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Administrivia

+» Homework 4 due tonight
+» Lab 4 due after Thanksgiving (11/27)

« Next week’s section: “Virtual section”
= \Worksheet and solutions released like normal

= Videos of TAs working through problems will also be
released

CSE351, Autumn 2017
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Roadmap
C: Java:
car *c = malloc(sizeof(car)); Car ¢ = new Car();
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); c.getMPG(Q);

~ &~
Assembly get_mpg:

0

language: pushg  %rbp Virtual memory

mov(q %rsp, %rbp

popqg %rbp

ret ] 0S:

\ 4

Machine 0111010000011000 .- \/

_ 100011010000010000000010
code: 1000100111000010 =] &
110000011111101000011111 Windows 10 | 05X vosemie & W 4

v v

Computer

system:
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Virtual Memory (VM¥*)

+» Overview and motivation

» VM as a tool for caching

+» Address translation

» VM as a tool for memory management
+» VM as a tool for memory protection

Warning: Virtual memory is pretty complex,

but crucial for understanding how processes
work and for debugging performance

*Not to be confused with “Virtual Machine” which is a whole other thing.

CSE351, Autumn 2017
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Memory as we know it so far... is virtual!

+ Programs refer to virtual memory addresses OXFF-++F
= movg (%rdi),%rax

" Conceptually memory is just a very large array of bytes
= System provides private address space to each process

+ Allocation: Compiler and run-time system
" Where different program objects should be stored
= All allocation within single virtual address space

<« But...

= We probably don’t have 2% bytes of physical memory

= We certainly don’t have 2% bytes of physical memory
for every process

= Processes should not interfere with one another 0x00-+--+-0

- Except in certain cases where they want to share code or data
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Problem 1: How Does Everything Fit?

64-bit virtual addresses can address Physical main memory offers
several exabytes a few gigabytes
(18,446,744,073,709,551,616 bytes) (e.g. 8,589,934,59%\bytes)

(Not to scale; physical memory would be smaller
than the period at the end of this sentence compared
to the virtual address space.)

stailler Hran Fhis !

1 virtual address space per process,
with many processes...
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Problem 2: Memory Management

Physical main memory

We have multiple
Each process has...

processes:
Process 1
Process 2
where?

Process n
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Problem 3: How To Protect

Physical main memory
o :K\(>
Process }

Problem 4: How To Share?

Physical main memory

Processj /
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How can we solve these problems?

1)

2)
3)

4)

Fitting a huge address space into a tiny physical
memory

Managing the address spaces of multiple processes

Protecting processes from stepping on each other’s
memory

Allowing processes to share common parts of
memory
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Indirection

« “Any problem in computer science can be solved by adding
another level of indirection.” - pavid Wheeler, inventor of the subroutine

Pl ~re
................. —) | .

WIthOUt |ndlreCt|On P2 ......................................... 4; _ Thlng

P3 7; NewThing

P1
With Indirection -

P2 o — | | Thing

p3 —— T _

*1 |NewThing

What if | want to move Thing?

10
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Indirection

« Indirection: The ability to reference something using a name,

reference, or container instead of the value itself. A flexible
mapping between a name and a thing allows changing the
thing without notifying holders of the name.

= Adds some work (now have to look up 2 things instead of 1)

= But don’t have to track all uses of name/address (single source!)

Examples:

" Phone system: cell phone number portability
= Domain Name Service (DNS): translation from name to IP address
= Call centers: route calls to available operators, etc.

= Dynamic Host Configuration Protocol (DHCP): local network address
assignment

11
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Indirection in Virtual Memory

Virtual memory

Process 1

Physical memory

mapping

Virtual memory

Process n

+ Each process gets its own private virtual address space
+ Solves the previous problems!

12
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. Qe_(l”\ fondivn
Address Spaces s . [ NI
" =
+ Virtual address space: Set O]}N = 2 V|rtual addr
0 byle
{0,1,2,3, .., N-1} S =Ty, M

+ Physical address space: Set of M = 2™ physical addr
= {0,1,2,3,.. M-1}

+ Every byte in main memory has:
" one physical address (PA)

" zero, one, or more virtual addresses (VAs)

j ( (. wed by many procesie §
hused wek by sne pracess

13



WA/ UNIVERSITY of WASHINGTON L21: Virtual Memory |

Mapping

X/

+ A virtual address (VA) can be mapped to either physical
memory or disk

®" Unused VAs may not have a mapping

As from different processes may map to same location in memory/disk

Process 1’s Virtua
Address Space

hysical
ﬂfl\/lemory

Process 2’s Virtual
Address Space

Disk

D ﬁ “Swap Space”

14
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A System Using Physical Addressing

Main memory

0:
1:
2:
Physical address (PA) 3: w
CPU > 4.
A -
6:
7: )
8:
M-1:

Data (int/float)

+ Used in “simple” systems with (usually) just one process:

" Embedded microcontrollers in devices like cars, elevators, and digital
picture frames

15
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A System Using Virtual Addressing

Main memory

0:
CPU Chip 1:
Virtual address Physical address g
CPU Y s MMU 54 '
0x4100 2 I
Ty ; %
n-bity - b 6:
7: )
8:
Memory Management Unit
M-1

Data (int/float)

+» Physical addresses are completely invisible to programs
= Used in all modern desktops, laptops, servers, smartphones...
" One of the great ideas in computer science

16
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Why Virtual Memory (VM)?

