CSE351, Autumn 2017

W UNIVERSITY of WASHINGTON

L28: Parallelism [optional

Parallelism [optional lecture]

CSE 351 Autumn 2017

Instructor:
Justin Hsia

Teaching Assistants:
Lucas Wotton
Michael Zhang
Parker DeWilde
Ryan Wong

Sam Gehman

Sam Wolfson
Savanna Yee

Vinny Palaniappan

WHEN A USER TAKES A PHOTO
THE APP SHOULD CHECK WHETHER
THEYRE IN A NATIONAL PARK...

SURE, EASY GIS LOOKUR
GIMME A FEW HOURS,

. AND CHECK WHETHER
THE PHOTD IS OF A BIRD.

T{L NEED A RESEARCH

% TEHMHNDFNE/YEHRE

INCS, IT CAN BE HARD TO EXFLAIN
THE DIFFERENCE BETWEEN THE EASY
AND THE VIRTUALLY IMPOSSIBLE.
https://xkcd.com/1425/

CSE351, Autumn 2017

W UNIVERSITY of WASHINGTON L28: Parallelism [optional

Administrivia

» Lab 5 due Friday (12/8)
" Hard deadline on Sunday (12/10)

+» Course evaluations now open
= See Piazza post @366 for links (separate for Lec A/B)

+ Final Exam: Wed, 12/13, 12:30-2:20pm in KNE 120
= Review Session: Mon, 12/11, 5-8pm in EEB 105

" You get TWO double-sided handwritten 8.5X11” cheat
sheets
= Additional practice problems on website

WA/ UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Concurrency vs. Parallelism

+» Concurrency in CS is “the ability of different parts or
units of a program, algorithm, or problem to be
executed out-of-order or in partial order, without
affecting the final outcome.” — Wikipedia

= Concurrent computing is when the execution of multiple
computations (or processes) overlap

= Parallel computing is when the execution of multiple
computations (or processes) occur simultaneously

+» These terms are related, but independent

w UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Concurrency in Hardware and Software

+ Choice of hardware setup and software design are
independent

® Concurrent software can also run on serial hardware

" Sequential software can also run on parallel hardware

D ——

— Matrix Multiply written in MatLab Windows Vista Operating System
|
running on an Intel Pentium 4 running on an Intel Pentium 4
Hardware Matrix Multiply written in MATLAB Windows Vista Operating System
Parallel | running on an Intel Xeon 5345 running on an Intel Xeon €5345
—
2 (Clovertown) (Clovertown)

Lhced M\»\l‘kp\& proces so3

w UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Types of Parallelism

*

Why Parallelism?

o®

Thread-Level Parallelism
« Data-Level Parallelism

*

Instruction-Level Parallelism

*

w UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Moore’s Law

+» In 1965, Gordon Moore observed that
transistor density had ~“doubled each year

= ~16/chip in 1962 to ~128/chip in 1965
* Predicted doubling would continue every year for a decade

£
{
1

+~ Became a self-fulfilling prophecy for industry

= Up to ~65,000/chip in 1975 e
« Rate slowed after 1975 to doubling i :

every ~2 years 1 /

= Now slowing further =

OO O O O O OO O KKK

w UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Transistor and Chip Scaling

« In order to fulfill Moore’s Law, need to fit more
transistors per chip
1) Decrease transistor size to increase chip density & speed
2) Increase chips size, but limited by defect rate

107 E Intel 48-Core E=5rs & Transistors
E Prototype (Thousands)
10° - AMD 4-Core [. 72 Parallel App
Opteron fig . et e o TPl rmance
10° | Intel ..',.:._!';-e"". | B :,%ngle-Thread CompUte IS
: Pentium 4 fSailea # erformance
4| 2 S e e (SpecINT) tOday are
o R 564 : Frequency obscenel
3 ! /.. ks ... g x 3 x:?‘“’ (MHZ) y
10" mips R2k ; powerful
.' . & Typical Power
10° | ° : R e compared to
i Nuinbe their forebears!
10 o« s of Cores
0 e il

1975 1980 1985 1990 1995 2000 2005 2010 2015

w UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Running into Physical Limits

