CSE 351 Section 3 - Integers and Floating Point

Welcome back to section, we're happy that you're here ©

Signed Integers with Two's Complement

Two's complement is the standard for representing signed integers:

- The most significant bit (MSB) has a negative value; all others have positive values (same as unsigned)
- Binary addition is performed the same way for signed and unsigned
- The bit representation for the negative (additive inverse) of a two's complement number can be found by:

The "number wheel" showing the relationship between 4-bit numerals and their Two's Complement interpretations is shown on the right:

- The largest number is 7 whereas the smallest number is -8
- There is a nice symmetry between numbers and their negative counterparts except for -8

Exercises: (assume 8-bit integers)

1) What is the largest integer? The largest integer +1 ?

Unsigned:	Two's Complement:

2) How do you represent (if possible) the following numbers: $39,-\mathbf{3 9}, 127$?

Unsigned:	Two's Complement:
$39:$	$39:$
$-39:$	$-39:$
$127:$	$127:$

3) Compute the following sums in binary using your Two's Complement answers from above. Answer in hex.

$\begin{array}{lll} \hline \text { a. } 39 & -> & 0 . b \\ +(-39) & -> & 0 . b \end{array}$	b. 127 -> 0b $+(-39)->0 . b$
	$0 x^{\prime}$ _ $<-0 \mathrm{Ob}$ - - - - -
c. 39 -> 0 b	d. 127 -> 0b
- 127 -> 0b	+ 39 -> 0b
	$0 x^{\prime}$ - $<-0 \mathrm{~b}$ - - - - - -

4) Interpret each of your answers above and indicate whether or not overflow has occurred.

a. $39+(-39)$	b. $127+(-39)$
Unsigned:	Unsigned:
Two's Complement:	Two's Complement:
c. 39-127	d. $127+39$
Unsigned:	Unsigned:
Two's Complement:	Two's Complement:

Goals of Floating Point

Representation should include: [1] a large range of values (both very small and very large numbers), [2] a high amount of precision, and [3] real arithmetic results (e.g. ∞ and NaN).

IEEE 754 Floating Point Standard

The value of a real number can be represented in scientific binary notation as:

$$
\text { Value }=(-1)^{\text {sign }} \times \text { Mantissa }_{2} \times 2^{\text {Exponent }}=(-1)^{\mathrm{S}} \times 1 . \mathrm{M}_{2} \times 2^{\text {E-bias }}
$$

The binary representation for floating point values uses three fields:

- S: encodes the sign of the number (0 for positive, 1 for negative)
- E: encodes the exponent in biased notation with a bias of $2^{\mathrm{w}-1}-1$
- M: encodes the mantissa (or significand, or fraction) - stores the fractional portion, but does not include the implicit leading 1.

	S	E	\mathbf{M}
float	1 bit	8 bits	23 bits
double	1 bit	11 bits	52 bits

How a float is interpreted depends on the values in the exponent and mantissa fields:

\mathbf{E}	\mathbf{M}	Meaning
0	anything	denormalized number (denorm)
$1-254$	anything	normalized number
255	zero	infinity (∞)
255	nonzero	not-a-number (NaN)

Exercises:

5) What is the largest, finite, positive value that can be stored using a float?
6) What is the smallest, positive, normalized value that can be stored using float?
7) Convert the decimal number 1.25 into single precision floating point representation:

8) What are the decimal values of the following floats?

Floating Point Mathematical Properties

- Not associative: $\quad\left(2+2^{50}\right)-2^{50} \quad!=2+\left(2^{50}-2^{50}\right)$
- Not distributive: $100 \times(0.1+0.2)!=100 \times 0.1+100 \times 0.2$
- Not cumulative: $\quad 2^{25}+1+1+1+1!=2^{25}+4$

Exercises:

9) Based on floating point representation, explain why each of the three statements above occurs.
10) If x and y are variable type float, give two differentreasons why ($x+2 * y$) $-y==x+y$ might evaluate to false.

1EEE 754 Float (32 bit) Flowchart

