11/29/2017

L25: Memory Allocation If CSE351, Autumn 2017 125: Memory Allocation Il CSE351, Autumn 2017

Memory Allocation Il Administrivia
CSE 351 Autumn 2017

« Homework 5 due Friday (12/1)
Instructor:
Justin Hsia « Lab 5 due 12/8
Teaching Assistants:

Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong
Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan

« Final Exam: Wed, Dec. 13 @ 12:30pm in KNE 120
Same seating chart as Midterm

Review Session: Mon, Dec. 11 @ 5:00pm in EEB 105
Cumulative (midterm clobber policy applies)

You get TWO double-sided handwritten 8.5X11” cheat
sheets

- Recommended that you reuse or remake your midterm cheat sheet

L25: Memory Allocation If CSE351, Autumn 2017

L25: Memory Allocation Il CSE351, Autumn 2017

Peer Instruction Question Implicit List: Allocating in a Free Block
. . payload . . s
+ Which allocation strategy and requests T « Allocating in a free block: splitting
remo;'e external fragm?nt:\tlon in this 50 ® Since allocated space might be smaller than free space, we
Heap? B3 was the last fulfilled request. might want to split the block
= http://PollEv.com/justinh
10 B2 Assume ptr points to a free block and has unscaled pointer arithmetic
30 void split(ptr b, int bytes) { // bytes = desired block size
int newsize = ((bytes+7) >> 3) << 3; // round up to multiple of 8
10 B3 int oldsize = *b; // why not mask out low bit?
. . *b = newsize; // initially unallocated
(B) First-fit: if (newsize < oldsize)
*(b+newsize) = oldsize - newsize; // set length in remaining
mal loc(50), malloc(30) 0 } /7 part of block (UNSCALED +)
/\/\
50 B1 malloc(12): ‘8|1‘ ‘2;‘0‘, ‘ ‘ ‘ ‘ ‘8|1‘ Free box
. ptr b = find(12+4)
(D) Next-fit: start otf heap z?:ggggé(égﬂo /\b/\/\ —‘ Allocated box
malloc(50), malloc(30) fhed [e O Newl-alocated

a

femory Allocation If CSE351, Autumn 2017

Implicit List: Freeing a Block Implicit List: Coalescing with Next
+ Simplest implementation just clears “allocated” flag + Join (coalesce) with next block if also free
] H * - = _2-
void free(ptr p) {"(p-BOX) &= -2:} bl | Too| [aa]
« " ; : L
= But can lead to “false fragmentation]] Alocated box
‘ Block of interest
16|1l]l [o0 eree box free(p) o b || ‘B\OL{
p ’7 Allocated box logically gone
D Block of interest void free(ptr 7/ oints to data
free(p) 16‘0‘ | ‘ ‘3‘0‘ ptr b(: p E)ng; 7/ E Soints to block
H H *b &= -2; // clear allocated bit
ptr next = b + *b; // find next block (UNSCALED +)
if ((*next & 1) == 0) // if next b!ock is not allocated,
malloc(20) Oops! There is enough free space, but *b += *next; // add its size to this block
the allocator won’t be able to find it L

« How do we coalesce with the previous block?

11/29/2017

125 Memory Allocation If CSE351, Autumn 2017 125: Memory Allocation Il CSE351, Autumn 2017

Implicit List: Bidirectional Coalescing Constant Time Coalescing

« Boundary tags [Knuth73]
= Replicate header at “bottom” (end) of free blocks
= Allows us to traverse backwards, but requires extra space Case 1 Case 2 Case 3 Case 4

® Important and general technique! Allocated Allocated Free Free
Block being freed —»

Allocated Free Allocated Free
60 | |sofen eitan] | | 24/0)2601 1601

Format of peader size |a a=1: allocated block
allocated and a=0: free block
free blocks: N
payload an o g
PR size: block size (in bytes)
payload: application data
Boundary tag size a| (allocated blocks only)

(footer)

