
2 of 7  

1. Integers and Floats (7 points)

a. In the card game Schnapsen, 5 cards are used (Ace, Ten, King, Queen, and Jack) from 4 suits,

so 20 cards in total.  What are the minimum number of bits needed to represent a single card in

a Schnapsen deck? 
We need 2 bits to represent 4 suits, and 3 bits to represent 5 ranks. So 5 bits in total.

b. How many negative numbers can we represent if given 7 bits and using two’s complement?
Using 7 bits, the MSB has to be 1 for negative numbers. So there are ʹ6 negative numbers in

total. 

Consider the following pseudocode (we’ve written out the bits instead of listing hex digits):

int a = 0b0100 0000 0000 0000 0000 0011 1100 0000 

int b = (int)(float)a 

int m = 0b0100 0000 0000 0000 0000 0011 0000 0000 

int n = (int)(float)m 

c. Circle one:  True  or  False:

a == b

The right-most 1 will be truncated (cannot fit in Mantissa)

d. Circle one: True  or False: 

m == n 

No precision will be lost 

e. How many IEEE single precision floating point numbers are in the range [4, 6) (That is, how

many floating point numbers are there where 4 <= x < 6?)
4 in binary is ͳ.Ͳ ⋅ ʹ2.

6 in binary is ͳ.ͳ ⋅ ʹ2.

So in Mantissa the right-most 22 bits can be either 0 or 1. Therefore, there are ʹ22 bits in

range [4, 6)

Sp17 Midterm Q1



8 of 12 

5. Stack Discipline (30 points)

Examine the following recursive function: 

long magic(long x, long *y) { 

  long temp; 

  if (x < 2) { 

    return *y; 

  } else { 

    temp = *y + 1; 

    return x + magic(x-3, &temp); 

  } 

} 

Here is the x86_64 assembly for the same function: 

4005f6 <magic>: 

4005f6: cmp    $0x1,%rdi 

4005fa: jg 0x400600 <magic+10> 

4005fc: mov    (%rsi),%rax 

4005ff: retq 

400600: push   %rbx 

400601: sub    $0x10,%rsp 

400605: mov    %rdi,%rbx 

400608: mov    (%rsi),%rax 

40060b: add    $0x1,%rax 

40060f: mov    %rax,0x8(%rsp) 

400614: lea    -0x3(%rdi),%rdi

400618: lea    0x8(%rsp),%rsi

40061d: callq  0x4005f6 <magic> 

400622: add    %rbx,%rax 

400625: add    $0x10,%rsp 

400629: pop    %rbx 

40062a: retq 

Suppose we call magic from main(), with registers %rsi = 0x7ff…ffbaa and %rdi = 7.

The value stored at address 0x7ff…ffbaa is the long value 3. We set a breakpoint at “return
*y” (i.e. we are just about to return from magic() without making another recursive call). We

have executed the mov instruction at 4005fc but have not yet executed the retq.

Fill in the register values on the next page and draw what the stack will look like when the 

program hits that breakpoint. Give both a description of the item stored at that location and the 

value stored at that location. If a location on the stack is not used, write “unused” in the 
Description for that address and put “-----” for its Value. You may list the Values in hex or 
decimal. Unless preceded by 0x we will assume decimal. It is fine to use f…f for sequences of

f’s as shown above for %rsi. Add more rows to the table as needed.  Also, fill in the box on the

next page to include the value this call to magic will finally return to main. 

