Data III & Integers I
CSE 351 Spring 2017

Instructor:
Ruth Anderson

Teaching Assistants:
Dylan Johnson
Kevin Bi
Linxing Preston Jiang
Cody Ohlsen
Yufang Sun
Joshua Curtis
Administrivia

- Everyone has VM or access to attu? LET US KNOW if not
- Section - Room changes for 9:30 and 10:30 sections
- Lab 0, due TONIGHT (4/3) @ 11:59pm
- Homework 1, due TONIGHT (4/3) @ 11:59pm
- Readings in CSAPP – see schedule
- Office Hours – see schedule – LET US KNOW if you cannot make any of our posted office hours
- Lab 1 – posted later today!
Memory, Data, and Addressing

- Representing information as bits and bytes
- Organizing and addressing data in memory
- Manipulating data in memory using C
- Boolean algebra and bit-level manipulations
Boolean Algebra

- Developed by George Boole in 19th Century
 - Algebraic representation of logic (True → 1, False → 0)
 - **AND:** \(A \& B = 1 \) when both \(A \) is 1 and \(B \) is 1
 - **OR:** \(A | B = 1 \) when either \(A \) is 1 or \(B \) is 1
 - **XOR:** \(A ^ B = 1 \) when either \(A \) is 1 or \(B \) is 1, but not both
 - **NOT:** \(\sim A = 1 \) when \(A \) is 0 and vice-versa
 - **DeMorgan’s Law:**
 \[
 \sim (A | B) = \sim A \& \sim B
 \]
 \[
 \sim (A \& B) = \sim A | \sim B
 \]

<table>
<thead>
<tr>
<th>AND (&)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

| OR \(| \) | 0 | 1 |
|-------|---|---|
| 0 | 0 | 1 |
| 1 | 1 | 1 |

<table>
<thead>
<tr>
<th>XOR (^)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>NOT (\sim)</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
General Boolean Algebras

- Operate on bit vectors
 - Operations applied bitwise
 - All of the properties of Boolean algebra apply

\[
\begin{array}{c}
01101001 \\
\& 01010101 \\
\end{array}
\begin{array}{c}
01101001 \\
\mid 01010101 \\
\wedge 01010101 \\
\sim 01010101 \\
\end{array}
\]

- Examples of useful operations:

\[
x \wedge x = 0
\]

\[
x \mid 1 = 1, \quad x \mid 0 = x
\]
Representing & Manipulating Sets

❖ Representation

❖ A \(w \)-bit vector represents subsets of \(\{0, \ldots, w-1\} \)
❖ \(a_j = 1 \) iff \(j \in A \)

01101001 \quad \{0, 3, 5, 6\}
76543210

01010101 \quad \{0, 2, 4, 6\}
76543210

❖ Operations

❖ \& Interesection \quad 01000001 \quad \{0, 6\}
❖ | Union \quad 01111101 \quad \{0, 2, 3, 4, 5, 6\}
❖ ^ Symmetric difference \quad 00111100 \quad \{2, 3, 4, 5\}
❖ ~ Complement \quad 10101010 \quad \{1, 3, 5, 7\}
Bit-Level Operations in C

- & (AND), | (OR), ^ (XOR), ~ (NOT)
 - View arguments as bit vectors, apply operations bitwise
 - Apply to any “integral” data type
 - long, int, short, char, unsigned

Examples with char a, b, c;

- a = (char) 0x41; // 0x41->0b 0100 0001
 b = ~a; // 0b ->0x
- a = (char) 0x69; // 0x69->0b 0110 1001
 b = (char) 0x55; // 0x55->0b 0101 0101
 c = a & b; // 0b ->0x
- a = (char) 0x41; // 0x41->0b 0100 0001
 b = a; // 0b 0100 0001
 c = a ^ b; // 0b ->0x
Contrast: Logic Operations

- Logical operators in C: `&&` (AND), `||` (OR), `!` (NOT)
 - 0 is False, anything nonzero is True
 - Always return 0 or 1
 - Early termination (a.k.a. short-circuit evaluation) of `&&`, `||`

