W UNIVERSITY of WASHINGTON L14: Structs and Alignment

Structs and Alignment
CSE 351 Spring 2017

Instructor:
Ruth Anderson

Teaching Assistants:
Dylan Johnson

Kevin Bi

Linxing Preston Jiang
Cody Ohlsen

Yufang Sun

Joshua Curtis

CSE351, Spring 2017

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Administrivia

» Lab 2 due TONIGHT (4/26)
+» Homework 3 coming soon
+» Lab 3 coming soon

W UNIVERSITY of WASHINGTON

L14: Structs and Alignment

CSE351, Spring 2017

Roadmap
C: Java:
car *c = malloc(sizeof(car)); Car ¢ = new Car();
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get _mpg(c); float mpg = structs
free(c); C.getMPG();
Assembly get_mpg:
. pushq %rbp
language: mov(q %rsp, %rbp
éééq %rbp
ret *
Machine 0111010000011000 -
de: 100011010000010000000010 -
code: 1000100111000010
110000011111101000011111 W|ndows8 Mac
v v
Computer

system:

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Assembly Programmer’s View

P T higk
cPU seneral registers Addresses ST | g addes
P'oﬁ:‘“"‘ %ri D Trax Trg > Stack
Counter
) Data R l A‘/"O\Mf(&l l\/
g g CFIZF _ 4 $ized
@ (efs Instructions
co SF|OF : ‘
» Programmer-visible state B PEE fivel
= PC: the Program Counter (%rip in x86-64) Literals Size
« Address of next instruction Instructions |
= Named registers low 6dde s
. Together in “register file” + Memory
« Heavily used program data = Byte-addressable array
= Condition codes = Code and user data
- Store status information about most recent = |ncludes the Stack (for

arithmetic operation supporting procedures)

« Used for conditional branching

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Turning C into Object Code

» Codeinfiles pl.c p2.c

» Compile with command: gcc -0Og pl.c p2.c -0 p
= Use basic optimizations (-Og) [New to recent versions of GCC]
= Put resulting machine code in file p

text C program (pl.c p2.c)

Compiler (gcc —0g -S5)

text Asm program (pl.s p2.s)

Assembler (Qcc -cC or as)

binary | Object program (pl.0 p2.0) Static libraries (. a)

Linker (gcc or V

binary Executable program (p)

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Assembling

« Executable has addresses

(00000000004004f6 <pcount_r>:
4004f6: b8 00 00 00 OO mov $0x0 , %eax
4004fb: %rdi,%rdi
4004fe: 400513 <pcount_r+0x1d>
Q 400500: %rbx
7 400501 : %rdi ,%rbx
z 400504 : %rdi
o 400507 : 400416 <pcount_r>
@ 40050c: $0x1,%ebx
200507 : %rbx,%rax
400512: %rbx
4Q2513:

L P(o\w\’\'_r +0x\& = >0 b‘f"ﬂ he sted 5F Pcs\m’\'_r
" gcc -¢g [JCKDL”11:-C: —0 [3CK3L”11:

= objdump —d pcount

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

A Picture of Memory (64-bit view)

[00000000004004F6 <pcount r>:
4004f6: b8 00 00 00 00 mov $0x0, %eax
_400atb
4004fb: 48 85 ff test %rdi,%rdi
4004fe: 74 13 je 400513 <pcount_r+0x1d>
400500: 53 push %rbx
400501: 48 89 ftbh mov %rdi ,%rbx
400504: 48 dl1 ef shr %rdi
400507: €8 ea ff ff ff callg 4004f6 <pcount_r>
40050c: 83 e3 01 and $0x1 , %ebx
40050f: 48 01 d8 add %rbx,%rax
400512: 5b pop %rbx
400513: rep ret
_ \ \ Ip _J
ol|8 1]9 2]a 3]b 4|c 5]d 6le 7|Ff
0x00
0x08
0x10
~ b8 00 | Ox4004f10
YWS{’ O\\ineA IDud' ~ , =
gneaq, 1 ———> | 00| 00| 00| 48| 85 | FF | 74 | 13 | Ox4004F8
wovre C =
ore Compe 53 | 48 | 89 | b | 48 | d1 | ef | e8 | 0x400500
ea r r r 83 e3 01 48 | 0x400508
01 ds 5b 0x400510

