
	

CSE	351	Section	4	–	GDB	and	x86‐64	Assembly	
Hi	there!	Welcome	back	to	section,	we’re	happy	that	you’re	here		

The	GNU	Debugger	ሺGDBሻ	

The	GNU	Debugger	is	a	powerful	debugging	tool	that	will	be	critical	to	Lab	2	and	Lab	3	and	is	a	useful	tool	to	know	
as	a	programmer	moving	forward.		There	are	tutorials	and	reference	sheets	available	on	the	course	webpage,	but	
the	following	tutorial	should	get	you	started	with	the	basics:	

GDB	Tutorial:	

1ሻ Download	calculator.c	from	the	class	webpage	if	you	didn’t	already	have	it	from	Section	1:	
 > wget https://courses.cs.washington.edu/courses/cse351/17au/sections/01/code/calculator.c

	
2ሻ Compile	the	file	with	debugging	symbols	ሺ–g	flagሻ:	

 > gcc –g –o calculator calculator.c
	

3ሻ Load	the	binary	ሺexecutableሻ	into	GDB.		This	will	spit	out	a	bunch	of	information	ሺe.g.	version,	licenseሻ.	
 > gdb calculator
	

4ሻ Inside	of	GDB,	use	the	run	command	ሺrun	or	just	rሻ	to	execute	your	program.		By	default,	this	will	continue	until	
an	error	or	breakpoint	is	encountered	or	your	program	exits.	

a. Command‐line	arguments	can	be	passed	as	additional	arguments	to	run:	
 (gdb) run 3 4 +

b. To	step	through	the	program	starting	at	main()	instead,	use	the	start	command	ሺstart	or	just	staሻ:	
 (gdb) start

5ሻ To	view	source	code	while	debugging,	use	the	list	command	ሺlist	or	just	lሻ.	

a. You	can	give	list	a	function	name	ሺ“list	൏function൐”ሻ	to	look	at	the	beginning	of	a	function.	
 (gbd) list main

b. You	can	give	list	a	line	number	ሺ“list	൏line൐”ሻ	to	look	at	the	lines	around	that	line	number,	or	provide	a	
specific	range	ሺ“list	൏start൐,	൏end൐”ሻ.	
 (gdb) list 45
 (gdb) list 10, 15

c. “list”	will	display	the	next	10	lines	of	code	after	whatever	was	last	displayed	and		
“list	–”		will	display	the	previous	10	lines	of	code	before	whatever	was	last	displayed.	
	

6ሻ To	view	assembly	code	while	debugging,	use	the	disassemble	command	ሺdisassemble	or	just	disasሻ.	

a. “disas”	will	display	the	disassembly	of	the	current	function	that	you	are	in.	

b. You	can	also	disassemble	specific	functions.	
 (gdb) disas main
 (gbd) disas print_operation
	

7ሻ Create	breakpoints	using	the	break	command	ሺbreak	or	bሻ	

a. A	breakpoint	will	stop	program	execution	before	the	shown	instruction	has	been	executed!	

b. You	can	create	a	breakpoint	at	a	function	name,	source	code	line	number,	or	assembly	instruction	
address.		The	following	all	break	at	the	same	place:	
 (gdb) break main
 (gdb) break 34
 (gdb) break *0x4005d5

x86‐64

C

	

c. Each	break	point	has	an	associated	number.		You	can	view	your	breakpoints	using	the	info	command	
ሺinfo	or	just	iሻ	and	then	enable	ሺenable	or	just	enሻ	or	disable	ሺdisable	or	just	disሻ	specific	ones.	
 (gdb) info break
 (gdb) disable 3
 (gdb) enable 3

8ሻ Navigating	source	code	within	GDB	is	done	while	program	execution	is	started	ሺrun	or	startሻ,	but	halted	ሺe.g.	at	
a	breakpointሻ.	

a. Use	the	next	command	ሺnext	or	just	nሻ	to	execute	the	next	#	of	lines	of	source	code	and	then	break	
again.		This	will	complete	ሺ“step	over”ሻ	any	function	calls	found	in	the	lines	of	code.	
 (gdb) next
 (gdb) next 4
	

b. Use	the	step	command	ሺstep	or	just	sሻ	to	execute	the	next	#	of	lines	of	source	code	and	then	break	again.		
This	will	step	into	any	function	calls	found	in	the	lines	of	code.	
 (gdb) step
 (gdb) step 4

c. Use	the	“next	instruction”	command	ሺnexti	or	just	niሻ	to	execute	the	next	#	of	lines	of	assembly	code	
and	then	break	again.		This	will	complete	ሺ“step	over”ሻ	any	function	calls.	
 (gdb) nexti
 (gdb) nexti 4
	

d. Use	the	“step	instruction”	command	ሺstepi	or	just	siሻ	to	execute	the	next	#	of	lines	of	assembly	code	and	
then	break	again.		This	will	step	into	any	function	calls.	
 (gdb) stepi
 (gdb) stepi 4

e. Use	the	finish	command	ሺfinish	or	just	finሻ	to	step	out	of	the	current	function	call.	
	

f. Use	the	continue	command	ሺcontinue	or	just	cሻ	to	resume	continuous	program	execution	ሺuntil	next	
breakpoint	is	reached	or	your	program	terminatesሻ.	
	

