L27: Java and C. CSE351, Autumn 2017

Java and C
CSE 351 Autumn 2017

Instructor:
Justin Hsia

Teaching Assistants:
Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong
Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan

L27: Javaand C CSE351, Autumn 2017

Roadmap
c | Java:
car *c = malloc(sizeof(car)); Car c = new CarQ;
c->miles = 100; ch setMlIes(lOO)
c->gals = 17; c.setGals(17);
float mpg = get_mpg(c); float mpg =
free(c); c. getMPG()
Assembly get_| mpg
. pushq %rbp
Ianguage. movq %rsp, %rbp
popq %rbp Javavs. C
ey I 0S:
A4
Machine 0111010000011000
de: 100011010000010000000010
code: 1000100111000010
110000011111101000011111
7

Computer
system: ’

12/4/2017

L27: Java and C CSE351, Autumn 2017

Administrivia

« Lab 5 due Friday (12/8)
= Hard deadline on Sunday (12/10)

« Course evaluations now open
= See Piazza post @366 for links (separate for Lec A/B)

« Final Exam: Wed, 12/13, 12:30-2:20pm in KNE 120
= Review Session: Mon, 12/11, 5-8pm in EEB 105

" You get TWO double-sided handwritten 8.5x11” cheat
sheets

= Additional practice problems on website

CSE351, Autumn 2017

Worlds Colliding

« CSE351 has given you a “really different feeling”
about what computers do and how programs execute

« We have occasionally contrasted to Java, but CSE143
may still feel like “a different world”
" |t's not —it’s just a higher-level of abstraction

= Connect these levels via how-one-could-implement-Java in
351 terms

CSE351, Autumn 2017

Javavs. C

« Reconnecting to Java (hello CSE143!)

® But now you know a lot more about what really happens
when we execute programs

« We've learned about the following items in C; now
we’ll see what they look like for Java:
= Representation of data
= Pointers / references
= Casting
® Function / method calls including dynamic dispatch

L27: Java and C CSESS1, Autumn 2017

Meta-point to this lecture

« None of the data representations we are going to talk
about are guaranteed by Java

« In fact, the language simply provides an abstraction
(Java language specification)
= Tells us how code should behave for different language

constructs, but we can't easily tell how things are really
represented

® But it is important to understand an implementation of the
lower levels — useful in thinking about your program

127: Javaand © CSE351, Autumn 2017

Data in Java

« Integers, floats, doubles, pointers —same as C

= “Pointers” are called “references” in Java, but are much
more constrained than C’s general pointers

= Java's portability-guarantee fixes the sizes of all types
- Example: intis 4 bytes in Java regardless of machine

= No unsigned types to avoid conversion pitfalls
« Added some useful methods in Java 8 (also use bigger signed types)

« null is typically represented as O but “you can’t tell”

« Much more interesting:
= Arrays
® Characters and strings
= Objects

L27: Javaand C CSE351, Autumn 2017

Data in Java: Arrays

+ Every element initialized to O or nul l
- Length specified in immutable field at start of array (int -4
bytes)
= array . length returns value of this field
- Every access triggers a bounds-check
= Code is added to ensure the index is within bounds
= Exception if out-of-bounds

C: int array[5]; To speed up bounds-checking:
* Length field is likely in cache
22|22|22(?22|22
* Compiler may store length field
0 4 20 in register for loops
Java: int[] array = new int[5]; * Compiler may prove that some
hecks are redundant
5 |0o]oofoo]oofoo) ‘
0 4 20 24

12/4/2017

L27: Java and C CSE351, Autumn 2017

Data in Java: Arrays

. Every element initialized to O or nul'l

+ Length specified in immutable field at start of array (int -4
bytes)
= array. length returns value of this field

« Since it has this info, what can it do?