W UNIVERSITY of WASHINGTON

L14: Structs and Alignment

CSE351, Spring 2017

Roadmap
C: Java:
car *c = malloc(sizeof(car)); Car ¢ = new Car();
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); C.getMPG();
—~ & Arrays & structs
Assembly get_mpg:
. pushqg %rbp
language' movq %rsp, %rbp
éééq %rbp
ret *
Machine 0111010000011000 -
de: 100011010000010000000010 -
code. 1000100111000010
110000011111101000011111 W|ndows8 Mac
v Vv
Computer

system:

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Data Structures in Assembly

< Arrays
" One-dimensional
" Multi-dimensional (nested)
= Multi-level

+» Structs
= Alignment

« Unions

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

S .o 2 3¢
rol-mayor & | ¢ 6% g4
lo LLILIY Iy

1S 161?18 14

Question

Coluwm -Ma')o -

+» Which of the following statements is FALSE?

[C
W~ ..
bl S
N\E R
552\:10—\)

|
2
3

(I [T\ { l]

B
int sea[4]1[5]; |9|8|1|9|5|9|@|1|0|5|9|8|1|0|3]|9|8|1|d|5

/6 96 116 136 156
sea[b) — J\
Sca["ﬂ

\(e.g fej'urr\j \

—~

|B. seal ITT1] makes two memory accesses|

No, Oh‘\\'/ SN ‘|e memovry aL(CS)H

C. seal2][1] will always be a higher address
than Sea[l] [2] \(?5, becase C is FOw- faa) OF

D. seal2] is calculated using only lea

“es, sesl) relums addvess o OMNOY rouy

10

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Structs in C

+ Way of defining compound data types
« A structured group of variables, possibly including other structs

typedef struct {

—— Int lengthlnSeconds; typedef struct {
— int yearRecorded; int lengthInSeconds;
Son - int yearRecorded;
k ’ } Song;
Song §gggl; L
_) song 1
Songl) I/eng_th_l_r]Seco\ndS = 213; —® lengthInSeconds: 213
songl.yearRecorded = 1994; yearRecorded: 1994
Song song2; sang2
—®| lengthInSeconds: 248
Son92 1 ength InSeconds = 248) yvearRecorded: 1988

song2.yearRecorded = 1988;

11

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Review: Structsin Lab 0

// Use typedef to create a type: Fourlnts
typedef struct {

int a, b, c, d;
} Fourlints; // Name of type is “Fourlnts”

int main(int argc, char* argv|[]) {
EQE[lEEE/f}; // Allocates memory to hold a Fourlnts
// (16 bytes) on stack (local variable)

fl.a = O; // Assign fFirst field in fl to be zero
Fourlnts* ¥2; // Declare f2 as a pointer to Fourlnts

// Allocate space for a Fourlnts on the heap,

// T2 1s a “pointer to’/”address of” this space.
2 = (Fourlnts*) malloc(sizeof(Fourints));

f?:?b = 17; // Assign the second field to be 17

12

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Aside: Syntax for structs without typedef

struct rec { // Declares the type ‘“struct rec”
int a[4]; W’*‘% // Total size = 572 bytes
long 1; 3
@ﬂ!l&ﬂ;IECJ*neXt;<g
s
"@EIEEE_EEE)rl; // Allocates memory to hold a struct rec

// named rl, on stack or globally,
// depending on where this code appears

Istruct rec *r; // Allocates memory for a pointer

r = &rl; // Initializes r to “point to” rl

rl.o=ual
Y‘/>A :\/a(
()i mvel

13

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

More Structs Syntax

Declaring a struct struct rec, then declaring a variable r1.:

struct rec { // Declares the type “struct rec”
int a[4];
long 1;
struct rec *next;

+-
é%?ﬂct rec rl; // Declares rl1 as a struct rec

Equivalent to:

[Struct rec { // Declares the type “struct rec”
int a[4];
flong 1;

B struct rec *next;

¥ rise // Declares rl1 as a struct rec

\ Declare type struct rec and variable rl at the same time!

