YA UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Well I'm having trouble opening
new tabs, And the others are 7 Hmm. Well |
having problems too, The IDE, i Guess i+ would be

Virtual Memory | o o) N oo BT
CSE 351 Autumn 2017 . C e B __

Instructor:
Justin Hsia

/ OK, here's an extra 4 gigs.
| Make sure you share it around,
\ there aren't any more slots left /

Teaching Assistants:

eah, OK,\
A that'll do

Lucas Wotton
Michael Zhang
Parker DeWilde
Ryan Wong

Sam Gehman

So? What did he say? Will he

1 : He told wou
EAVE UB BOME Mo RAMT to get lost

Sam Wolfson

Yeoh, whot
a dotuche.

http://rebrn.com/re/bad-chrome-1162082/

Savanna Yee
Vinny Palaniappan

CommitStrip.com

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory |

Administrivia

+» Homework 4 due tonight
+» Lab 4 due after Thanksgiving (11/27)

« Next week’s section: “Virtual section”
= \Worksheet and solutions released like normal

= Videos of TAs working through problems will also be
released

CSE351, Autumn 2017

W UNIVERSITY of WASHINGTON : Virtual Memory | CSE351, Autumn 2017

Roadmap
C: Java:
car *c = malloc(sizeof(car)); Car ¢ = new Car();
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); c.getMPG(Q);

~ &~
Assembly get_mpg:

0

language: pushg %rbp Virtual memory

mov(q %rsp, %rbp

popqg %rbp

ret] 0S:

\ 4

Machine 0111010000011000 .- \/

_ 100011010000010000000010
code: 1000100111000010 =] &
110000011111101000011111 Windows 10 | 05X vosemie & W 4

v v

Computer

system:

W UNIVERSITY of WASHINGTON L21: Virtual Memory |

Virtual Memory (VM¥*)

+» Overview and motivation

» VM as a tool for caching

+» Address translation

» VM as a tool for memory management
+» VM as a tool for memory protection

Warning: Virtual memory is pretty complex,

but crucial for understanding how processes
work and for debugging performance

*Not to be confused with “Virtual Machine” which is a whole other thing.

CSE351, Autumn 2017

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Memory as we know it so far... is virtual!

+ Programs refer to virtual memory addresses OXFF-++F
= movg (%rdi),%rax

" Conceptually memory is just a very large array of bytes
= System provides private address space to each process

+ Allocation: Compiler and run-time system
" Where different program objects should be stored
= All allocation within single virtual address space

<« But...

= We probably don’t have 2% bytes of physical memory

= We certainly don’t have 2% bytes of physical memory
for every process

= Processes should not interfere with one another 0x00-+--+-0

- Except in certain cases where they want to share code or data

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Problem 1: How Does Everything Fit?

64-bit virtual addresses can address Physical main memory offers
several exabytes a few gigabytes
(18,446,744,073,709,551,616 bytes) (e.g. 8,589,934,59%\bytes)

(Not to scale; physical memory would be smaller
than the period at the end of this sentence compared
to the virtual address space.)

stailler Hran Fhis !

1 virtual address space per process,
with many processes...

WA UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Problem 2: Memory Management

Physical main memory

We have multiple
Each process has...

processes:
Process 1
Process 2
where?

Process n

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Problem 3: How To Protect

Physical main memory
o :K\(>
Process }

Problem 4: How To Share?

Physical main memory

Processj /

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

How can we solve these problems?

1)

2)
3)

4)

Fitting a huge address space into a tiny physical
memory

Managing the address spaces of multiple processes

Protecting processes from stepping on each other’s
memory

Allowing processes to share common parts of
memory

WA UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Indirection

« “Any problem in computer science can be solved by adding
another level of indirection.” - pavid Wheeler, inventor of the subroutine

Pl ~re
................. —) | .

WIthOUt |ndlreCt|On P2 ... 4; _ Thlng

P3 7; NewThing

P1
With Indirection -

P2 o — | | Thing

p3 —— T _

*1 |NewThing

What if | want to move Thing?

10

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Indirection

« Indirection: The ability to reference something using a name,

reference, or container instead of the value itself. A flexible
mapping between a name and a thing allows changing the
thing without notifying holders of the name.

= Adds some work (now have to look up 2 things instead of 1)

= But don’t have to track all uses of name/address (single source!)

Examples:

" Phone system: cell phone number portability
= Domain Name Service (DNS): translation from name to IP address
= Call centers: route calls to available operators, etc.