- Examples (char data type)
 - `!0x41` → `0x00`
 - `0xCC && 0x33` → `0x01`
 - `!0x00` → `0x01`
 - `0x00 || 0x33` → `0x01`
 - `!!0x41` → `0x01`
 - `p && *p++`
 - Avoids null pointer (0x0) access via early termination
 - Short for: `if (p) { *p++; }`
Roadmap

C:

```c
car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);
```

Java:

```java
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg = c.getMPG();
```

Assembly language:

```
get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret
```

Machine code:

```
0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111
```

Computer system:

OS:

- Windows 8
- Mac
- Linux

Memory & data

- Integers & floats
- x86 assembly
- Procedures & stacks

Executables

- Arrays & structs
- Memory & caches
- Processes
- Virtual memory
- Memory allocation
- Java vs. C
But before we get to integers....

- Encode a standard deck of playing cards
- 52 cards in 4 suits, 13 cards per suit
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?
Two possible representations

1) 1 bit per card (52): bit corresponding to card set to 1

- “One-hot” encoding (similar to set notation)
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

2) 1 bit per suit (4), 1 bit per number (13): 2 bits set

- Pair of one-hot encoded values
- Easier to compare suits and values, but still lots of bits used

❖ Can we do better?
Two better representations

3) Binary encoding of all 52 cards – only 6 bits needed
 - $2^6 = 64 \geq 52$
 - Fits in one byte (smaller than one-hot encodings)
 - How can we make value and suit comparisons easier?

4) Separate binary encodings of suit (2 bits) and value (4 bits)
 - Also fits in one byte, and easy to do comparisons

<table>
<thead>
<tr>
<th></th>
<th>♣️</th>
<th>♦️</th>
<th>♥️</th>
<th>♠️</th>
</tr>
</thead>
<tbody>
<tr>
<td>K</td>
<td>00</td>
<td>01</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>Q</td>
<td>1101</td>
<td>1100</td>
<td>1011</td>
<td>...</td>
</tr>
</tbody>
</table>
Compare Card Suits

A **mask** is a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector \(v \). Here we turn all but the bits of interest in \(v \) to 0.

```c
#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
    return (!(card1 & SUIT_MASK) ^ (card2 & SUIT_MASK));
}
```

We define `SUIT_MASK` as 0x30, which is equivalent to 0b0011100000.

```c
char hand[5];       // represents a 5-card hand
char card1, card2;  // two cards to compare

// Initialize cards

card1 = hand[0];
card2 = hand[1];
...

if ( sameSuitP(card1, card2) ) { ... }
```
mask: A bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector \(v \).

Here we turn all \textit{but} the bits of interest in \(v \) to 0.

```c
#define SUIT_MASK 0x30

int sameSuitP(char card1, char card2) {
    return (!(((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK))));
    //return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
}
```

\((x \oplus y) \) equivalent to \(x == y \)
Compare Card Values

char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare

card1 = hand[0];
card2 = hand[1];
...

if (greaterValue(card1, card2)) { ... }

#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
 return ((unsigned int)(card1 & VALUE_MASK) >
 (unsigned int)(card2 & VALUE_MASK));
}

VALUE_MASK = 0x0F = \[0 \ 0 \ 0 \ 0 \ 1 \ 1 \ 1 \ 1\]

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector \(v\).
#define VALUE_MASK 0x0F

int greaterValue(char card1, char card2) {
 return ((unsigned int)(card1 & VALUE_MASK) >
 (unsigned int)(card2 & VALUE_MASK));
}

Compare Card Values

mask: a bit vector designed to achieve a desired behavior when used with a bitwise operator on another bit vector v.

0 0 1 0 0 0 1 0
\&
0 0 0 0 1 1 1 1
= 0 0 0 0 0 0 1 0

2_{10} > 13_{10}

0 (false)
Integers

- Binary representation of integers
 - Unsigned and signed
 - Casting in C

- Consequences of finite width representation
 - Overflow, sign extension

- Shifting and arithmetic operations
Encoding Integers

- The hardware (and C) supports two flavors of integers
 - *unsigned* – only the non-negatives
 - *signed* – both negatives and non-negatives

- Cannot represent all integers with w bits
 - Only 2^w distinct bit patterns
 - Unsigned values: $0 \ldots 2^w - 1$
 - Signed values: $-2^{w-1} \ldots 2^{w-1} - 1$