Au15 Midterm Q5



9 of 12 

Version 1 

Register Original Value Value at Breakpoint 

rsp 0x7ff…ffad0 0x7ffffffffffffa90 

rdi 7 1 

rsi 0x7ff…ffbaa 0x7ffffffffffffaa0 

rbx 2 4 

rax 9 5 

Memory address on stack Name/description of item Value 

0x7ffffffffffffad0 Return address back to main 0x400827 

0x7ffffffffffffac8 Old rbx 2 

0x7ffffffffffffac0 temp 4 

0x7ffffffffffffab8 Unused ------- 

0x7ffffffffffffab0 Return address 0x400622 

0x7ffffffffffffaa8 Old rbx 7 

0x7ffffffffffffaa0 temp 5 

0x7ffffffffffffa98 Unused ------- 

0x7ffffffffffffa90 Return address 0x400622 

0x7ffffffffffffa88 

0x7ffffffffffffa80 

0x7ffffffffffffa78 

0x7ffffffffffffa70 

0x7ffffffffffffa68 

0x7ffffffffffffa60 

What value is finally returned to main by this call? 
DON’T 
FORGET 

16 



Name: NetID:

1. C and Assembly (15 points)

Consider the following (partially blank) x86-64 assembly, (partially blank) C code, and memory listing.
Addresses and values are 64-bit, and the machine is little-endian. All the values in memory are in hex, and
the address of each cell is the sum of the row and column headers: for example, address 0x1019 contains the
value 0x18.

Assembly code:

foo:

movl $0, %eax

L1:

cmpq 0x0, %rdi

je L2

cmp 0x18, 0x1(%rdi)

je L3

mov 0x8(%rdi), %rdi

jmp L1

L2:

ret

L3:

mov (%rdi), %eax

jmp L2

C code:

typedef struct person {

char height;

char age;

struct person* next_person;

} person;

int foo(person* p) {

int answer = 0;

while (p != NULL) {

if (p->age == 24){

answer = p->height;

break;

}

p = p->next_person;

}

return answer;

}

Memory Listing
Bits not shown are 0.

0x00 0x01 ... 0x05 0x06 0x07

0x1000 80 1B ... 00 00 00

0x1008 80 1B ... 00 00 00

0x1010 3F 18 ... 00 00 00

0x1018 3F 18 ... 00 00 00

0x1020 00 00 ... 00 00 00

0x1028 18 10 ... 00 00 00

0x1030 18 10 ... 00 00 00

0x1038 40 40 ... 00 00 00

0x1040 40 40 ... 00 00 00

0x1048 00 00 ... 00 00 00

(a) Given the code provided, fill in the blanks in the C and assembly code.

2 of 17

Wi17 Final Q1



Name: NetID:

(b) Trace the execution of the call to
foo((person*) 0x1028) in the table
to the right. Show which instruc-
tion is executed in each step un-
til foo returns. In each space,
place the assembly instruction and
the values of the appropriate registers
after that instruction executes. You

may leave those spots blank when the

value does not change. You might not
need all steps listed on the table.

Instruction %rdi (hex) %eax (decimal)

movl 0x1028 0

cmpq

je

cmp

je

mov 0x1018

jmp

cmpq

je

cmp

je

mov 63

jmp

ret

(c) Briefly describe the value that foo returns and how it is computed. Use only variable names from the
C version in your answer.

foo traverses a linked list of person structs, and returns the height of the first person whose age ==
24.

3 of 17



2 of 9  

1. Caches (11 points)

You are using a byte-addressed machine where physical addresses are 22-bits.  You have a 4-way 

associative cache of total size 1 KiB with a cache block size of 32 bytes. It uses LRU replacement and 

write-back policies. 

a) Give the number of bits needed for each of these:

Cache Block Offset: _____5______    Cache Tag: _____14________ 

b) How many sets will the cache have? ____8______

c) Assume that everything except the array x is stored in registers, and that the array x starts at address

0x0. Give the hit rate (as a fraction or a %) for the following code, assuming that the cache starts out

empty. Also give the total number of hits.

#define LEAP 1 
#define SIZE 256 
int x[SIZE][8];  
... // Assume x has been initialized to contain values. 
... // Assume the cache starts empty at this point. 
for (int i = 0; i < SIZE; i += LEAP) { 
  x[i][0] += x[i][4]; 
} 

Hit Rate: ___2/3_______ Total Number of Hits: ____512______ 

d) If we increase the cache block size to 64 bytes (and leave all other factors the same) what would the

hit rate be?