C: int array[5];

EEEEE
0 4

20
Java: int[] array = new int[5];

5 [oojoojoojooloo)

0 20 24

CSE351, Autumn 2017

Data in Java: Objects

- Data structures (objects) are always stored by reference, never
stored “inline”

= Include complex data types (arrays, other objects, etc.) using references

C: Java:
struct rec { class Rec {
int i; int i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;
= a[] stored “inline” as part of ¥
struct = astored by reference in object

P
0 4 16 24 -

CSE351, Autumn 2017

Data in Java: Characters & Strings

+ Two-byte Unicode instead of ASCII

= Represents most of the world’s alphabets
. String not bounded by a ‘\0’ (null character)

= Bounded by hidden length field at beginning of string
. All String objects read-only (vs. StringBuffer)

Example: the string “CSE351”

(o5 [43]53[45]33]35]31]\0]
(Asc) 5—r 7 7

Java: 7§ Ta3Joo[53]o0[45]00[33[00[35[00[31]00]
(Unicode) 0 4) 16

L27: Java and C CSESS1, Autumn 2017

Pointer/reference fields and variables

> In C, we have “-~>" and “_” for field selection depending on
whether we have a pointer to a struct or a struct
= (*r).a issocommon it becomes r->a

= In Java, all non-primitive variables are references to objects
= We always use r .a notation
= But really follow reference to r with offset to a, just like r->ain C
= So no Java field needs more than 8 bytes

(oH Java:

struct rec *r = malloc(.-.); r = new Rec(Q);
struct rec r2; r2 = new RecQ);
r->i = val; r.i = val;
r->a[2] = val; r.a[2] = val;
r->p = &r2; r.p =r2;

127: Javaand © CSE351, Autumn 2017

Pointers/References

+ Pointers in C can point to any memory address

+ References in Java can only point to [the starts of] objects
= Can only be dereferenced to access a field or element of that object

C: Java:
struct rec { class Rec {
int i; int i;
int a[3]; int[] a = new int[3];
struct rec *p; Rec p;
}: }
struct rec* r = malloc(.); Rec r = new Rec(Q);
some_fn(%(r—>a[l])); // ptr some_fn(r;a, 1); // ref, index

0 4

16 1

12/4/2017

L27: Java and C CSE351, Autumn 2017

Casting in C (example from Lab 5)

»Can cast any pointer into any other pointer
= Changes dereference and arithemetic behavior
struct Blockinfo {

size_t sizeAndTags;

struct BlockInfo* next;

struct BlocklInfo* prev;

Cast b into char * to
do unscaled addition

}:
typedef struct BlockInfo Blocklnfe;

int x;

Cast back into
BlockInfo *bj; 3lockInfo * to use

BlockInfo *newBlock; as BlockInfo struct

r-1év-vBIock = (Blocklnfo *m:) b+ x);

£ N
[s[n[e] [sIn]p]
0 8 1624 X 1

CSE351, Autumn 2017

Type-safe casting in Java
+ Can only cast compatible object references

class Boat extends Vehicle {
int propellers;

3
class Object { class Vehicle { class Car extends Vehicle { ‘

= Based on class hierarchy

int passengers;

3 int wheels;
Vehicle v = new Vehicle(); // super class of Boat and Car
Boat bl = new Boat(); // |--> sibling
car cl = new Car(Q); // |--> sibling
Vehicle vl = new Car(Q);

Vehicle v2 = v1;
Car c2 = new Boat();
Car c3 = new VehicleQ;

Boat b2 = (Boat) v;

car c4
Car c5

(Car) v2;
(Car) bil;

CSE351, Autumn 2017

CSE351, Autumn 2017

Java Object Definitions

class Point {

double x; X
double y; } fields
Point() { constructor
X = 0;
y = 0;
¥

boolean samePlace(Point p) {
return (x == p.x) && (y == p.y); [method(s)

) J

3

Point p = new Point();«——— creation

L27: Java and C CSESS1, Autumn 2017

Java Objects and Method Dispatch

Point object
header | vtable ptr | X | y |

vtable for class Point:

code for Point() I 7| code for samePlace() |

Point object

header | vtable ptr | X | y |

Virtual method table (vtable)
= Like a jump table for instance (“virtual”) methods plus other class info
= One table per class
+ Object header : GC info, hashing info, lock info, etc.
® Why no size?