14

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Another Syntax Example

Declaring a struct struct rec, then declaring a variable r:

struct rec { // Declares the type ‘“struct rec”
int a[4];
flong 1;
struct rec *next;
};
struct rec *r; // Declares r as pointer to a struct rec

Equivalent to:

struct rec { // Declares the type “struct rec”
int a[4];
long 1;
struct rec *next;
} fﬁ;“\ // Declares r as pointer to a struct rec

Declare type struct rec and variable r at the same time!

15

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Struct Definitions struct name {
. /> Tields */
+ Structure definition: 1o e
= Does NOT declare a variable Easy to forget
semicolon!

« Variable definitions:
= Variable typeis “struct name”/ pointer

&
struct name namel, *pn, name_ar[3];
A 4

o~
+ Joint struct definition and typedef s

(\)J\éﬂ\/\e <PStrUCt nm { combined

dut4 /> Fields */
3; >

@ypeset | Lypedef struct nm ;
nmame>onl;

16

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Scope of Struct Definition

+» Why is placement of struct definition important?

= What actually happens when you declare a variable?

 Creating space for it somewhere!

= Without definition, program doesn’t know how much space

struct data { |<— Size= 24 bytes | struct rec {
He x4 int ar[4]; int a[4];
g3 long d; flong 1;
}s 52 struct rec* next;

Size= 32 bytes—> | }:

+» Almost always define structs in global scope near the
top of your C file

= Struct definitions follow normal rules of scope

17

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Accessing Structure Members

+ @Given a struct instance, access

member using the . operator: SUU?ttrea‘]{
Int a ;
struct rec ril; long i;

ri.i = val; struct rec *next;

+» @Given a pointer to a struct:
struct rec *r;

r = &rl; // or malloc space for r to point to
@ deveference

We have two options:

ﬂ@) occess field

- Use * and . operators: (*r)Yi = Va|;€> olench
- €gquV,

- Use —-> operator for short: r->1 = val ;¢ Leten

+ In assembly: register holds address of the first byte
= Access members with offsets

18

W UNIVERSITY of WASHINGTON

Java side-note

L14: Structs and Alignment CSES351, Spring 2017

class Record { ... }
Record x = new Record();

+ An instance of a class is like a pointer to a struct

containing the fields

= (Ignoring methods and subclassing for now)
" SolJava’s X.F islikeC's X->F or (*x).T

+ In Java, almost everything is a pointer (“reference”) to

an object

= Cannot declare variables or fields that are structs or arrays

= Always a pointer to a struct or array
= So every Java variable or field is < 8 bytes (but can point to

lots of data)

19

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Structure Representation

struct rec { r
int a[4]; 1
long 1;
struct rec *next; a\) i next
y v 0 16 24 32

+ Characteristics
" Contiguously-allocated region of memory
= Refer to members within structure by names
" Members may be of different types

20

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Structure Representation

struct rec { r
int a[4];
long 1;
~ -
struct rec *next; a 1 next
F 0 16 24 32

+ Structure represented as block of memory
" Big enough to hold all of the fields

+ Fields ordered according to declaration order

= Even if another ordering would be more compact

+» Compiler determines overall size + positions of fields

" Machine-level program has no understanding of the
structures in the source code