- **Example:** 8-bit integers (*e.g.* char)
Unsigned Integers

- Unsigned values follow the standard base 2 system
 - \(b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + \cdots + b_12^1 + b_02^0 \)

- Add and subtract using the normal “carry” and “borrow” rules, just in binary

\[
\begin{array}{c|c}
63 & 00111111 \\
+ 8 & +00001000 \\
\hline
71 & 01000111 \\
\end{array}
\]

- Useful formula: \(2^{N-1} + 2^{N-2} + \ldots + 2 + 1 = 2^N - 1 \)
 - \(i.e. \) N ones in a row = \(2^N - 1 \)

- How would you make signed integers?
Sign and Magnitude

- Designate the high-order bit (MSB) as the “sign bit”
 - $\text{sign}=0$: positive numbers; $\text{sign}=1$: negative numbers

- Benefits:
 - Using MSB as sign bit matches positive numbers with unsigned
 - All zeros encoding is still $=0$

- Examples (8 bits):
 - $0x00 = 00000000_2$ is non-negative, because the sign bit is 0
 - $0x7F = 01111111_2$ is non-negative ($+127_{10}$)
 - $0x85 = 10000101_2$ is negative (-5_{10})
 - $0x80 = 10000000_2$ is negative... zero???
Sign and Magnitude

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks?
Sign and Magnitude

- MSB is the sign bit, rest of the bits are magnitude
- Drawbacks:
 - Two representations of 0 (bad for checking equality)
Sign and Magnitude

- MSB is the sign bit, rest of the bits are magnitude

- Drawbacks:
 - Two representations of 0 (bad for checking equality)
 - Arithmetic is cumbersome
 - Example: \(4 - 3 \neq 4 + (-3) \)

\[
\begin{array}{c|c}
4 & 0100 \\
-3 & -0011 \\
\hline
1 & 0001 \\
\end{array}
\quad
\begin{array}{c|c}
4 & 0100 \\
+(-3) & +1011 \\
\hline
-7 & 1111 \\
\end{array}
\]

- Negatives “increment” in wrong direction!
Two’s Complement

- Let’s fix these problems:
 1) “Flip” negative encodings so incrementing works
Two’s Complement

- Let’s fix these problems:
 1) “Flip” negative encodings so incrementing works
 2) “Shift” negative numbers to eliminate −0

- MSB still indicates sign!
 - This is why we represent one more negative than positive number (\(-2^{N-1}\) to \(2^{N-1} - 1\))
Two’s Complement Negatives

- Accomplished with one neat mathematical trick!

- b_{w-1} has weight -2^{w-1}, other bits have usual weights $+2^i$

- 4-bit Examples:
 - 1010_2 unsigned:
 $$1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = 10$$
 - 1010_2 two’s complement:
 $$-1 \cdot 2^3 + 0 \cdot 2^2 + 1 \cdot 2^1 + 0 \cdot 2^0 = -6$$

- -1 represented as:
 - $1111_2 = -2^3 + (2^3 - 1)$
 - MSB makes it super negative, add up all the other bits to get back up to -1
Why Two’s Complement is So Great

- Roughly same number of (+) and (−) numbers
- Positive number encodings match unsigned
- Single zero
- All zeros encoding = 0

Simple negation procedure:
- Get negative representation of any integer by taking bitwise complement and then adding one!
 \((\sim x + 1 = -x)\)
Question

- Take the 4-bit number encoding \(x = 0b1011 \)
- Which of the following numbers is NOT a valid interpretation of \(x \) using any of the number representation schemes discussed today?
 - Unsigned, Sign and Magnitude, Two’s Complement

A. -4
B. -5
C. 11
D. -3
Summary

- Bit-level operators allow for fine-grained manipulations of data
 - Bitwise AND (\&), OR (\|), and NOT (\sim) different than logical AND (&&), OR (||), and NOT (!)
 - Especially useful with bit masks

- Choice of *encoding scheme* is important
 - Tradeoffs based on size requirements and desired operations

- Integers represented using unsigned and two’s complement representations
 - Limited by fixed bit width
 - We’ll examine arithmetic operations next lecture