YW UNIVERSITY of WASHINGTON

L16: Caches |

Locality Example #3

int sum array 3D(int a[M] [N][L])
{

k, sum 0;

int i, 7, =

(1 = 0; 1 < N; 1i++)

for (J = 0;] < L; 3++)
for (k = 0;

for

return sum;

k < M; k++)
sum += alk][i]1[3];

a[2][0][0]l|a[2][0][11] [a[2][0][2]

a[2]1[0][3]

a[11[0][0]1Ha[11[0][1]

a[11[0][21Ha[11[0]1[3]

Inl
Inl

alo][o][0]HalOl[0][1]Hal0]0][2]

a[0][0][3]

z1= | [3]

1 1
[[EIESIES IR ES I ES I ES =y E ey

I4-II_IO-IJ-IIJ-][3]

a[0][1][0]falOl1]I1]

a[0][11[2]1H=al0][1][3]

z1z (3]

1
I LIS MYV LI&IT L A] L&)

| — [nl

1< 11 IO-lJ-JIL][B]

afoliz]1[ol{|a[oI[2]1]] |a[01[2][2]

al0][2][3]

CSE351, Spring 2017

+» What is wrong

with this code?

«+ How can it be

fixed?

€«<—m-= 2

«<—m=1
«<—m=0

23

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Locality Example #3

int sum array 3D(int a[M][N] [L]) + What is wrong
{ *

int i, j, k, sum = 0; with this code?

for (i = 0; i < N; i++)

for (j = 0; j < L; Jj++)
for (k = 0; k < M; k++) | < How can it be
sum += alk][1]1[J]; .
fixed?

return sum;

}

Layout in Memory (M =?,N =3, L=4)

a a
(0] [o]} [o]] [o]([o]|(o]][o]|[o]|[0]}[0]][O]f O] (1]} [L]{ (]| 2]} 1] | (2] (2] (2]} 1] { 2] {[2]][L]
(o] {[OT) [O}| (o] | (2] (21) (11| (2] | (2] (2]} (2] [(2] [O1 | [O]{ (O] | [OF| (1] (1] {[2]| (11| (2] (2] |[2]][2]
(o] (3T (21| (31| (o] | (21} (21| (3] [[OT | (1]} (2] { (3T [O1] [11{ (21| 31| (O] [1]{[2]| (31} (O] [2]{[2]][3]

1 1 | 1 1 | |

76 92 108 124 140 156 172

24

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Cache Performance Metrics

+» Huge difference between a cache hit and a cache miss

" Could be 100x speed difference between accessing cache
and main memory (measured in clock cycles)

%+ Miss Rate (MR)

" Fraction of memory references not found in cache (misses /
accesses) = 1 - Hit Rate

% Hit Time (HT)

*" Time to deliver a block in the cache to the processor

« Includes time to determine whether the block is in the cache

» Miss Penalty (MP)

= Additional time required because of a miss

25

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

AMAT= HR*HT + MR(HT + MP)
Cache Performance _ HT(HR+MR) + MR*MP

= HT(1) + MR*MP
+ Two things hurt the performance of a cache:
"= Miss rate and miss penalty

+ Average Memory Access Time (AMAT): average time
to access memory considering both hits and misses
AMAT = Hit time + Miss rate x Miss penalty
(abbreviated AMAT = HT + MR x MP)

2 99% hit rate twice as good as 97% hit rate!
= Assume HT of 1 clock cycle and MP of 100 clock cycles
" 97%: AMAT =
" 99%: AMAT =

26

YW UNIVERSITY of WASHINGTON L16: Caches!| CSE351, Spring 2017

Question ps= pico second = 10°%?

+ Processor specs: 200 ps clock, MP of 50 clock cycles,
MR of 0.02 misses/instruction, and HT of 1 clock cycle

AMAT =

+» Which improvement would be best for AMAT?

A.

B. Miss penalty of 40 clock cycles

C. MR of 0.015 misses/instruction

27

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Can we have more than one cache?