« Power densities over time

= Roughly constant from 1958 to late 1990s
= Grow rapidly starting in late 1990s

+ Since 2000, transistors too small (a few molecules

th ICk) to Sh r‘i N k fu rther Power Density Prediction circa 2000
l1:"-.“1{10{}0
" Current leakage makes power § Sun's Surface
scale with frequency 2. 1ony [—— RSN $
4? Nuclear Reactor —_—T
. POWGI’=CXV2>® § 100 |
(@] ’
.Sh)l‘l_d\lf\b’ﬁ’?vt'\' c\odk o 10 Roo4 8088 Hot Plate 76
speed 3 8008 8085286 386 7" Pentium® proc
o g & s D
+» Heat Death: g 1 - -
1970 1980 1990 2000 2010
= Processors stopped around 4 GHz xear

Source: S. Borkar (Intel) 8

WA/ UNIVERSITY of WASHINGTON L28: Parallelism [optional

CSE351, Autumn 2017

The Rise of Multi-core

+» Multi-core: Stick multiple processors on single chip
" Modern laptops and desktops usually have ~4 CPUs
= Each CPU can run a separate process or thread
= Speed boost on parallelizable tasks

+» The Challenges:

" Requires new programming language (and hardware) tools
for maximum effectiveness

" Concurrent & parallel programs can be tricky to get right

w UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Types of Parallelism

>

Why Parallelism?

L)

o®

Thread-Level Parallelism
" Multithreading

= Synchronization

= Cache Coherence

o®

Data-Level Parallelism

>

« Instruction-Level Parallelism

L)

10

W UNIVERSITY of WASHINGTON L28: Parallelism [optional

CSE351, Autumn 2017

Introducing Threads

+» Separate the concept of a process from that of a
minimal “thread of control”

" Usually called a thread (or a lightweight process), this is a
sequential execution stream within a process

ro(ess
1

— thread Frresds

KR

t

<+ In most modern OS’s:

= Process: address space, OS resources/process attributes ()

*" Thread: stack, stack pointer, program counter, registers (se(,ere,)

" Threads are the unit of scheduling and processes are their
containers

11

CSE351, Autumn 2017

WA/ UNIVERSITY of WASHINGTON L28: Parallelism [optional

Hardware Support for Multithreading

+» Two copies of PC and Registers inside processor

ha rdwa re: Processor
Control
4 A
Datapath
I PCO | | PC1 I
— Registers 0= E=Registers-1=

= Looks like two processors to software (hardware thread O,
hardware thread 1)
= Control logic decides which thread to execute an instruction

from next
12

WA UNIVERSITY of WASHINGTON

L28: Parallelism [optional

Multithreading a Process

+» Must explicitly tell machine how to do this

+» There are many parallel/concurrent programming
models
= POSIX Threads (pthread) model
- #1nclude <pthread.h>, compiled with -pthread flagin gcc
" Fork-Join model (taughtin CSE332)
- #1nclude <omp.h>, compiled with —fopenmp flag in gcc

m— —
master
thread

{ parallel region } { parallel region }

E—

2 H O 4

CSE351, Autumn 2017

13

W UNIVERSITY of WASHINGTON L28: Parallelism [optional

CSE351, Autumn 2017

Multithreading Limits

% “52-Card Pickup is a children’s game... that is usually
played as a practical joke”
= Scatter a deck of cards, then someone picks up
" |n our variant, want ordered deck of cards

+ Picking up the cards by yourself takes time

= A team completes the work more
quickly

L -
e .
i,

_ ol
MAKE GIFS AT GIFSOUP.COM

14

w UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Multithreading Limits

+» Why wouldn’t a team of 100 people complete the 52-
Card Pickup game much faster than a team of just 507?

"= There’s only so many things to be done — only so much can
be parallelized

= Some tasks need to wait on others — are inherently
sequential

N

5 5 Eg
“d o J F
N

Bl ™

MAKE GIFS AT GIFSOUP.COM

15

w UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Amdahl’s Law

+» The amount of speedup that can be achieved through
parallelism is limited by the non-parallel portion

" Programs can almost never be completely parallelized; some
serial portion remains

20.00

./f
18.00 g
. P llel Porti
TI[‘ﬂE 16.00 // iemo%Ion
— 75%
Q_ 14.00 // S90%
— 95%
Parallel .g e /
portion Q 1000 7 1
8- 8.00 / /
7)) rl
6.00 /f
4.00 V//-"“‘
2 3 4 5 2.00 ﬁ:ﬁ,r
0.00 r b & Ny o U
NumberofProcessors

Number of Processors

WA/ UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Multithreading: Synchronization

+» Two memory accesses form a data race if different
threads access the same location, and at least one is a
write, and they occur one after another

" Means that the result of a program can vary depending on
chance (which thread ran first?)