Constant Time Coalescing Implicit Free List Review Questions
L mL_ |1 mi_ |1 mi_ |1 N T N
Case 1 Case 2 w60 | heopen] | iened | e T Jrei
ml |1 mi |1 mi |1 ml_ |1 N——— — — ~
n_ 1 . n_lo 0 £ . mm2_[0 ¢ What is the block header? What do we store and how?
n [1 n To n [1
m2 |1 m2 |1 m2 [0
= What are boundary tags and why do we need them?
m2 ‘ 1 m2 ‘ 1 m2 ‘ 0 n+m2 ‘0
= When we coalesce free blocks, how many neighboring blocks
Case3|_mi [0 ntml [0| cgseq|_mi [0 n+m1+m2 [0 do we need to check on either side? Why is this?
mi__|0 mi_[0
n |1 n |1 « If I want to check the size of the n-th block forward from the
- - current block, how many memory accesses do | make?
n_ |1 n+ml_|0 n [t
m2 |1 m2 1 m2 |0
m2_ [1 m2 |1 m2 |0 n+m1+m2 [0 10

CSE351, Autumn 2017 U o o CSESS1, Autumn 2017

. = 4-byte box (free) .« .
Keeping Track of Free Blocks E:uim box alocated) Explicit Free Lists

Allocated block: Free block:

1) Implicit free list using length — links all blocks using math

size a size a
= No actual pointers, and must check each block if allocated or free "
”,———~\ ”—h\‘v" ————— ~o nex
20 16 u ||] |8 payload and RISy
padding

2) Explicit free list among only the free blocks, using pointers

/\ size a size a
20 16 u || [] |8

(same as implicit free list)

3) Segregated free list = Use list(s) of free blocks, rather than implicit list of all blocks
= Different free lists for different size “classes” = The “next” free block could be anywhere in the heap
« So we need to store next/previous pointers, not just sizes
4) Blocks sorted by size = Since we only track free blocks, so we can use “payload” for pointers
= Can use a balanced binary tree (e.g. red-black tree) with pointers within = Still need boundary tags (header/footer) for coalescing

each free block, and the length used as a key

L25: Memory Allocation If CSE351, Autumn 2017

Doubly-Linked Lists

+ Linear Root @/\‘ /\\/EE@

= Needs head/root pointer
® First node prev pointer is NULL
® Last node next pointer is NULL
® Good for first-fit, best-fit

Start@/\

« Circular
= Still have pointer to tell you which node to start with
= No NULL pointers (term condition is back at starting point)
® Good for next-fit, best-fit

L25: Memory Allocation If CSE351, Autumn 2017

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

11

[)
After

(with splitting) A& vﬁ
e

malloc(..)

Before

® 0

11/29/2017

125: Memory Allocation Il CSE351, Autumn 2017

Explicit Free Lists

« Logically: doubly-linked list

B — T = T

« Physically: blocks can be in any order

Forward (next) links
B
s

Back (prev) links

femory Allocation If CSE351, Autumn 2017

Freeing With Explicit Free Lists

« Insertion policy: Where in the free list do you put the
newly freed block?

= LIFO (last-in-first-out) policy
- Insert freed block at the beginning (head) of the free list
« Pro: simple and constant time
« Con: studies suggest fragmentation is worse than the alternative

= Address-ordered policy
« Insert freed blocks so that free list blocks are always in address order:
address(previous) < address(current) < address(next)

O
o
=]

: requires linear-time search

o
RS

: studies suggest fragmentation is better than the alternative

L25: Memory Allocation Il CSE351, Autumn 2017

Allocating From Explicit Free Lists

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

Before I °
: !
4|

After

(fully allocated)

= malloc(..)

Coalescing in Explicit Free Lists

Case 1 Case 2 Case 3 Case 4

Allocated Allocated Free Free
Block being freed —

Allocated Free Allocated Free

« Neighboring free blocks are already part of the free
list
1) Remove old block from free list
2) Create new, larger coalesced block
3) Add new block to free list (insertion policy)

« How do we tell if a neighboring block if free?