21

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Accessing a Structure Member

struct rec { r r=>10
int a[4]; T
long 1; M
struct rec *next; a i next
LS 0 24 32
’t Aecla\f(’a Poifd‘ev +0 S']'fu(“' rec g—
+» Compiler knows the "{0”9 get_i(struct rec 7r
offset of each member return r->i;
within a struct ¥
" Compute as
*(r+offset) # r in %rdi
0 0
- Referring to absolute Tg\éq LFCATEL D], Ml
offset, so no pointer

arithmetic

22

W UNIVERSITY of WASHINGTON L14: Structs and Alignment

CSE351, Spring 2017

Exercise: Pointer to Structure Member

next

struct rec { r
int a[4];
long 1;
struct rec *next; a
Hop =
} *rs 5

¥ ‘,(,n,;\ er ’—\

=

16 24 32

long* addr_of_i(struct rec *r)
1

return &(r->i);
}

r 1In %rdi

\eag-(16 (%rd) ,%rax

ret

wonl address

struct rec*7 addr_of next(struct rec *r)

{

return &(r->next);

}

r 1In %rdi

|eai 24 (%edy) | %rax
ret

23

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Generating Pointer to Array Element

struct rec { r Rrb+4"<|ndex
int a[4]; l l
long 1;
struct rec *next; La i next
L 0] 16 24 32
+ Generating Pointer to int* find_addr _of array elem
Array Flement . (struct rec *r, long iIndex)
= Offset of each structure return &r->afindex];
member determined at ¥ \u
compile time &(r->a[index])

" Compute as: i g e i e
*z r in %rdi, index iIn %rsi
®<7€;r+4 Léndex leaq ((%rdi,%rsi,4), %rax

(,7°r$ilt"l) ret

24

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Review: Memory Alignment in x86-64

= For good memory system-performance, Intel
recommends data be aligned

" However the x86-64 hardware will work correctly regardless
of alignment of data

+ Aligned means that any primitive object of K bytes
must have an address that is a multiple of K

+» Alighed addresses for data types:

B ™ S ST S

char No restrictions
2 short Lowest bit must be zero: ...0,
4 int, float Lowest 2 bits zero: ...00,

8 long, double, * (pointers) Lowest 3 bits zero: ...000,

16 long double Lowest 4 bits zero: ...0000, e

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Alignment Principles

+» Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K
= Required on some machines; advised on x86-64

+» Motivation for Aligning Data

= Memory accessed by (aligned) chunks of 4 or 8 bytes
(system dependent)
- Inefficient to load or store value that spans quad word boundaries
 Virtual memory trickier when value spans 2 pages (more on this later)

26

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Structures & Alignment

. struct S1 { | K
» Unaligned Data otruct S1{ | £
c| 1ol 1] v ® int i[2];e—4
p [P+1] P+5 p+9 p+17 ? Sgl_Jble V;—g

'\\hb"' 5"8&:"]

+» Aligned Data
" Primitive data type requires K bytes
= Address must be multiple of K

C i[0] i[1] v
p+0 [5‘1-4\ p+8 pri2 p+16 p+24
MultpLe_Q& Multiple of 8

Multiple of 8 internal fragmentation Multiple of 8 .

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Satisfying Alignment with Structures (1)

» Within structure: struct s1 { | K
, , , char c; 1
= Must satisfy each element’s alignment requirement int i[2]; | 4
+ Qverall structure placement , gouble v: |
= Each structure has alignment requirement K.« P>
- KW\GX:X

. I{max =iLargest alignment of any element
« Counts individual items in the array as elements (entire array is not an “element”)

= Address of structure & structure length must be multiples of K, .«

+» Example:
" Kmax =8, due to double element

C 1[0} 1[1] Vv
p+0 p+4 p+8 p+16 p+24

A a a A

Multiple ofo Multiple of 8

Multiple of 8 internal fragmentation Multiple of 8 o

W UNIVERSITY of WASHINGTON

L14: Structs and Alignment

CSE351, Spring 2017

Satisfying Alignment with Structures (2)