= Dynamic Host Configuration Protocol (DHCP): local network address
assignment

11

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Indirection in Virtual Memory

Virtual memory

Process 1

Physical memory

mapping

Virtual memory

Process n

+ Each process gets its own private virtual address space
+ Solves the previous problems!

12

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

. Qe_(l”\ fondivn
Address Spaces s . [NI
" =
+ Virtual address space: Set O]}N = 2 V|rtual addr
0 byle
{0,1,2,3, .., N-1} S =Ty, M

+ Physical address space: Set of M = 2™ physical addr
= {0,1,2,3,.. M-1}

+ Every byte in main memory has:
" one physical address (PA)

" zero, one, or more virtual addresses (VAs)

j ((. wed by many procesie §
hused wek by sne pracess

13

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory |

Mapping

X/

+ A virtual address (VA) can be mapped to either physical
memory or disk

®" Unused VAs may not have a mapping

As from different processes may map to same location in memory/disk

Process 1’s Virtua
Address Space

hysical
ﬂfl\/lemory

Process 2’s Virtual
Address Space

Disk

D ﬁ “Swap Space”

14

SLrirs

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

A System Using Physical Addressing

Main memory

0:
1:
2:
Physical address (PA) 3: w
CPU > 4.
A -
6:
7:)
8:
M-1:

Data (int/float)

+ Used in “simple” systems with (usually) just one process:

" Embedded microcontrollers in devices like cars, elevators, and digital
picture frames

15

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address g
CPU Y s MMU 54 '
0x4100 2 I
Ty ; %
n-bity - b 6:
7:)
8:
Memory Management Unit
M-1

Data (int/float)

+» Physical addresses are completely invisible to programs
= Used in all modern desktops, laptops, servers, smartphones...
" One of the great ideas in computer science

16

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory |

Why Virtual Memory (VM)?

+ Efficient use of limited main memory (RAM)

= Use RAM as a cache for the parts of a virtual address space
- Some non-cached parts stored on disk

- Some (unallocated) non-cached parts stored nowhere

= Keep only active areas of virtual address space in memory
- Transfer data back and forth as needed

X/

+ Simplifies memory management for programmers
= Each process “gets” the same full, private linear address space
+ |solates address spaces (protection)

" One process can’t interfere with another’s memory
- They operate in different address spaces
= User process cannot access privileged information

- Different sections of address spaces have different permissions

17

CSE351, Autumn 2017

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

VM and the Memory Hierarchy

+ Think of virtual memory as array of N = 2" contiguous bytes

+ Pages of virtual memory are usually stored in physical
memory, but sometimes spill to disk (g p

2

= Pages are another unit of aligned memory (size is F = 2P bytes)

= Each virtual page can be stored in any physical page (no fragmentation!)

ho udsTéA s‘oue /50\()5

Virtual memory Physical memory o

0 =3

0 Empty PPO)

> VP O | Unallocated , PP 1 g‘l

% VP1]lin mem Empty IS

v in disk ®

oo Unallocated \ / Empty 2

© o

o > PP 2mP-1 'q

© L
-
=
>

VP 2mp-1

“Swap Space”

18

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

or: Virtual Memory as DRAM Cache for Disk

+ Think of virtual memory as an array of N = 2™ contiguous
bytes stored on a disk

+ Then physical main memory is used as a cache for the
virtual memory array

" These “cache blocks” are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0

VP O | Unallocated
0

VP 1 | Cached \ Empty PP O
Uncached PP 1

Unallocated Empty
Cached
Uncached Empty

Cached PP 2m-p-1
VP 2np-1 ‘ Uncached | M-

Physical pages (PPs)
cached in DRAM

Virtual pages (VPs)
“stored on disk”
19

WA UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Memory Hierarchy: Core 2 Duo Not drawn to scale

SRAM DRAM
Static Random Access Memory Dynamic Random Access Memory
A A
' ~4mp 1! ~8 GB ‘ ~500 GB
L2 Mai -
L1 ain
unified D | S k

> I-cache Memor
a cache y
L1 . o o

Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles
Latency: 3 cycles 14 cycles 100 cycles millions
Miss Penalty Miss Penalty
(latency) (latency)
33x 10,000x

20

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Virtual Memory Desigh Consequences

+» Large page size: typically 4-8 KiB or 2-4 MiB
= Can be up to 1 GiB (for “Big Data” apps on big computers)
" Compared with 64-byte cache blocks

« Fully associative (physicl memory IS single Se+)
= Any virtual page can be placed in any physical page

= Requires a “large” mapping function — different from CPU caches

+ Highly sophisticated, expensive replacement algorithms in OS
" Too complicated and open-ended to be implemented in hardware

% M/rite-bac7<] rather than write-through (feade &y pages)

" Really don’t want to write to disk every time we modify something in
memory

= Some things may never end up on disk (e.g. stack for short-lived process)

21

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Why does VM work on RAM/disk?