125 Memory Allocation If CSE351, Autumn 2017

Boundary tags not

Freeing with LIFO Policy (Case 1) | stown butdont

forget about them!
Before fre?)

Root-/uu‘uuuu‘lo

+ Insert the freed block at the root of the list

After

Root EREN o] | [NEE ;z

11/29/2017

125 Memory Allocation Ii

Boundary tags not

Freeing with LIFO Policy (Case 2) | stown butgont

forget about them!

Before free(p)

. Splice successor block out of list, coalesce both memory blocks,
and insert the new block at the root of the list

After

\
oot — \(—I*\
FTT T 44—F\%L

4!

mory Allocation Il CSE351, Autumn 2017

Boundary tags not

Freeing with LIFO Policy (Case 3) | :hown bud

forget about them!

Before free(p)

+ Splice predecessor block out of list, coalesce both memory
blocks, and insert the new block at the root of the list

After

s

RI—%@Z] QL

125 Memory Allocation If CSE351, Autumn 2017

Boundary tags not
Freeing with LIFO Policy (Case 4) | stown butdont

forget about them!

Before

Root

+ Splice predecessor and successor blocks out of list, coalesce all
3 memory blocks, and insert the new block at the root of the

lict

After

= @

root [} > ¢70| «—— - \M

125: Memory Allocation If CSE351, Autumn 2017

Do we always need the boundary tags?

Allocated block: Free block:
size a size a
next
payload and (Y
padding
size a size a

(same as implicit free list)

« Lab 5 suggests no...

L25: Memory Allocatior CSESS1, Autumn 2017

Explicit List Summary

> Comparison with implicit list:

Block allocation is linear time in number of free blocks instead of all
blocks

« Much faster when most of the memory is full

Slightly more complicated allocate and free since we need to splice
blocks in and out of the list

Some extra space for the links (2 extra pointers needed for each free
block)
« Increases minimum block size, leading to more internal fragmentation

> Most common use of explicit lists is in conjunction with
segregated free lists

= Keep multiple linked lists of different size classes, or possibly for
different types of objects

L25: Memory Allocation If

l:‘ = 4-byte box (free)
|:| = 4-byte box (allocated)

Keeping Track of Free Blocks

1) Implicit free list using length — links all blocks using math
= No actual pointers, and must check each block if allocated or free

20 16 Z\’ [11] Te
2) Explicit free list among only the free blocks, using pointers

20 FOR N I

3) Segregated free list
= Different free lists for different size “classes”

4) Blocks sorted by size

= Can use a balanced binary tree (e.g. red-black tree) with pointers within
each free block, and the length used as a key

CSE351, Autumn 2017

Allocation Policy Tradeoffs

+ Data structure of blocks on lists
= Implicit (free/allocated), explicit (free), segregated (many
free lists) — others possible!
> Placement policy: first-fit, next-fit, best-fit
® Throughput vs. amount of fragmentation
« When do we split free blocks?
® How much internal fragmentation are we willing to tolerate?
+ When do we coalesce free blocks?
= Immediate coalescing: Every time free is called

= Deferred coalescing: Defer coalescing until needed

- e.g. when scanning free list for mal 1oc or when external

fragmentation reaches some threshold
30

11/29/2017

Segregated List (SegList) Allocators

+ Each size class of blocks has its own free list
+ Organized as an array of free lists

Size class
(in bytes)

s[[HTHITHTF

[[TTHITTHITITH
wa [TTTTTTHITTITITF
soint [[TTTTTTTTTTITITITIT =

+ Often have separate classes for each small size
- For larger sizes: One class for each two-power size

CSE351, Autumn 2017

More Info on Allocators

+ D. Knuth, “The Art of Computer Programming”, 2"
edition, Addison Wesley, 1973

® The classic reference on dynamic storage allocation

+ Wilson et al, “Dynamic Storage Allocation: A Survey
and Critical Review”, Proc. 1995 Int’| Workshop on
Memory Management, Kinross, Scotland, Sept, 1995.
= Comprehensive survey
= Available from CS:APP student site (csapp.cs.cmu.edu)

