W UNIVERSITY of WASHINGTON

L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

Virtual Memory Wrap-Up

CSE 351 Autumn 2017

Instructor:
Justin Hsia

Teaching Assistants:
Lucas Wotton
Michael Zhang
Parker DeWilde
Ryan Wong

Sam Gehman

Sam Wolfson
Savanna Yee

Vinny Palaniappan

IVEGoT..

CHEERIOS

WITH A SHOT
CF'.I'ERI‘"!IJ'I‘I-I

AT LEAST IT5 BEMER ARE THESE CMON, GUYS, RE PANENT: IN A
THAN THE QUAILEGGS SKITTLES
IN WHIPPED CREAM AND @Qﬁ.{z}? GENEN. ALGORITHM SHOULD CATCH
MSG FROM LAST TIVE. UP TOEXISTING RECIPES AND START

@%2

FEW HUNDRED MORE MEFLS, THE

\

[

N 7

.

|/ I

WEVE DECIDED TD DROP THE (S DEFRRTMENT FRoM QUR WEEKLY DINNER PARTY HOSTING ROTATION.

https://xkcd.com/720/

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up

Administrivia

+» Lab 4 due Monday (11/27)
+» Homework 5 due next Friday (12/1)

+» “Virtual section” on virtual memory released
= 3 PDFs: VM overview, worksheet, and solutions
" Linked in the code section of today’s lecture
= See Piazza post for links and videos

CSE351, Autumn 2017

WA UNIVERSITY of WASHINGTON

L23: Virtual Memory Wrap-Up

CSE351, Autumn 2017

Quick Review

What do Page Tables map?
VPN —> PPN o disk 6ddress

Where are Page Tables located?
Pkysiqu memory

How many Page Tables are there?
one per Procegs

Can your process tell if a page fault has occurred?

@ MMU/OS ‘H\muj pmje’FauH)' ‘Of‘oCCSS Jv\f* ua:(b ’ﬁ\r A«\'«

True /Virtual Addresses that are contiguous will always be

contiguous in physical memory ¢ W‘Z() Pages can \Opr(ed\“‘b

\ any sla kasrca{ mer

TLB stands forfranslation lockaside hite~ and stores page Table eritries
VW
Btk o cache

CSE351, Autumn 2017

W UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up

Address Translation

+» VM is complicated, but also elegant and effective
= Level of indirection to provide isolated memory & caching

" TLB as a cache of page tables
Virtual Address

avoids two trips to memory |
for every memory access LB
Lookup
TLB Miss TLB Hit
Page Table | Protection
“Walk”] Check
Page not Page Access Access
in Mem []inMem | Denied | | Permitted
Page Fault Update Protection Physical
(OS loads page) TLB Fault Address
M \ / v \4
Find iIn Disk Find inI Mem SI1GSEGV Check cache
4

CSE351, Autumn 2017

WA/ UNIVERSITY of WASHINGTON

L23: Virtual Memory Wrap-Up

Memory Overview (ida fho)

» movl 0x8043ab, %rdi

CPU

requested 32-bits

request
’I Cache
<& block
ested 3 y
rq“do:\-a — I\ replitemen
MMU Cache miss
TLB

Main memory

(DRAM) of °

/-\v\
Page e“"/ne%e
Block

Disk

\

Page

YA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

Context Switching Revisited

+» What needs to happen when the CPU switches
processes?
" Registers:

- Save state of old process, load state of new process
- Including the Page Table Base Register (PTBR)

" Memory:

- Nothing to do! Pages for processes already exist in memory/disk and
protected from each other

= TLB:

- Invalidate all entries in TLB — mapping is for old process’ VAs
= Cache:

- Can leave alone because storing based on PAs — good for shared data

w UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up

CSE351, Autumn 2017

Page Table Reality

« Just one issue... the numbers don’t work out for the
story so far!

+» The problem is the page table for each process:

n=Cbt , p=13kis, m =253 biks
Suppose 64-bit VAs, 8 r<iB pages, 8 GiB physical memory

How many page table entries is that?

A PTE o every virtwsl pase Nn- /1\
CVery 9 2 I’___ /‘\) r~ 2-5415 loy‘l'es
About how long is each PTE? per page Tule!

