WA UNIVERSITY of WASHINGTON

L25: Memory Allocation I CSE351, Autumn 2017

Memory Allocation I

CSE 351 Autumn 2017

Instructor:
Justin Hsia

Teaching Assistants:
Lucas Wotton
Michael Zhang
Parker DeWilde
Ryan Wong

Sam Gehman

Sam Wolfson
Savanna Yee

MY ACCESS To RESOURCES ON [SUBTECT] OVER TIME:

1985 1990 1995 2000 2005 2010 205 2070

BOOK. ON
SUBJECT
[suBTECT].PDF
SITE GOES [POWN, GACKEND
[SUBTECT] WJEB DATABASE DATA NOT ON PfaﬂMEﬂRﬁ
[5UBTECT] MOBLLE. APP m-ﬂ m?a
(LbcAL UNIVERSITY PROJELT)
[SUBTECT] ANALYSIS SOFTLIARE |*—55' me ';‘im%
INTERACTIVE [SUBJECT] CD-ROM It-:fﬁj NO CD Dﬁm'gu PNYLIAY,
LIBRARY MICROFILM
[SUBTECT] COLLECTION

Vinny Palaniappan

IT¥ UNSETTUNG TO REALIZE HOW QUICKLY DIGITAL RESOURCES
CAN DISAPPEAR WITHOUT ONGOING LIORK TO MAINTAIN THEM.

http://xkcd.com/1909/

w UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2017

Administrivia

+» Homework 5 due Friday (12/1)
+» Lab 5 due next Friday (12/8)

+ Final Exam: Wed, Dec. 13 @ 12:30pm in KNE 120
= Same seating chart as Midterm
" Review Session: Mon, Dec. 11 @ 5:00pm in EEB 105
= Cumulative (midterm clobber policy applies)

" You get TWO double-sided handwritten 8.5X11” cheat
sheets

- Recommended that you reuse or remake your midterm cheat sheet

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2017

n o \
U:\e(o~

Peer Instruction Question Fragoet
A B/C D

-\°~/\

payload

+ Which allocation strategy and requests sizef77 T 177,777
remove external fragmentation in this %// ‘//\////\
Heap? B3 was the last fulfilledm 50 //(l% %
" http://PollEv.com/justinh é;’;:j:eﬁ 0 /7 4 ///

blocks
(A) Best-fit: ‘ N
malloc(50), malloc(50) 0
(B) First-fit:
| _malloc(50), malloc(30) 50
(C) Next-fit:

malloc(30), malloc(50)

(D) NEXt-fitZ Start on hea
mal loc(50), mal loc(30) "

50

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2017

Implicit List: Allocating in a Free Block

new a\\oc&h’\ / new '(;‘Ce

+» Allocating in a free block: splitting Wﬁ \

= Since allocated space might be smaller than free space, we
might want to split the block

Assume pPtr points to a free block and has unscaled pointer arithmetic

void split(ptr b, int bytes) { // bytes = desired block size
@ int newsize = ((bytes+7) >> 3) << 3%%// round up to multiple of 8
@ int oldgize = *b; // why not mask out low bit?
3 *b = newsize; // initially unallocated
@ if (newsize < oldsize)
@ *(btnewsize) = oldsize - newsize; // set length In remaining
! 24 R 4 // part of block (UNSCALED +)
/S N—
header
malloc(12): A= 2‘;'0: L 18 Free box
ggiug(b fiSESZM) ° Allocated box
allocate(b) Newly-allocated
'Cse.h =1 8|1 16[1 8|0 8|1 box

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2017

Implicit List: Freeing a Block

+» Simplest implementation just clears “allocated” flag
= void free(ptr p) {*(p-BOX) &= -2;}
" But can lead to “false fragmentation”

%
O
16|14 8|0 8|1
8|1: 6“‘/:1\ | | : | | Free box
p Allocated box
/\/\/\ Block of interest
free(p) 81 160 80| |81

malloc(20) Oops! There is enough free space, but
the allocator won’t be able to find it

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2017

Implicit List: Coalescing with Next

% Join (coalesce) with next block if also free

7

8|15 17?115 T E E 8|15 Free box
| b p Allocated box
/\/_\ Block of interest
free(p) 81| |24)0 8|0L 8|1
| | | | \ logically gone
void free(ptr p) { // p points to payload
ptr b = p — BOX; // b points to block header
*b &= -2; // clear allocated bit
ptr next = b + B // Tind next block (UNSCALED +)
1T ((next & 1) // 1T next block 1s not allocated,
*b += *n%xt // add 1ts size to this block
}

+» How do we coalesce with the previous block?