» Can find offset of individual fields SthCEISZ {
) ouble v;
using offsetof() int i[2]-
= Needto#iInclude <stddef.h> char c;
= Example: offsetof(struct S2,c) returns 16 > *p;
For largest alighment requirement K4,
overall structure size must be multiple of K.«
= Compiler will add padding at end of
structure to meet overall structure
alignment requirement
V 1[0] i[1] |c
p+0 p+8 p+16 p+24
external fragmentation Multiple of 8

29

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Alignment of Structs

+» Compiler will do the following:
" Maintains declared ordering of fields in struct

= Each field must be aligned within the struct
(may insert padding)
- offsetof can be used to get actual field offset

= Qverall struct must be aligned according to largest field

" Total struct size must be multiple of its alignment
(may insert padding)
- S1zeoT should be used to get true size of structs

30

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Create an array of

Arrays of Structures ten 52 strucs
|
i struct S2 {
» Overall structure length multiple of Ky |™" 00 1a”y
+ Satisfy alighment requirement iﬂzrig?]:

for every element in array 1 a[10]: N
a[O] a[l] a[2] e o o
a+0 a+24 a+48 a+72

v i[0] i[1] Jc

a+24 a+32 a+40 a+48
| \/
“HL S b uels e !

external fragmentation

31

W UNIVERSITY of WASHINGTON

L14: Structs and Alignment

Accessing Array Elements

R/
*

+ Compute start of array element as: 12*index |struct S3 {
= sizeof(S3) = 12, including alignment padding

+ Element J is at offset 8 within structure

+» Assembler gives offset a+8

CSE351, Spring 2017

Create an array of
ten S3 structs
called ”ai’

float v;
short j;

+ a[10]; <
L‘

K
short 1; 2
4
2

a[0] e o o

a[index]

a+0 a+12 @ﬁﬂf;ﬁﬁﬁi§§>

(M+Cw~a l)

(e)d!ervxa 1)

\/

D

a+12*1ndex

a+12*1ndex+8

short get j(int index)
{

return afindex].j;

%rdi = iIndex
leag (%rdi,%rdi,2),%rax # 3*index
movzwl a+8(,%rax,4) ,%eax

}

(3" wde) ¥ Y

32

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

How the Programmer Can Save Space

«» Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaring
large data types first

struct S4 { struct S5 {
char c; int i1;
int i; ‘ char c;
char d; char d;
}; };
C 1 d 1 c|d

| |
12 bytes 8 bytes

33

W UNIVERSITY of WASHINGTON

Question

L14: Structs and Alignment

CSE351, Spring 2017

+» Minimize the size of the struct by re-ordering the vars

__|<_struct old {
A int i;

) short s[3];
¥ char *c;

H1 float f;:
Kw\x:(g };

=)

- &

- C

struct new {
int 1
‘F |o 6(" -F
CL'\a\r w C
SLov"f S [3]
};

cqulo G\\So 5u]+L\/\
+L\C§e (im'{'fry\c\\
\fS. Cx'{'erno.\ -(“’Gj)

« What are the old and new sizes of the struct?
sizeof(struct old) = 3L &

strudt oA |

S{Wd neL \

sizeof(struct new) = 24 B

H

2% 32

RS EnZZZ Bk,
4 1o 6
L [£ I =< ESESIESIZ
Ja| e ~—

2) 4

34

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Unions

+ Only allocates enough space for the largest element
In union

% Can only use one member at a time

struct S { union U { C
char c; char c; . .
int i[2]: int i[2]: |—» L] 1[1]
double v; double v; Vv
} *sp; } *up; up+0 up+4 up+8
C 1[O] 1[1] Vv

sp+0 sp+4 sSp+8 Sp+16 sp+24

35

W UNIVERSITY of WASHINGTON L14: Structs and Alignment CSE351, Spring 2017

Summary

« Arraysin C
= Aligned to satisfy every element’s alignment requirement
+» Structures

= Allocate bytes in order declared
" Pad in middle and at end to satisfy alignment

<« Unions

" Provide different views of the same memory location

36