5
PPN wiod(, + wy\ajgmeﬂ-} bifs = 2045= 7S Jds /
m-p (V,D,R LX)

Moral: Cannot use this naive implementation of the
virtual->physical page mapping —it's way too big

W UNIVERSITY of WASHINGTON

A Solution: Multi-level Page Tab

L23: Virtual Memory Wrap-Up

CSE351, Autumn 2017

This is extra
on-testable)
material

1 l PPN ‘
This js call age walk-,
PR ta}ole swx\‘ B virtual 45, | VPNs: Oq()\o
base register M SFH VPN ;c{\(l) 6
(PTBR) Lok fids , \.a; = ﬁ@
Virtual Address B
n-1 L])0 p-1 lm
VPN 1 VPN 2 Yo\ VPN k VPO
Level 1 Level 2 Level k 1
page table page table page table
> > > >
] , y PPN [} —
By S CF—g i
K,a;c;\:/\-\-ed *i/ o
TLB m_l v p_l v O
PPN PPO
VPN [>| PTE .
Physical Address
VPN [>| PTE
VPN [>| PTE

w UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

This is extra

Multi-level Page Tables (non-testable)

material

= Atree of depth k where each node at depth i has up to 2/
children if part i of the VPN has j bits

Hardware for multi-level page tables inherently more
complicated

= Butit’'s a necessary complexity — 1-level does not fit

K/
0.0

+» Why it works: Most subtrees are not used at all, so they are
never created and definitely aren’t in physical memory
= Parts created can be evicted from cache/memory when not being used
= Each node can have a size of ~1-100KB

» But now for a k-level page table, a TLB miss requires k + 1
cache/memory accesses

L)

" Fine so long as TLB misses are rare — motivates larger TLBs

CSE351, Autumn 2017

W UNIVERSITY of WASHINGTON

Practice VM Question

L23: Virtual Memory Wrap-Up

% Our system has the following properties

a) Fill in the following blanks:

1 MiB of physical address space m=20
n=32
e = \S

4 GiB of virtual address space
32 KiB page size

4-entry fully associative TLB with LRU replacement

1 set

":}

A Total entries in page 2.0
2%-\0 < table; 4ua ya9es
5
| + TLBTbits PA
VPN TLBT /TLBT mop
heve TLBI =0)

Minimum bit-width of
PTBR ¢ physic\ addrey o T

(4@

Max # of valid entries
in a page table &% pugeg in physical
wewoyv
10

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

Practice VM Question

sturting addresy of motrin
/ s oF Pase st of O

» One process uses a page-aligned square matrix
mat|] of 32-bit integers in the code shown below:

#define MAT _SIZE = 2048
for(int 1=0; I<MAT_SIZE; 1++)

mat[i*(MAT_SIZE+1)] = i ;K\

Updatin
b) What is the largest stride (in bytes) between %ﬂw?

. . r 9
successive memory accesses (in the VA space)?)

1 N;(&Zc;;c)r stede i Q|L>(x\/5 201K i :\ 2(Ha ¥ U bﬁ’é}'
o O

A LOHA rﬂm ~

2 2 €204 0

WA UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

Practice VM Question
poge size =32K:8 =2TSB
» One process uses a page-aligned square matrix
mat|] of 32-bit integers in tgﬁ code shown below:
#define MAT_SIZE = 2048t =72"B
for(int 1=0; I<MAT_SIZE; 1++)
mat[1*(MAT_SIZE+1)] = 1;

c) What are the following hit rates for the first
execution of the for loop? (esume &l & matll sfurts on disk)

3/ =F5% TLB Hit Rate O% Page Table Hit Rate

aGess paliern: Single wrteto (ndex 3 only acess PT on TLB Miss

N&e,- rcv‘.s'\'\’ ihAKC.’ (a\\,_)o\ s]y-\CWhj))
e hicess every (o sl M:}yhy QMEHy dnie because mit [] on Ak, eccl oo
A (ess + page Causes ‘a@e 'FG“\H

e6ch page hdds 2 /2 =1 voos midrin
LOHL\R\ e&LL\ "hijCZ M H’Hu

12

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

BONUS SLIDES

For Fun: DRAMMER Security Attack

+» Why are we talking about this?

