
1

CSE 351 Section 3 – Integers and Floating Point
Welcome back to section, we’re happy that you’re here ☺

Signed Integers with Two’s Complement
Two’s complement is the standard for representing signed integers:

• The most significant bit (MSB) has a negative value; all others have positive values (same as unsigned)

• Binary addition is performed the same way for signed and unsigned

• The bit representation for the negative (additive inverse) of a two’s
complement number can be found by:

 flipping all the bits and adding 1 (i.e. −𝒙 = ~𝒙 + 𝟏).

The “number wheel” showing the relationship between 4-bit numerals and
their Two’s Complement interpretations is shown on the right:

• The largest number is 7 whereas the smallest number is -8

• There is a nice symmetry between numbers and their negative
counterparts except for -8

Exercises: (assume 8-bit integers)

1) What is the largest integer? The largest integer + 1?

Unsigned: Two’s Complement:

2) How do you represent (if possible) the following numbers: 39, -39, 127?

Unsigned:

 39:

-39:

127:

Two’s Complement:

 39:

-39:

127:

3) Compute the following sums in binary using your Two’s Complement answers from above. Answer in hex.

a. 39 -> 0b _ _ _ _ _ _ _ _

+(-39) -> 0b _ _ _ _ _ _ _ _

0x _ _ <- 0b _ _ _ _ _ _ _ _

b. 127 -> 0b _ _ _ _ _ _ _ _

+ (-39)-> 0b _ _ _ _ _ _ _ _

0x _ _ <- 0b _ _ _ _ _ _ _ _

c. 39 -> 0b _ _ _ _ _ _ _ _

- 127 -> 0b _ _ _ _ _ _ _ _

0x _ _ <- 0b _ _ _ _ _ _ _ _

d. 127 -> 0b _ _ _ _ _ _ _ _

+ 39 -> 0b _ _ _ _ _ _ _ _

0x _ _ <- 0b _ _ _ _ _ _ _ _

4) Interpret each of your answers above and indicate whether or not overflow has occurred.

a. 39+(-39)

Unsigned:

Two’s Complement:

b. 127+(-39)

Unsigned:

Two’s Complement:

c. 39-127

Unsigned:

Two’s Complement:

d. 127+39

Unsigned:

Two’s Complement:

2

Goals of Floating Point

Representation should include: [1] a large range of values (both very small and very large numbers), [2] a high
amount of precision, and [3] real arithmetic results (e.g. ∞ and NaN).

IEEE 754 Floating Point Standard

The value of a real number can be represented in scientific binary notation as:

Value = (-1)sign × Mantissa2 × 2Exponent = (-1)S × 1.M2 × 2E-bias

The binary representation for floating point values uses three fields:

• S: encodes the sign of the number (0 for positive, 1 for negative)
• E: encodes the exponent in biased notation with a bias of 2w-1-1
• M: encodes the mantissa (or significand, or fraction) – stores the fractional portion, but does not include

the implicit leading 1.

 S E M
float 1 bit 8 bits 23 bits
double 1 bit 11 bits 52 bits

How a float is interpreted depends on the values in the exponent and mantissa fields:

E M Meaning

0 anything denormalized number (denorm)

1-254 anything normalized number
255 zero infinity (∞)

255 nonzero not-a-number (NaN)

Exercises:
5) What is the largest, finite, positive value that can be stored using a float?

6) What is the smallest, positive, normalized value that can be stored using float?

7) Convert the decimal number 1.25 into single precision floating point representation:

8) What are the decimal values of the following floats?

0x80000000 0xFF94BEEF 0x41180000

3

Floating Point Mathematical Properties

• Not associative: (2 + 250) – 250 != 2 + (250 – 250)

• Not distributive: 100 × (0.1 + 0.2) != 100 × 0.1 + 100 × 0.2

• Not cumulative: 225 + 1 + 1 + 1 + 1 != 225 + 4

Exercises:
9) Based on floating point representation, explain why each of the three statements above occurs.

10) If x and y are variable type float, give two different reasons why (x+2*y)-y==x+y might evaluate to false.

4

1EEE 754 Float (32 bit) Flowchart

E

Denorm(no implicit 1)

Exponent = -126

(-1)S*0.M*2-126

Normal (implicit 1)

Exponent = E - 127
Special Cases

(-1)
S
*1.M*2E-127

(-1)S ∞ NaN

E = 0x00 E = 0xFF

E = 0x01->0xFE

M = 0

M ≠ 0

