WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up

Virtual Memory Wrap-Up

CSE 351 Autumn 2017

Instructor:
Justin Hsia

Teaching Assistants:
Lucas Wotton
Michael Zhang
Parker DeWilde
Ryan Wong

Sam Gehman

Sam Wolfson
Savanna Yee

Vinny Palaniappan

CSE351, Autumn 2017

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up

Administrivia

+» Lab 4 due Monday (11/27)
+» Homework 5 due next Friday (12/1)

+» “Virtual section” on virtual memory released
" 3 PDFs: VM cheatsheet, worksheet, and solutions
" Linked in the code section of today’s lecture
= See Piazza post for links and videos

CSE351, Autumn 2017

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up

Quick Review

What do Page Tables map?

Where are Page Tables located?

How many Page Tables are there?

Can your process tell if a page fault has occurred?

True / False: Virtual Addresses that are contiguous will always be
contiguous in physical memory

TLB stands for and stores

CSE351, Autumn 2017

CSE351, Autumn 2017

W UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up

Address Translation

+» VM is complicated, but also elegant and effective
= Level of indirection to provide isolated memory & caching

" TLB as a cache of page tables
Virtual Address

avoids two trips to memory |
for every memory access LB
Lookup
TLB Miss TLB Hit
Page Table | Protection
“Walk”] Check
Page not Page Access Access
in Mem []inMem | Denied | | Permitted
Page Fault Update Protection Physical
(OS loads page) TLB Fault Address
M \ / v \4
Find iIn Disk Find inI Mem SI1GSEGV Check cache
4

CSE351, Autumn 2017

WA/ UNIVERSITY of WASHINGTON

L23: Virtual Memory Wrap-Up

Memory Overview

» movl 0x8043ab, %rdi

CPU

requested 32-bits

Cache

MMU

Line

TLB

Main memory
(DRAM)

Page

Block

Disk

Page

YA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

Context Switching Revisited

+» What needs to happen when the CPU switches
processes?
" Registers:

- Save state of old process, load state of new process
- Including the Page Table Base Register (PTBR)

" Memory:

- Nothing to do! Pages for processes already exist in memory/disk and
protected from each other

= TLB:

- Invalidate all entries in TLB — mapping is for old process’ VAs
= Cache:

- Can leave alone because storing based on PAs — good for shared data

WA UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

Page Table Reality

« Just one issue... the numbers don’t work out for the
story so far!

+» The problem is the page table for each process:

Suppose 64-bit VAs, 8 KiB pages, 8 GiB physical memory
How many page table entries is that?

About how long is each PTE?

Moral: Cannot use this naive implementation of the
virtual->physical page mapping —it's way too big

W UNIVERSITY of WASHINGTON

L23: Virtual Memory Wrap-Up

CSE351, Autumn 2017

. . This is extra
A Solution: Multi-level Page Tables |(non-testable)

material
Page table This is called a page walk
base register
(PTBR)
Virtual Address
n-1 p-1 0
VPN 1 VPN 2 VPN k VPO
Level 1 Level 2 Level k 1
page table page table page table
> > > >
] > PPN |} —
TLB m_l v p_l v 0
PPN PPO
VPN |>| PTE .
Physical Address
VPN [>| PTE
VPN [>| PTE

w UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

This is extra

Multi-level Page Tables (non-testable)

material

= Atree of depth k where each node at depth i has up to 2/
children if part i of the VPN has j bits

Hardware for multi-level page tables inherently more
complicated

= Butit’'s a necessary complexity — 1-level does not fit

K/
0.0

+» Why it works: Most subtrees are not used at all, so they are
never created and definitely aren’t in physical memory
= Parts created can be evicted from cache/memory when not being used
= Each node can have a size of ~1-100KB

» But now for a k-level page table, a TLB miss requires k + 1
cache/memory accesses

L)

" Fine so long as TLB misses are rare — motivates larger TLBs

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

Practice VM Question

% Our system has the following properties
= 1 MiB of physical address space
= 4 GiB of virtual address space
= 32 KiB page size
= 4-entry fully associative TLB with LRU replacement

a) Fill in the following blanks:

Total entries in page Minimum bit-width of
table PTBR
TLBT bits Max # of valid entries

in a page table

10

YA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

Practice VM Question

» One process uses a page-aligned square matrix
mat|] of 32-bit integers in the code shown below:

#define MAT _SIZE = 2048
for(int 1=0; I<MAT_SIZE; 1++)
mat[1*(MAT_SIZE+1)] = 1;

b) What is the largest stride (in bytes) between
successive memory accesses (in the VA space)?