= Recent: Announced in October 2016; Google released
Android patch on November 8, 2016

"= Relevant: Uses your system’s memory setup to gain
elevated privileges

- Ties together some of what we’ve learned about virtual memory and
processes

" Interesting: It’s a software attack that uses only hardware
vulnerabilities and requires no user permissions

13

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

Underlying Vulnerability: Row Hammer

+» Dynamic RAM (DRAM) has gotten denser over time

= DRAM cells physically closer and
use smaller charges

" More susceptible to “disturbance
errors” (interference)

+» DRAM capacitors need to be

“refreshed” periodically (¥64 ms)
= Lose data when loss of power il #ac) et [0 C;‘
= Capacitors accessed in rows DRAM cells

Activation target rows

+ Rapid accesses to one row can ™ Yeimrov
ﬂlp bltS in an adjacent rOWI By Dsimic (modified), CC BY-SA 4.0,

https://commons.wikimedia.org/w
B~ 100K to 1M times /index.php?curid=38868341

14

WA/ UNIVERSITY of WASHINGTON

L23: Virtual Memory Wrap-Up

CSE351, Autumn 2017

Row Hammer Exploit

«» Force constant memory access

= Read then flush the cache hammertime:o 2N
= clftlush —flush cache line mgx gg ngz
- Invalidates cache line containing the clflush ,)
specified address clflush (Y)
- Not available in all machines or Jmp hammertime

environments

= Want addresses X and Y to fall in activation target row(s)

- Good to understand how banks of DRAM cells are laid out

« The row hammer effect was discovered in 2014

= Only works on certain types of DRAM (2010 onwards)
" These techniques target x86 machines

15

CSE351, Autumn 2017

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up

Consequences of Row Hammer

+» Row hammering process can affect another process

via memory
= Circumvents virtual memory protection scheme
" Memory needs to be in an adjacent row of DRAM

+» Worse: privilege escalation

= Page tables live in memory!
" Hope to change PPN to access other parts of memory, or
change permission bits

" Goal: gain read/write access to a page containing a page
table, hence granting process read/write access to all of

physical memory
16

w UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

Effectiveness?

+» Doesn’t seem so bad — random bit flip in a row of
physical memory

= Vulnerability affected by system setup and physical
condition of memory cells

+~ Improvements:

" Double-sided row hammering increases speed & chance
" Do system identification first (e.g. Lab 4)

-« Use timing to infer memory row layout & find “bad” rows

- Allocate a huge chunk of memory and try many addresses, looking for
a reliable/repeatable bit flip

= Fill up memory with page tables first
- Tork extra processes; hope to elevate privileges in any page table

17

YA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

What’s DRAMMER?

+» No one previously made a huge fuss

" Prevention: error-correcting codes, target row refresh,
higher DRAM refresh rates

= Often relied on special memory management features
= Often crashed system instead of gaining control

+» Research group found a deterministic way to induce
row hammer exploit in a non-x86 system (ARM)

= Relies on predictable reuse patterns of standard physical
memory allocators

= Universiteit Amsterdam, Graz University of Technology, and
University of California, Santa Barbara

18

w UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

DRAMMER Demo Video

+ It's a shell, so not that sexy-looking, but still interesting

= Apologies that the text is so small on the video

19

YA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

How did we get here?

+» Computing industry demands more and faster storage
with lower power consumption

+ Ability of user to circumvent the caching system
= clflush is an unprivileged instruction in x86
= Other commands exist that skip the cache

+ Availability of virtual to physical address mapping

= Example: /proc/self/pagemap on Linux
(not human-readable)

+» Google patch for Android (Nov. 8, 2016)
= Patched the ION memory allocator

20

WA/ UNIVERSITY of WASHINGTON L23: Virtual Memory Wrap-Up CSE351, Autumn 2017

More reading for those interested

<+ DRAMMER paper:
https://vvdveen.com/publications/drammer.pdf

+» Google Project Zero:
https://egoogleprojectzero.blogspot.com/2015/03/exp
loiting-dram-rowhammer-bug-to-gain.html

+ First row hammer paper:
https://users.ece.cmu.edu/~yoonguk/papers/kim-
iscald.pdf

+» Wikipedia:
https://en.wikipedia.org/wiki/Row hammer

21