9ሻ You	can	print	the	current	value	of	variables	or	expressions	using	the	print	command	ሺprint	or	just	pሻ:	

a. The	print	command	can	take	an	optional	format	specifier:		/x	ሺhexሻ,	/d	ሺdecimalሻ,	/u	ሺunsignedሻ,	/t	
ሺbinaryሻ,	/c	ሺcharሻ,	/f	ሺfloatሻ	
 (gdb) print /t argc
 (gdb) print /x argv
 (gdb) print /d argc*2+5
 (gdb) print /x $rax

b. The	display	command	ሺdisplay	or	just	dispሻ	is	similar,	but	causes	the	expression	to	print	in	the	specified	
format	every	time	the	program	stops.	

	
10ሻ You	can	terminate	the	current	program	run	using	the	kill	command	ሺkill	or	just	kሻ.		This	will	allow	you	to	

restart	execution	ሺrun	or	startሻ	with	your	breakpoints	intact.	
	

11ሻ You	can	exit	GDB	by	either	typing	Ctrl‐D	or	using	the	quit	command	ሺquit	or	just	qሻ	

	
	 	

C

x86‐64

	

x86‐64	Assembly	Language	

Assembly	language	is	a	human‐readable	representation	of	machine	code	instructions	ሺgenerally	a	one‐to‐one	
correspondenceሻ.		Assembly	is	machine‐specific	because	the	computer	architecture	and	hardware	are	designed	to	
execute	a	particular	machine	code	instruction	set.	

x86‐64	is	the	primary	64‐bit	instruction	set	architecture	ሺISAሻ	used	by	modern	personal	computers.		It	was	
developed	by	Intel	and	AMD	and	its	32‐bit	predecessor	is	called	IA32.		x86‐64	is	designed	for	complex	instruction	
set	computing	ሺCISCሻ,	generally	meaning	it	contains	a	larger	set	of	more	versatile	and	more	complex	instructions.	

For	this	course,	we	will	utilize	only	a	small	subset	of	x86‐64’s	instruction	set	and	omit	floating	point	instructions.	

x86‐64	Instructions	

The	subset	of	x86‐64	instructions	that	we	will	use	in	this	course	take	either	one	or	two	operands,	usually	in	the	
form:		operation operand1, operand2.		Operands	can	be:	

 Immediate:		constant	integer	data	ሺe.g.		$0x400,	$-533ሻ	or	an	address/label	ሺe.g.	Loop,	mainሻ	
 Register:		use	the	data	stored	in	one	of	the	16	general	purpose	registers	or	subsets	ሺe.g.	%rax,	%ediሻ	
 Memory:		use	the	data	at	the	memory	address	specified	by	the	addressing	mode		D(Rb,Ri,S)	

The	operation	determines	the	effect	of	the	operands	on	the	processor	state	and	has	a	suffix	ሺ“b”	for	byte,	“w”	for	
word,	“l”	for	long,	“q”	for	quad	wordሻ	that	determines	the	bit	width	of	the	operation.		Sometimes	the	operation	
size	can	be	inferred	from	the	operands,	so	the	suffix	is	omitted	for	brevity.	

Control	Flow	and	Condition	Codes	

Internally,	condition	codes	ሺCarry,	Zero,	Sign,	Overflowሻ	are	set	based	on	the	result	of	the	previous	operation.		The	
j*	and	set*	families	of	instructions	use	the	values	of	these	“flags”	to	determine	their	effects.		See	the	table	
provided	on	your	reference	sheet	for	equivalent	conditionals.	

An	indirect	jump	is	specified	by	adding	an	asterisk	ሺ*ሻ	in	front	of	a	memory	operand	and	causes	your	program	
counter	to	load	the	address	stored	at	the	computed	address.	

Procedure	Basics	

The	instructions	push,	pop,	call,	and	ret	move	the	stack	pointer	ሺ%rspሻ	automatically.	

%rax	is	used	for	the	return	value	and	the	first	six	arguments	go	in	%rdi,	%rsi,	%rdx,	%rcx,	%r8,	%r9		
	 ሺ“Diane’s	Silk	Dress	Cost	$89”ሻ.	

Exercises:	

1. ሾCSE351	Au14	Midtermሿ		Symbolically,	what	does	the	following	code	return?	

movl (%rdi), %eax # %rdi -> x
leal (%eax,%eax,2), %eax # %rax -> r
addl %eax, %eax
andl %esi, %eax # %rsi -> y
subl %esi, %eax
ret

	
	 	

	

2. ሾCSE351	Au15	Midtermሿ		Convert	the	following	C	function	into	x86‐64	assembly	code.		You	are	not	being	
judged	on	the	efficiency	of	your	code	–	just	the	correctness.	

long happy(long *x, long y, long z) {
 if (y > z)
 return z + y;
 else
 return *x;
}

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
3. Write	an	equivalent	C	function	for	the	following	x86‐64	code:	

mystery:
 testl %edx, %edx
 js .L3
 cmpl %esi, %edx
 jge .L3
 movslq %edx, %rdx
 movl (%rdi,%rdx,4), %eax
 ret
.L3:
 movl $0, %eax
 ret	

	
	
	
	
	
	
	