W UNIVERSITY of WASHINGTON

L25: Memory Allocation I CSE351, Autumn 2017

Implicit List: Bidirectional Coalescing

% Boundary tags

[Knuth73]

= Replicate header at “bottom” (end) of free blocks
= Allows us to traverse backwards, but requires extra space
" Important and general technique!

check foster

16/0 (00

16/1 16/1

24/0

24/0/16/1 16/1

W\/\/

6et new header ‘a\/ Suk}udlnj size from addvess

Format Of Header size a
allocated and
free blocks:
payload and
padding
Boundary tag size a

(footer)

a=1: allocated block
a =0: free block

size: block size (in bytes)

payload: application data
(allocated blocks only)

WA UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2017

Constant Time Coalescing

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free
Block being freed ——

Allocated Free Allocated Free

L25: Memory Allocation I

CSE351, Autumn 2017

WA/ UNIVERSITY of WASHINGTON

Constant Time Coalescing

Case 1

Case 3
J

m1l

m1l

n

m?2

m?2

n+m1l

n+m1l

m?2

m1 1

@ m1 1
X\ \Il 7
n Y|

m2 1

m?2 1

ml!,‘~ 0

\
@D/ o
n° 1
n
m?2 1
m?2 1

m?2

Case2| ™1 |1
m1l
X £n 147
[y
V] n 1]
m2Z Q
m?2 0

m1l 1

m1l 1 |
n+m?2 0
n+m?2 0

n+ml+m2 |0

n+ml+m2 |0

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation Il CSE351, Autumn 2017

Implicit Free List Review Questions

ervr?v\“’

Vlock L e
N ’ = n=>5
16/d 16/0[L6/1 16/1p4/ 24/0{16/1) 16/1
O NG
+ What is the block header? What do we store and how?
Stores o abot block size of Llocl<,) is-allocsted?

Ciovadt i of header
» What are boundary tags and why do we need them?
header and foster (mme lV\‘PO) SO we @Gn "‘mverse list in etther A;f‘ed'ov\
C par‘ﬁm\w\y for coalesci V‘j)

» When we coalesce free blocks, how many neighboring blocks

do we need to check on either side? Why is this?
)us* 1 - a()jacev{"f ‘Frec \olodq ﬁ\w\l}‘ lﬂﬂ\:c a\ready \uev\ Csa\ekga\

« |f | want to check the size of the n-th block forward from the

current block, how many memory accesses do | make?

Nt < neek o Y'COA o.xvrer\’l' ‘O\Oct's kea&er oS W‘ &3 l’\fa)fr &F ‘kr9e+ block
'*o geJ(the 5ize

10

w UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2017

= 4-byte box (free)

Keeping Track of Free Blocks _ a-byte box (allocated)

1) Implicit free list using length — links all blocks using math
" No actual pointers, and must check each block if allocated or free

- A R
- ~
- ' Ao~ »

20 16 24 8

2) Explicit free list among only the free blocks, using pointers

/_\

20 16 24 8

3) Segregated free list

= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
11

W UNIVERSITY of WASHINGTON

Explicit Free Lists

Allocated block:

size a
<
— payload and
padding
size a

(same as implicit free list)

L25: Memory Allocation I

Free block:

size

r/'n ext

prev

size

CSE351, Autumn 2017

L po wters

+ Use list(s) of free blocks, rather than implicit list of all blocks

" The “next” free block could be anywhere in the heap

- So we need to store next/previous pointers, not just sizes

= Since we only track free blocks, so we can use “payload” for pointers

= Still need boundary tags (header/footer) for coalescing

12

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2017

Doubly-Linked Lists

NWLL
«» Linear root [6 {0

(psiviter)
"= Needs head/root pointer

= First node prev pointer is NULL
= |Last node next pointer is NULL
" Good for first-fit, best-fit

ML

= - i

« Circular s oy node

in Tree \ict

= Still have pointer to tell you which node to start with

= No NULL pointers (term condition is back at starting point)
" Good for next-fit, best-fit

13

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2017

Explicit Free Lists

+ Logically: doubly-linked list

A |1 B [~ C
\\ I N h N
hode O node L node L

h

+ Physically: blocks can be in any order

B
v

/ Forward (next) links

="

16 —7 16|16 1624 /| ~_ 24116 1616 16

C _/
‘K Back (prev) links

14

W UNIVERSITY of WASHINGTON

L25: Memory Allocation I

CSE351, Autumn 2017

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

Before

node L\-iif\ \ld’ o +
5’;\' sclected
node nn it % alloca‘l’ed / {_’ree vee ‘o\oc,\(
/
hode nH i list | @
After |
(with splitting) ® L‘ pom“eﬂ WH&\:

2 i vw(){ n

| " wode m-|
\ ‘A node 'f\-l'\

o

malloc(..)

sti\ node N n \ist

Same number o node
{V\ ’PVCC li's“'

15

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2017

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

Before ol "_L'_‘ °
Shore %crc (
node m i(z
store here
hode ntl | @
After

4l nohe el 2 po‘m‘\eq upclad‘eA

lly allocat
By Cileeniee 1 fewer node in free lict

Now ‘H\e hew mﬂe n
malloc(..)