+ Avoid data races by synchronizing writing and reading
to get deterministic behavior

17

WA/ UNIVERSITY of WASHINGTON L28: Parallelism [optional

CSE351, Autumn 2017

Data Race Analogy: Buying Milk

+ Your fridge has no milk:

" You and your roommate will return from classes at some
point and check the fridge

" Whoever gets home first will check the fridge, go and buy
milk, and return

+» What if the other person gets back while the first
person is buying milk?

" You’ve just bought twice as much milk as you need!

+ It would’ve helped to have left a note...

18

w UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Lock Synchronization

+» Use a “Lock” to grant access to a critical section so
that only one thread can operate there at a time

+ Pseudocode:

D read lock value Can loop/idle here
}Check Lock) if locked

O enditiet 768

e e Critrcal section

vl (e.g. change shared variables)
Unset Lock

19

W UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Lock Problem

%~ Thread 1 +» Thread 2
read |OCFCg@heCk)
read IocKlggheck)
Conditionakbjump e
conditionalijump
write lock (set)
write Ioc&ogset) ﬁf
@ critical section..
critical section..

Time
Both threads think they have set the lock!
Exclusive access not guaranteed!

20

W UNIVERSITY of WASHINGTON L28: Parallelism [optional

CSE351, Autumn 2017

Hardware Synchronization

+» Hardware support is required to prevent an interloper
(another thread) from changing the value

= Atomic read/write memory operation

= No other access to the location allowed between the read
and write

« One idea: O read value
save value ’e,\SevJ\ert ihlﬂw’dwﬁ(ﬂ

®" When you Read Lock, save a copy in hardware
= When you try to Set Lock, stop if the Lock value has changed

D re- V‘eaA\ﬂ\lwe

@LJY\/"‘C]‘F Nno (.L\Gr\ge

21

L28: Parallelism [optional CSE351, Autumn 2017

W UNIVERSITY of WASHINGTON

Multiprocessing: Caches

Y UNIVERSITY of WASHINGTON

Each core shares the same Intel Core i7 Cache Hierarchy

rocessor package

Core 0 Core 3

Memory, but has local L1

(and sometimes L2) caches: . /| -
(6 E\ M*'* inshracrions

e(}-o\'\ 'X < / —-r) i)| sptimize L1 L1
(&\ d’&e i | |d-cache| |i-cache for spee d-cache| |i-cache

< N I " [
0») L2 unified cache 4| & diize £ L2 unified cache

£ Y‘ : ['t' iss vale
! oA Mi

Log I Ca I Iy : L‘E-'{.mified cache
: (shared by all cores)

Processor Processor Processor
A A vee A Main memory
\ 4 \ 4 \ 4
Cache Cache Cache
A A
\ 4 _I R \ 4
(Tnterconnection Network

T - A
A 4

Memory /0O

22

W UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Shared Memory and Caches Scenario

+» What if?
Il) Processor O reads Mem[1000] (value 351)
BLLProcessor 1 reads Mem[1000]
@Processor n writes Mem[1000] with 333

Processor O |Processor 1 Processor n

A A
1660 o] cee 10D

W’achezf) m@achesf'lL m&?;uche%'I 335

> t msz T sl |
t nection N /
000 7 3Lt ////’/”_—__T'

Memow

3

23

WA/ UNIVERSITY of WASHINGTON L28: Parallelism [optional

Keeping Multiple Caches Coherent

+ Architect’s job: keep cache values coherent with
shared memory

+ ldea: on cache miss or write, notify other processors
via interconnection network

= |If reading, many processors can have copies
= |If writing, invalidate all other copies

s 4t “C” of cache misses: coherence miss!

CSE351, Autumn 2017

24

w UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Types of Parallelism

+» Why Parallelism?
« Thread-Level Parallelism

« Data-Level Parallelism
= SIMD
= Loop Unrolling

0‘0

Instruction-Level Parallelism

25

w UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Data-Level Parallelism

+» Data-Level Parallelism: Executing one operation on
multiple data “streams”

+» Examples: Vector dot product (e.g. in filtering) or
matrix multiply (e.g. in image processing)

yli] ==cli] x x[i], 0<i<n

+ Sources of performance improvement:
= Single instruction for entire operation
= Each operation is independent

= Concurrency in memory access as well (pull all data at once)

26

WA/ UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Intel’s Streaming SIMD Extensions (SSE)

+» SIMD: single instruction, multiple data

+ SSE is a SIMD instruction set for x86
= Mostly for Float data (digital signal & graphics processing)
= Uses special %Xmm registers that are 128 bits wide
/]