Hit Rate: _____5/6_______ Total Number of Hits: _____640_______ 

e) For each of the changes proposed below, indicate how it would affect the hit rate of the code above

in part c) assuming that all other factors remained the same as they were in the original cache:

Change associativity from 

4-way to 2-way: increase / no change / decrease 

Change LEAP from 

1 to 4:   increase / no change / decrease 

Change cache size from 

1 KiB to 2 KiB: increase / no change / decrease 

Sp17 Final Q1



Name:

4. Processes (12 points) In this problem, assume Linux.

(a) Can the same program be executing in more than one process simultaneously?

(b) Can a single process change what program it is executing?

(c) When the operating system performs a context switch, what information does NOT need to be
saved/maintained in order to resume the process being stopped later (circle all that apply):

• The page-table base register

• The value of the stack pointer

• The time of day (i.e., value of the clock)

• The contents of the TLB

• The process-id

• The values of the process’ global variables

(d) Give an example of an exception (asynchronous control flow) in which it makes sense to later
re-execute the instruction that caused the exception.

(e) Give an example of an exception (asynchronous control flow) in which it makes sense to abort the
process.

Solution:

(a) Yes (the question is ambiguous as to what “simultaneous” means. We clarified during the exam,
“Assume it is the case that multiple processes execute simultaneously. Then the question is
whether more than one of these processes can be executing the same program.” Under this
interpretation, only “yes” is plausibly correct.)

(b) Yes

(c) The time of day and the contents of the TLB

(d) Page fault for memory on disk (other answers possible; full credit given just for page-fault even
though that’s ambiguous)

(e) Division by zero (other answers possible)

Wi16 Final Q4



Name: _______________________________

6. Programs, processes, and processors (oh my!) (25 pts)

(a) Consider the following C code on the left (running on Linux), then give one possible output of running it.

Assume that printf flushes its output immediately. 

void oz() { 

    char * name = "toto\n"; 

    printf("dorothy\n"); 

    if (fork() == 0) { 

name = "wizard\n"; 

printf("scarecrow\n"); 

fork(); 

printf("tinman\n"); 

exit(0); 

printf("witch\n"); 

    } else { 

printf("lion\n"); 

    } 

    printf(name); 

} 

(b) "Pay no attention to the man behind the curtain."  We have seen several different mechanisms used to create

illusions or abstractions for running programs:

A. Context switch

B. Virtual memory

C. Virtual method tables (vtables)

D. Caches

E. Timer interrupt

F. Stack discipline

G. None of the above, or impossible.

For each of the following, indicate which mechanism above (A-F) enables the behavior, or G if the 

behavior is impossible or untrue. 

(i) ______  Allows operating system kernel to run to make scheduling decisions.

(ii) ______  Prevents buffer overflow exploits.

(iii) ______  Allows multiple instances of the same program to run concurrently.

(iv) ______  Lets programs use more memory than the machine has.

(v) ______  Makes recently accessed memory faster.

(vi) ______  Multiple processes appear to run concurrently on a single processor.

(vii) ______  Enables programs to run different code depending on an object’s type.

(viii)______ Allows an x86-64 machine to execute code for a different ISA. 

!  of !9 16

dorothy 

scarecrow 

tinman 

tinman 

lion 

toto

Possible output:

dorothy 

lion 

toto 

scarecrow 

tinman 

tinman

E 

G 

B 

B 

D 

A 

C 

G

Sp16 Final Q6



Name: _______________________________

(c) Give an example of a synchronous exception, what could trigger it, and where the exception handler would

return control to in the original program. 

Page fault: triggered by access to virtual address not in memory, returns to the instruction that caused 

the fault. 

Trap: used to for syscalls to do something protected by the kernel, returns to after the calling 

instruction. 

(d) In what way does address translation (virtual memory) help make exec fast? Explain in less than 2

sentences. Hint: it may help to write down what happens during exec. 

Address translation is a form of indirection, it allows us to implement fork without copying the whole

process’s memory, and exec without loading the whole program into memory at once. 