16

W UNIVERSITY of WASHINGTON L25: Memory Allocation ||

CSE351, Autumn 2017

Freeing With Explicit Free Lists

+ Insertion policy: Where in the free list do you put the
newly freed block?

= LIFO (last-in-first-out) policy
- Insert freed block at the beginning (head) of the free list
- Pro: simple and constant time

- Con: studies suggest fragmentation is worse than the alternative

= Address-ordered policy

- Insert freed blocks so that free list blocks are always in address order:

address(previous) < address(current) < address(next)
- Con: requires linear-time search

- Pro: studies suggest fragmentation is better than the alternative

17

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2017

Coalescing in Explicit Free Lists

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free
Block being freed ——

Allocated Free Allocated Free

+» Neighboring free blocks are already part of the free
list

1) Remove old block from free list

L)

2) Create new, larger coalesced block
3) Add new block to free list (insertion policy)

/
0’0

How do we tell if a neighborini block if free? |
con il wse \f.b\mdaf\/ ‘l’ajs <dm‘l' need 1o sear ’(‘Vcc l .{') sther ;w\rl'CW\(’n long POSJILIQ
(sce LQBS) 18

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2017

Boundary tags not
forget about them!

Freeing with LIFO Policy (Case 1) [Showm but don'

Before free(p)

node O

Root LI O

« Insert the freed block at the root of the list

After Q sddickonal node @

hew wode 1
Root O £ g B

hew node _Q

19

w UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2017

Boundary tags notJ

Freeing with LIFO Policy (Case 2) [Showm but don'

forget about them!

Before free(®) node -l
store ®
node O
Root e 1 LI o
Sore
. / kere
(L\ere freed Hock L\appeneek% Le AAJa(m+ PY I:.
j° node M of free list node mel

+ Splice successor block out of list, coalesce both memory blocks,
and insert the new block at the root of the list

After @hum\:w of nodes Sh@

hew hode M

Root ' O

new node O ‘ 1 -

hode ntl @

heW hW_ﬂ_-_

20

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation I CSE351, Autumn 2017

Boundary tags notJ

Freeing with LIFO Policy (Case 3) [Showm but don'

forget about them!

Before free
nolen! @ @)

Root nede n 1 LI O
F&A block dd) ocent \ I node net\

4o node n GF‘F(ee ||$‘\:_ ®

+ Splice predecessor block out of list, coalesce both memory
blocks, and insert the new block at the root of the list

After 6@ nu\m‘mﬁ
\s
New naode N

e node O hew ho&e_.}_
Root H

node m+|

o <«
O

21

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2017

Boundary tags notJ

Freeing with LIFO Policy (Case 4) [Showm but don'

forget about them!

Before

free(®)

hode ma-\ node n’-[_

node (63
Root nede m o
freed block adjacent I I Node 2.
‘|'o noées m and n Dl)ﬁ +| _\,\
of Froo licH hode mH | @ o node ¥\

(asmme)
+ Splice predecessor and successor blocks out of list, coalesce all

3 memory blocks, and insert the new block at the root of the

lict
After 1 '(ewe(hode n ‘(l;ee \ist

new nole M

hew nuAe__L

Root H
new node U

hode mtl

o <
O

® ¢
h

new hode N

22

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2017

Do we always need the boundary tags?

Allocated block: Free block:
Size a Size a
next
payload and P
padding
Size a Size a

(same as implicit free list)

+» Lab 5 suggests no...

23

WA/ UNIVERSITY of WASHINGTON L25: Memory Allocation II CSE351, Autumn 2017

Explicit List Summary

+» Comparison with implicit list:

= Block allocation is linear time in number of free blocks instead of all
blocks

« Much faster when most of the memory is full

= Slightly more complicated allocate and free since we need to splice
blocks in and out of the list

= Some extra space for the links (2 extra pointers needed for each free
block)

Increases minimum block size, leading to more internal fragmentation

+» Most common use of explicit lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

24