/ ho\ds Y
/ / 205
Source 1 X3 X2 X1 X0 &
/ / /// ’F\oo{\'s
simuHov\ewsly
Source 2 Y3 Y2 Y1 Y0
sin le,, SIW
e TV — () (op) (02> <>
instruction
Destination X3 OP Y3 X2 OP Y2 X1 OP Y1 X0 OP YO

= |f your machine supports SSE, gCcC may add these

automatically!
27

w UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Taking Advantage of SIMD

+» SIMD wants adjacent values in memory that can be

operated in parallel

" These are usually specified
in programs as loops:

(C d\w"‘, Ld‘ o\ﬂ\»cl\y Lappm(g n ll@g;emb\yB
Vo The alle v

for(1=0; 1<1000; n++
X[1] = x[1] + s;

+» How can we reveal more data level parallelism than is
available in a single iteration of a loop?

= Unroll the loop
and adjust iteration rate:
replaced 1‘7
L SIMD mgtrudhi

x[1] = X[1] + S;
x[1+1] = x[1+1] + s;
- x[1+2] = x[1+2] + s;
xX[1+3] = x[1+3] + s;

for(i=0; i<1000; i+=4) {

28

w UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Types of Parallelism

» Why Parallelism?
« Data-Level Parallelism
« Thread-Level Parallelism

» Instruction-Level Parallelism
" Pipelining

29

WA/ UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Executing an Instruction

+» Very generally, what steps do you take to figure out
the result of the next x86-64 instruction?

1) Fetch the instruction 400540: 48 01 fe
2) Decode the instruction addg %rdi, %rsi

3) Gather data values read R[%rdi], R[%rsi]
4) Perform operation calc R[%rdi1 J+R[%rsi]

5) Store result save into %rsi

30

WA/ UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Datapath

+» Datapath: part of the processor that contains the
hardware necessary to perform operations required
by the processor (“the brawn”)

= Each “stage” of instruction execution is roughly associated
with a piece of the datapath

" Each hardware piece can only perform one action at a time

5 & 5
" 5 > n ()
(7p)] (7))
Q wn
O]
| s 3
§ +4 <
> |«
< > & > ¢ > & > & >
1. Instruction 2. Decode / 3. Execute 4. Memory 5. Write

Fetch Register Read Back 31

W UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Analogy: Doing Laundry

+» Andrea, Brian, Caroline, and Danny

each have one load of clothes to 6666

wash, dry, fold, and put away

= \Washer takes 30 minutes

" Dryer takes 30 minutes -

= “Folder” takes 30 minutes

= “Stasher” takes 30 minutes to put clothes k
into drawers

32

W UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Sequential Laundry

Time
6PM 7 8 9 10 11 12 1 ZAM

|4|] || |
0'30 30 30 30 30'30' 30 30 30 30' 30 30 30 30'3

Task 6

Order

= Sequential laundry takes 8 hours for 4 loads

33

W UNIVERSITY of WASHINGTON L28: Parallelism loptional et

Pipelined Laundry

Time
6PM 7 8 9 10 11 12 1 2AM

[
3030 30 30 3030 30

S @ A
(B DA
rder 6 g"_
S SR

" Pipelined laundry takes 3.5 hours for 4 loads!

34

CSE351, Autumn 2017

W UNIVERSITY of WASHINGTON

Pipelining Notes

Task
Order

GIPM 7

O

Time

8

L28: Parallelism [optional

9

g5 A

| E— —
3030 30 30 3030 30

[

R

A

:

» Pipelining doesn’t help

latency of single task, just
throughput of entire
workload

» Multiple tasks operating

simultaneously using
different resources

» Potential speedup = number

of pipeline stages

» Pipelining allows us to execute parts of multiple instructions at

the same time using the same hardware!

®= This is known as instruction-level parallelism

35

W UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Multiple Issue

+» With extra copy of main components of datapath, it’s
possible to issue multiple instructions simultaneously!

= Need to make sure that simultaneously-executing
instructions are dependent on each other

+» A processor that can execute more than one
instruction per clock cycle is called superscalar

+ Even crazier: out-of-order execution

36

w UNIVERSITY of WASHINGTON L28: Parallelism [optional CSE351, Autumn 2017

Summary

+ In the pursuit of processing power, parallelism is the
most promising path!
= Requires specialized hardware and programming techniques
" | ots of potential issues, so difficult to get right

+» Many kinds of parallelism that can be used in
conjunction with each other:
" Thread-level parallelism (TLP)
= Data-level parallelism (DLP)
" |nstruction-level parallelism (ILP)
= ... many other kinds not mentioned today!

37