(e) Which of the following can a running process determine, assuming it does not have access to a timer?

(check all that apply)

⃞ Its own process ID

⃞ Size of physical memory

⃞ Size of the virtual address space

⃞ L1 cache associativity

⃞ When context switches happen

(f) For each of the following, fill in what is responsible for making the decision:

hardware ("HW"), operating system ("OS"), or program ("P").

(i) ______  Which physical page a virtual page is mapped to.

(ii) ______  Which cache line is evicted for a conflict in a set-associative cache.

(iii) ______  Which page is evicted from physical memory during a page fault.

(iv) ______  Translation from virtual address to physical address.

(v) ______  Whether data is stored in the stack or the heap.

(vi) ______  Data layout optimized for spatial locality

!  of !10 16

X 

X

OS 

HW 

OS 

HW 

P 

P



4 of 9  

3. Virtual Memory (9 points)

Assume we have a virtual memory detailed as follows: 

 256 MiB Physical Address Space

 4 GiB Virtual Address Space

 1 KiB page size

 A TLB with 4 sets that is 8-way associative with LRU replacement

For the following questions it is fine to leave your answers as powers of 2. 

a) How many bits will be used for:

 Page offset? _____10______  

Virtual Page Number (VPN)? ____22_____ Physical Page Number (PPN)? ___18______ 

TLB index?   _______2_________ TLB tag? _______20__________ 

b) How many entries in this page table? 222
c) We run the following code with an empty TLB. Calculate the TLB miss rate for data (ignore

instruction fetches). Assume i and sum are stored in registers and cool is page-aligned.

#define LEAP 8 
int cool[512]; 
... // Some code that assigns values into the array cool 
... // Now flush the TLB. Start counting TLB miss rate from here. 
int sum; 
for (int i = 0; i < 512; i += LEAP) { 
  sum += cool[i]; 

} 

TLB Miss Rate: (fine to leave you answer as a fraction) ____ 
 __________

Sp17 Final Q3



SID: __________ 

9 

Question F7:  Virtual Memory  [10 pts] 

Our system has the following setup: 

 24-bit virtual addresses and 512 KiB of RAM with 4 KiB pages

 A 4-entry TLB that is fully associative with LRU replacement

 A page table entry contains a valid bit and protection bits for read (R), write (W), execute (X)

(A) Compute the following values:  [2 pt]

Page offset width __12__   PPN width __7__ 
Entries in a page table __212__   TLBT width __12__ 

Because TLB is fully associative, TLBT width matches VPN.  There are 2VPN width entries in PT. 

(B) Briefly explain why we make the page size so much larger than a cache block size.  [2 pt]

Take advantage of spatial locality and try to avoid page faults as much as possible. 
Disk access is also super slow, so we want to pull a lot of data when we do access it. 

(C) Fill in the following blanks with “A” for always, “S” for sometimes, and “N” for never if the

following get updated during a page fault.  [2 pt]

Page table __A__  Swap space __S__ TLB _A/N_ Cache __S__ 

When the page is place in physical memory, the new PPN is written into the page table entry. 

Swap space will get updated if a dirty page is kicked out of physical memory. 

For this class, we say that the page fault handler updates the TLB because it is more efficient.  

In reality not all do (OS does not have access to hardware-only TLB; instr gets restarted). 

To update a PTE (in physical mem), you check the cache, so it gets updated on a cache miss. 

(D) The TLB is in the state shown when the following code is executed.  Which iteration (value of i)

will cause the protection fault (segfault)?  Assume sum is stored in a register.

Recall: the hex representations for TLBT/PPN are padded as necessary.  [4 pt]

long *p = 0x7F0000, sum = 0; 

for (int i = 0; 1; i++) { 

   if (i%2) 

*p = 0;

   else 

sum += *p; 

   p++; 

}

i = 513 

Only the current page (VPN = TLBT = 0x7F0) has write access.  Once we hit the next page 

(TLBT = 0x7F1), we will encounter a segfault once we try to write to the page.  We are using 

pointer arithmetic to increment our pointer by 8 bytes at a time.  One page holds 212/23 = 512 

longs, so we first access TLBT 0x7F1 when i = 512.  However, the code is set up so that we 

only write on odd values of i, so the answer is i = 513. 