Java Constructors

> When we call new: allocate space for object (data fields and
references), initialize to zero/null, and run constructor method

Java: C pseudo-translation:
Point p = new Point(); | |Point* p = calloc(l,sizeof(Point));
p->header = ...;

p->vtable = &Point_vtable;
p->vtable[0](p);

Point object
header | vtable.ptr | X |y |

vtable for class Point:

code for Point() | rl code for samePlace() |

19

12/4/2017

127: Javaand © CSE351, Autumn 2017 L27: Java and C CSE351, Autumn 2017

Java Methods Subclassing

» Static methods are just like functions C'aszoig':gigf SIS FRINE

+ Instance methods: boolean samePlace(Point p2) {
= Can refer to this; return false;

= Have an implicit first parameter for this; and 3oid sayHiQ {
= Can be overridden in subclasses System.out.printIn(“hello™);
+ The code to run when calling an instance method is chosen at 3}

runtime by lookup in the vtable
« Where does “z” go? At end of fields of Point

Java: C pseudo-translation: N _ -
[p.samePlace(q); | p—l>vtable[1] ®. D; = Point fields are always in the same place, so Point code can run on
- = = = 3DPoint objects without modification
Point object « Where does pointer to code for two new methods go?
peader | ptableRnty | X | y | = No constructor, so use default Point constructor

vtable for class Point: = To override “samePlace”, use same vtable position

= Add new pointer at end of vtable for new method “sayHi”

code for Point() | ’l code for samePlace() | 2 "

CSE351, Autumn 2017 [27: Javaand C CSE351, Autumn 2017

Subclassing Dynamic Dispatch
class 3DPoint extends Point { Point object
double z;
boolean samePlace(Point p2) { |header|Vtable ptr/.lx |y |

return false;

Point vtable:

3
void sayHi() { |cude for Point’s samePlace()l

System.out.printin("hello™); pe> ??77?
code for Point()
H tacked tend 3DPoint object y.
Z tacked on at en

3DPoint object ! | ieadeny I viEle }l X / | Y | z |

3 T ER CA—C— pavi
/ sayHi tackfd onatend Code for 3DPoint vtable: | 4 | ~_ |
Ve sayHi =
vtable for 3DPoint: I constructor *I samePlace fI sayHi ‘l \l code for 3DPoint’s samePlace()l
(not Poiint)
Java: C pseudo-translation:

Point p = ??7?; // works regardless of what p is

0ld code for New code for . -
“constructor samePlace » return p.samePlace(q); return p->vtable[1](p, q); "

CSE351, Autumn 2017 U L27: Java and C CSESS1, Autumn 2017

Ta-da! Practice Question
« In CSE143, it may have seemed “magic” that an « Assume: 64-bit pointers and that a Java object header is 8 B
inherited method could call an overridden method =« Whatare the sizes of the things being pointed at by ptr_c
" You were tested on this endlessly and ptr_j?
struct c { class jobj {
int i; int i;
“trick” i i i i i . char s[3]; String s = “hi”;
> The “trick” in the |mp|ement?t|on is this part: int a[3]: int[] a = new int[3]:
p->vtable[i](p,d) struct ¢ *p; Jobj p;
" |n the body of tPe pointed-to code, any calls to (other) z,’cruct c* ptr_c; 1}0bj ptr_j = new jobjQ;
methods of this will use p->vtable
= Dispatch determined by p, not the class that defined a
method
24 25

We made it! @@@

Java:

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;

Car ¢ = new CarQ;
c.setMiles(100);
c.setGals(17);

51, Autumn 2017

Memory & data
Integers & floats
x86 assembly
Procedures & stacks

float mpg = get_mpg(c); Float mpg = Executables
free(c); C.getMPG() ; Arrays & structs
s &~ Memory & caches
Assembly get_mpg:) Processes
. pushq %rbp N
language: novq %rsp. %rbp Virtual memory
Memory allocation
popg %rbp Javavs. C
ret 1 0s:
v
Machine 0111010000011000 N/ .
de: 100011010000010000000010 .
code: 1000100111000010 /N
110000011111101000011111 cEx ot T
v
Computer
system:

12/4/2017