11

YA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

Practice VM Question

» One process uses a page-aligned square matrix
mat|] of 32-bit integers in the code shown below:
#define MAT _SIZE = 2048
for(int 1=0; I<MAT_SIZE; 1+)
mat[i*(MAT SIZE+1)] =

c) What are the following hit rates for the first
execution of the for loop?
TLB Hit Rate Page Table Hit Rate

12

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

BONUS SLIDES

For Fun: DRAMMER Security Attack

+» Why are we talking about this?

= Recent: Announced in October 2016; Google released
Android patch on November 8, 2016

"= Relevant: Uses your system’s memory setup to gain
elevated privileges

- Ties together some of what we’ve learned about virtual memory and
processes

" Interesting: It’s a software attack that uses only hardware
vulnerabilities and requires no user permissions

13

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

Underlying Vulnerability: Row Hammer

+» Dynamic RAM (DRAM) has gotten denser over time

= DRAM cells physically closer and
use smaller charges

" More susceptible to “disturbance
errors” (interference)

+» DRAM capacitors need to be

“refreshed” periodically (¥64 ms)
= Lose data when loss of power il #ac) et [0 C;‘
= Capacitors accessed in rows DRAM cells

Activation target rows

+ Rapid accesses to one row can ™ Yeimrov
ﬂlp bltS in an adjacent rOWI By Dsimic (modified), CC BY-SA 4.0,

https://commons.wikimedia.org/w
B~ 100K to 1M times /index.php?curid=38868341

14

WA/ UNIVERSITY of WASHINGTON

L23: Virtual Memory Wrap-Up

CSE351, Autumn 2017

Row Hammer Exploit

«» Force constant memory access

= Read then flush the cache hammertime:o
= clftlush —flush cache line mgx gg ngz
- Invalidates cache line containing the clflush ,)
specified address clflush (Y)
- Not available in all machines or Jmp hammertime

environments

= Want addresses X and Y to fall in activation target row(s)

- Good to understand how banks of DRAM cells are laid out

« The row hammer effect was discovered in 2014

= Only works on certain types of DRAM (2010 onwards)
" These techniques target x86 machines

15

CSE351, Autumn 2017

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up

Consequences of Row Hammer

+» Row hammering process can affect another process

via memory
= Circumvents virtual memory protection scheme
" Memory needs to be in an adjacent row of DRAM

+» Worse: privilege escalation

= Page tables live in memory!
" Hope to change PPN to access other parts of memory, or
change permission bits

" Goal: gain read/write access to a page containing a page
table, hence granting process read/write access to all of

physical memory
16

w UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

Effectiveness?

+» Doesn’t seem so bad — random bit flip in a row of
physical memory

= Vulnerability affected by system setup and physical
condition of memory cells

+~ Improvements:

" Double-sided row hammering increases speed & chance
" Do system identification first (e.g. Lab 4)

-« Use timing to infer memory row layout & find “bad” rows

- Allocate a huge chunk of memory and try many addresses, looking for
a reliable/repeatable bit flip

= Fill up memory with page tables first
- Tork extra processes; hope to elevate privileges in any page table

17

YA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

What’s DRAMMER?

+» No one previously made a huge fuss

" Prevention: error-correcting codes, target row refresh,
higher DRAM refresh rates

= Often relied on special memory management features
= Often crashed system instead of gaining control

+» Research group found a deterministic way to induce
row hammer exploit in a non-x86 system (ARM)

= Relies on predictable reuse patterns of standard physical
memory allocators

= Universiteit Amsterdam, Graz University of Technology, and
University of California, Santa Barbara

18

w UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

DRAMMER Demo Video

+ It's a shell, so not that sexy-looking, but still interesting

= Apologies that the text is so small on the video

19

YA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

How did we get here?

+» Computing industry demands more and faster storage
with lower power consumption

+ Ability of user to circumvent the caching system
= clflush is an unprivileged instruction in x86
= Other commands exist that skip the cache

+ Availability of virtual to physical address mapping

= Example: /proc/self/pagemap on Linux
(not human-readable)

+» Google patch for Android (Nov. 8, 2016)
= Patched the ION memory allocator

20

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

More reading for those interested

<+ DRAMMER paper:
https://vvdveen.com/publications/drammer.pdf

+» Google Project Zero:
https://egoogleprojectzero.blogspot.com/2015/03/exp
loiting-dram-rowhammer-bug-to-gain.html

+ First row hammer paper:
https://users.ece.cmu.edu/~yoonguk/papers/kim-
iscald.pdf

+» Wikipedia:
https://en.wikipedia.org/wiki/Row hammer

21