TLBT  PPN  Valid  R  W  X 
0x7F0 0x31 1 1 1 0 

0x7F2 0x15 1 1 0 0 

0x004 0x1D 1 1 0 1 

0x7F1 0x2D 1 1 0 0 

Au16 Final Q7



10 

Question F8:  Memory Allocation  [9 pts] 

(A) Briefly describe one drawback and one benefit to using an implicit free list over an explicit free

list.  [4 pt]

Implicit drawback: 
 Slower – have to check both allocated

and free blocks
 Must use both boundary tags in every

block – less room for payload

Implicit benefit: 
 Simpler code; easier to manage
 Smaller minimum block size (less

internal fragmentation for free blocks)

(B) The table shown to the right shows the value of the header for the

block returned by the request:  (int*)malloc(N*sizeof(int))

What is the alignment size for this dynamic memory allocator? [2 pt]

16 bytes 

The alignment size is given by the difference in size once we cross an alignment boundary. 

Remembering to mask out the allocated tag, we see that 6 ints = 24 bytes gets rounded up to 32 

and 8 ints = 32 bytes gets rounded up to 48 (remember extra space for internal fragmentation – 

at least the header, possibly other things). 

(C) Consider the C code shown here.  Assume that

the malloc call succeeds and foo is stored in

memory (not just in a register).  Fill in the

following blanks with “>” or “<”  to compare

the values returned by the following expressions

just before return 0.  [3 pt]

ZERO __<__  &ZERO

foo __<__  &foo

foo __>__  &str

ZERO and str are global variables, so their addresses are in the Static Data section of memory. 

str's value is the address of a string literal, which sits at the bottom portion of Static Data. 

foo is a local variable, so its address is in the Stack, but its value is the address of a block in the 

Heap. 

The virtual address space is arranged such that 0 < Instructions < Static Data < Heap < Stack. 

N header value 

6 33

8 49

10 49

12 65

#include <stdlib.h> 

int ZERO = 0; 

char* str = "cse351"; 

int main(int argc, char *argv[]) { 

    int *foo = malloc(8); 

free(foo); 

    return 0; 

} 

Au16 Final Q8



Name:

10. C vs. Java (11 points) Consider this Java code (left) and somewhat similar C code (right) running
on x86-64:

public class Foo {

private int[] x;

private int y;

private int z;

private Bar b;

public Foo() {

x = null;

b = null;

}

}

struct Foo {

int x[6];

int y;

int z;

struct Bar * b;

};

struct Foo * make_foo() {

struct Foo * f = (struct Foo *)malloc(sizeof(struct Foo));

f->x = NULL;

f->b = NULL;

return f;

}

(a) In Java, new Foo() allocates a new object on the heap. How many bytes would you expect this
object to contain for holding Foo’s fields? (Do not include space for any header information,
vtable pointers, or allocator data.)

(b) In C, malloc(sizeof(struct Foo)) allocates a new object on the heap. How many bytes would
you expect this object to contain for holding struct Foo’s fields? (Do not include space for any
header information or allocator data.)

(c) The function make_foo attempts to be a C variant of the Foo constructor in Java. One line fails
to compile. Which one and why?

(d) What, if anything, do we know about the values of the y and z fields after Java creates an instance
of Foo?

(e) What, if anything, do we know about the values of the y and z fields in the object returned by
make_foo?

Solution:

(a) 24

(b) 40

(c) f->x = NULL does not compile. In C, the field declaration int x[6] creates an inline array, not
a pointer, so it does not make any sense to “assign NULL to the array” — the struct itself has
slots for six array elements.

(d) We know both fields hold 0.

(e) We know nothing. (We know something abou their size, but not their contents – it could be any
bit-pattern.)

Wi16 Final Q10