+» Why would we want to do that?
= Avoid going to memory!
+ Typical performance numbers:
" Miss Rate
« L1 MR =3-10%
- L2 MR = Quite small (e.g. < 1%), depending on parameters, etc.
" Hit Time
« L1 HT =4 clock cycles
« L2 HT =10 clock cycles

= Miss Penalty
« P =50-200 cycles for missing in L2 & going to main memory
- Trend: increasing!

28

YW UNIVERSITY of WASHINGTON L16: Caches!|

CSE351, Spring 2017

Memory Hierarchies

+» Some fundamental and enduring properties of
hardware and software systems:

= Faster storage technologies almost always cost more per
byte and have lower capacity

" The gaps between memory technology speeds are widening
 True for: registers <> cache, cache <> DRAM, DRAM <> disk, etc.

= Well-written programs tend to exhibit good locality

% These properties complement each other beautifully

" They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

29

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

An Example Memory Hierarchy

A
<lns 5-10s a
registers -

1ns on-chip L1
Smaller, cache (SRAM)
faster,
C:itl';e:e 510 s off-chip L2
per by cache (SRAM)
Larger, 100 ns main memory
slower, (DRAM)
cheaper
150,000 ns
’ SSD 31 days

per byte local secondary storage Y

10,000,000 ns Disk (local disks)

(10 ms)
1-150 ms remote secondary storage

(distributed file systems, web servers)

1-15years

30

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

An Example Memory Hierarchy

A
registers CPU registers hold words retrieved from L1 cache
on-chip L1
Smaller, cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
faster,
costlier .
off-chip L2
per byte
cache (SRAM) L2 cache holds cache lines retrieved
from main memory
Larger, main memory
(DRAM) Main memory holds disk blocks
slower,) .
retrieved from local disks
cheaper
per byte local secondary storage . _
(| I disk) Local disks hold files
otsel el retrieved from disks on
remote network servers
remote secondary storage
(distributed file systems, web servers)
\/

31

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

An Example Memory Hierarchy

A
- explicitly program-controlled
registers (e.g. refer to exactly %rax, %rbx)
on-chip L1
Smaller, G (U4 program sees “memory”;
faster, .
: hardware manages caching
costlier off-chip L2 |
] transparent
per byte cache (SRAM) P y
Larger main memory
slower, (DRAM)
cheaper
per byte local secondary storage
(local disks)

remote secondary storage
(distributed file systems, web servers)

32

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Memory Hierarchies

+» Fundamental idea of a memory hierarchy:
" For each level k, the faster, smaller device at level k serves
as a cache for the larger, slower device at level k+1
+» Why do memory hierarchies work?

= Because of locality, programs tend to access the data at
level k more often than they access the data at level k+1

" Thus, the storage at level k+1 can be slower, and thus larger
and cheaper per bit
% Big Idea: The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage
near the bottom, but that serves data to programs at
the rate of the fast storage near the top

33

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Intel Core i7 Cache Hierarchy

Processor package

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

L3 unified cache
(shared by all cores)

\ Core 0 Core 3 . Block size:

: ' 64 bytes for all caches

: Regs Regs :

L1 i-cache and d-cache:
i L1 L1 L1 L1 | 32 KiB, 8-way,

. | |d-cache| |i-cache d-cache| |i-cache| | . Access: 4 cycles

' L2 unified cache:

! L2 unified cache L2 unified cache 256 KiB, 8-way,
Access: 11 cycles

Main memory

34

YW UNIVERSITY of WASHINGTON L16: Caches | CSE351, Spring 2017

Summary

+» Memory Hierarchy

= Successively higher levels contain “most used” data from
lower levels

= Exploits temporal and spatial locality

" Caches are intermediate storage levels used to optimize

data transfers between any system elements with different
characteristics

+ Cache Performance
" |deal case: found in cache (hit)
" Bad case: not found in cache (miss), search in next level

= Average Memory Access Time (AMAT) = HT + MR x MP
- Hurt by Miss Rate and Miss Penalty

35