+ Avoids disk accesses because of locality

= Same reason that L1 /L2 / L3 caches work

+» The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set

= |f (working set of one process < physical memory):
- Good performance for one process (after compulsory misses)

" If (working sets of all processes > physical memory):

. EThrashi@ Performance meltdown where pages are swapped
between memory and disk continuously (CPU always waiting or
paging)

- This is why your computer can feel faster when you add RAM

22

W UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Virtual Memory (VM)

>

Overview and motivation

L)

o®

VM as a tool for caching
Address translation

*

/
*

» VM as a tool for memory management

0‘0

VM as a tool for memory protection

23

W UNIVERSITY of WASHINGTON

L21: Virtual Memory |

Address Translation

How do we perform the virtual
— physical address translation?

Main memory

0:
CPU Chip 1:
Virtual address /\ hysical address g
CPU b MMU \R {PA) > 4:
0x4100 \| / Ox4 c.
A W |
6:
7:
8:
Memory Management Unit
M-1:

Y

CSE351, Autumn 2017

Data (int/float)

24

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Address Translation: Page Tables
VPN width 'n-Pd—>we have prpajej in VA space prye s\ze 1>L’)"‘e}

+» CPU-generated address carLbe split intop: . & p= oy, P bt

- K—_A_/—\
n-bitaddress: | Virtual Page Number | Page Offset
J\V\O\'ij.f +O Y | lglock hurmber | block O_H‘J /"g)f' “(inej

= Request is Virtual Address (VA), want Physical Address (PA)
= Note that Physical Offset = Virtual Offset (page-aligned)

+ Use lookup table that we call the page table (PT)

= Replace Virtual Page Number (VPN) for Physical Page
Number (PPN) to generate Physical Address

" |Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g. Valid, Dirty, access rights)

" Has an entry for every virtual page — why?
NO \baLku‘o‘For mpr\jS é ' conm be 6\,\\14’[\ r\ﬁ)

25

L21: Virtual Memory |

W UNIVERSITY of WASHINGTON

CSE351, Autumn 2017

Page Table Diagram

Physical memory

(DRAM)
VPN Page Table
Virtual page # (DRAM) VP 1
Valid PPN/Disk Addr / VP2
PTEO: 0 [0 null //
PTEL: 1] 1 vP7
V(A\f(}\ —pe2: 2 [1 [Q) VP 4
PTE3: 3]0
PTE4: 4] 1 ~ .
o [k {PTES: 5102) _ nul A T~
prE6: 6| O (DA 15k & o4 S~
PTE7: 7] 1 o« "~ TS~
r9e ’I‘O\HQ L‘(Aj 2 en‘h:e]’ \\‘~

= Page tables stored in physical memory -~

" Too big to fit elsewhere — managed by MMU & OS s

+» How many page tables in the system?

" One per process

PP

PPO
PP 1
PP 2
PP 3

Virtual memory
(DRAM/disk)

VP 3

VP 6

26

WA UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Page Table Address Translation

hanged o
Chan)
yd /0\ Covd% xT suircn

CP

Virtual address (VA) /

% Virtual page number (VPN) / Virtual page offset (VPO) n \or}l
[

Page table address Page table

for process 5 Valid PPN

Page table
base register
(PTBR)
|

N\

dedk proe 1 VPop o
folde o VPN ety

Valid bit = 0:
page not in memory <€

(fault)
page fau ! / ‘l’

Physical page number (PPN) / Physical page offset (PPO) m \o{’b'
In most cases, the MMU can Physical address (PA) /

perform this translation
without software assistance

27

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Page Hit

+» Page hit: VM reference is in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
pTEO [0 null] vwe1 PP O

1 VP 2

Y 1 VP 7 PP2
2 VP4 PP 3
0
0 Virtual memory

— > p1eQ)[1 (DRAM/disk)

) N S~ VP 3
Example: Page size =4 KiB=7'"B <= p=I2Lits= 3 hex Jigits pS

® N
.) : . 4 VP 6
Virtual Addr: OX\QQ?/?E&)E+ P\hys:caIAddr :{Ox 2 Hob

() ven: e @pPpN: 2

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Page Fault

Page fault: VM reference is NOT in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO [0 null] vp1 PPO
1 — > VP2
211 o—
VP 7
Byo L /
= > VP 4 PP 3
1 e—
0 null .
0 e S Virtual memory
PTE7 [1 N Ss (DRAM/disk)
) . RN EEECE
Example: Page size = 4 KiB O
Provide a virtual address request (in hex) that ‘\A Y-

results in this particular pag\e/falu\lt: sy Fhre

he
Virtual Addr: Ox 3/000 \hest 3&5\'“ (4

_ J 29

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Page Fault Exception

int af1000];
User writes to memory location int main ()

{
That portion (page) of user’s memory a[500] = 13:
is currently on disk ks
P e—
80483b7: c7 05 10 9d 04 08 0Od movl $0xd (_Ox8049d1§

User code OS Kernel code

exception: w . handle_page_fault:

movil % =5
Create page and
returns load into memory

'

Page fault handler must load page into physical memory
Returns to faulting instruction: mov is executed again!

= Successful on second try
30

WA UNIVERSITY of WASHINGTON

L21: Virtual Memory |

Handling a Page Fault

+ Page miss causes page fault (an exception)

Virtual address

Page Table (DRAM)

CSE351, Autumn 2017

Physical memory

Valid PPN/Disk Addr (DRAM)
PTEO [0 null S VP 1 PP O
1 VP 2
S é VP 7
1 VP 4 PP 3
0 Virtual memory
0 (DRAM/disk)
PTE7 | 1

VP 3

VP 6

31

WA UNIVERSITY of WASHINGTON

Virtual address

Valid PPN/Disk Addr (DRAM)
pTE0 [0 null I
1 — | , VP 2
1 —
VP 7
> 0 e /
1 —= | VP4
0 il "~ Virtual memory
0 =N o (DRAM/disk)
PTE7 [1 o~ . e

Page Table (DRAM)

L21: Virtual Memory |

Handling a Page Fault

Page miss causes page fault (an exception) by
+ Page fault handler selects a victim to be evicted (here VP

Physical memory

VP 3

VP 6

CSE351, Autumn 2017

PP O

PP 3

Q) w?re
ack of
&"\r'\'y

32

WA UNIVERSITY of WASHINGTON

L21: Virtual Memory |

Handling a Page Fault

+ Page miss causes page fault (an exception)
+» Page fault handler selects a victim to be evicted (here VP 4)

U\pA ated
Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
pTE0 [0 null] vp1
1 — > VP 2
1 o—
VP 7
Thvalidated > 0 e
0 null “~ Virtual memory
0 e < (DRAM/disk)
PTE7 [1 - |-

VP 4

VP 6

CSE351, Autumn 2017

PP O

PP 3

33

W UNIVERSITY of WASHINGTON

L21: Virtual Memory |

Handling a Page Fault

+ Page miss causes page fault (an exception)

+ Page fault handler selects a victim to be evicted (here VP 4)

+ Offending instruction is restarted: page hit!

Page Table (DRAM)

CSE351, Autumn 2017

Physical memory

Virtual address Valid PPN/Disk Addr (DRAM)
PTE0 [0 null] vp1 PP O
/ 1 — : VP 2
hit. o VP 7
g= = — —r3 PP 3
0 e
0 null "~ Virtual memory
0 e S (DRAM/disk)
PTE7 [1 o R

VP 4

VP 6

34

w UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Peer Instruction Question

L)

How many bits wide are the following fields?

. 16 K|B pages =Y kits

. 4§ bltbwrtual addresses n =4 bits &> 256 TiB virfua memory
- 16 G|B physical memory m =4 bits

" Vote at: http://PollEv.com/justinh

Y .
PN = n-p= 24)Dﬂ_g &~ 2 kges Virtus addcess Spoce
VPN PPN |V P i

(B) 32 18 PPN = M’P = 20 Las <____> 27-° eajgj n P\\\/S\.(Q‘ AJA(QSJ SP“CC

" |

35

WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Summary

+ Virtual memory provides:

= Ability to use limited memory (RAM) across multiple
processes

" |llusion of contiguous virtual address space for each process
" Protection and sharing amongst processes

+ Indirection via address mapping by page tables
= Part of memory management unit and stored in memory

= Use virtual page number as index into lookup table that
holds physical page number, disk address, or NULL
(unallocated page)

" On page fault, throw exception and move page from swap
space (disk) to main memory

36