+ Efficient use of limited main memory (RAM)

= Use RAM as a cache for the parts of a virtual address space
- Some non-cached parts stored on disk

- Some (unallocated) non-cached parts stored nowhere

= Keep only active areas of virtual address space in memory
- Transfer data back and forth as needed

X/

+ Simplifies memory management for programmers
= Each process “gets” the same full, private linear address space
+ |solates address spaces (protection)

" One process can’t interfere with another’s memory
- They operate in different address spaces
= User process cannot access privileged information

- Different sections of address spaces have different permissions

17
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VM and the Memory Hierarchy

+ Think of virtual memory as array of N = 2" contiguous bytes

+ Pages of virtual memory are usually stored in physical
memory, but sometimes spill to disk (g p

2

= Pages are another unit of aligned memory (size is F = 2P bytes)

= Each virtual page can be stored in any physical page (no fragmentation!)

ho udsTéA s‘oue /50\()5

Virtual memory Physical memory o

0 =3

0 Empty PPO )

> VP O | Unallocated  , PP 1 g‘l

% VP1]lin mem Empty IS

v in disk ®

oo Unallocated \ / Empty 2

© o

o > PP 2mP-1 'q

© L
-
=
>

VP 2mp-1

“Swap Space”

18
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or: Virtual Memory as DRAM Cache for Disk

+ Think of virtual memory as an array of N = 2™ contiguous
bytes stored on a disk

+ Then physical main memory is used as a cache for the
virtual memory array

" These “cache blocks” are called pages (size is P = 2P bytes)

Virtual memory Physical memory

0

VP O | Unallocated
0

VP 1 | Cached \ Empty PP O
Uncached PP 1

Unallocated Empty
Cached
Uncached Empty

Cached PP 2m-p-1
VP 2np-1 ‘ Uncached | M-

Physical pages (PPs)
cached in DRAM

Virtual pages (VPs)
“stored on disk”
19



WA UNIVERSITY of WASHINGTON L21: Virtual Memory | CSE351, Autumn 2017

Memory Hierarchy: Core 2 Duo Not drawn to scale

SRAM DRAM
Static Random Access Memory Dynamic Random Access Memory
A A
' ~4mp 1! ~8 GB ‘ ~500 GB
L2 Mai -
L1 ain
unified D | S k

> I-cache Memor
a cache y
L1 . o o

Throughput: 16 B/cycle 8 B/cycle 2 B/cycle 1 B/30 cycles
Latency: 3 cycles 14 cycles 100 cycles millions
Miss Penalty Miss Penalty
(latency) (latency)
33x 10,000x

20
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Virtual Memory Desigh Consequences

+» Large page size: typically 4-8 KiB or 2-4 MiB
= Can be up to 1 GiB (for “Big Data” apps on big computers)
" Compared with 64-byte cache blocks

« Fully associative (physicl memory IS single Se+)
= Any virtual page can be placed in any physical page

= Requires a “large” mapping function — different from CPU caches

+ Highly sophisticated, expensive replacement algorithms in OS
" Too complicated and open-ended to be implemented in hardware

% M/rite-bac7<] rather than write-through (feade &y pages)

" Really don’t want to write to disk every time we modify something in
memory

= Some things may never end up on disk (e.g. stack for short-lived process)

21
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Why does VM work on RAM/disk?

+ Avoids disk accesses because of locality

= Same reason that L1 /L2 / L3 caches work

+» The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set

= |f (working set of one process < physical memory):
- Good performance for one process (after compulsory misses)

" If (working sets of all processes > physical memory):

. EThrashi@ Performance meltdown where pages are swapped
between memory and disk continuously (CPU always waiting or
paging)

- This is why your computer can feel faster when you add RAM

22
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Virtual Memory (VM)

>

Overview and motivation

L)

o®

VM as a tool for caching
Address translation

*

/
*

» VM as a tool for memory management

0‘0

VM as a tool for memory protection

23
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Address Translation

How do we perform the virtual
— physical address translation?

Main memory

0:
CPU Chip 1:
Virtual address /\ hysical address g
CPU b MMU \R {PA) > 4:
0x4100 \| / Ox4 c.
A W |
6:
7:
8:
Memory Management Unit
M-1:

Y

CSE351, Autumn 2017

Data (int/float)

24
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Address Translation: Page Tables
VPN width 'n-Pd—>we have prpajej in VA space prye s\ze 1>L’)"‘e}

+» CPU-generated address carLbe split intop: . & p= oy, P bt

- K—\_A_/—\
n-bitaddress: | Virtual Page Number | Page Offset
J\V\O\'ij.f +O Y | lglock hurmber | block O_H‘J /"g)f' “(inej

= Request is Virtual Address (VA), want Physical Address (PA)
= Note that Physical Offset = Virtual Offset (page-aligned)

+ Use lookup table that we call the page table (PT)

= Replace Virtual Page Number (VPN) for Physical Page
Number (PPN) to generate Physical Address

" |Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g. Valid, Dirty, access rights)

" Has an entry for every virtual page — why?
NO \baLku‘o‘For mpr\jS é ' conm be 6\,\\14’[\ r\ﬁ)

25
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Page Table Diagram

Physical memory

(DRAM)
VPN Page Table
Virtual page # (DRAM) VP 1
Valid PPN/Disk Addr / VP2
PTEO: 0 [ 0 null //
PTEL: 1] 1 vP7
V(A\f(}\ —pe2: 2 [ 1 [Q) VP 4
PTE3: 3]0
PTE4: 4] 1 ~ .
o [k {PTES: 5102) _ nul A T~
prE6: 6| O (DA 15k & o4 S~
PTE7: 7] 1 o« "~ TS~
r9e ’I‘O\HQ L‘(Aj 2 en‘h:e]’ \\‘~

= Page tables stored in physical memory -~

" Too big to fit elsewhere — managed by MMU & OS s

+» How many page tables in the system?

" One per process

PP

PPO
PP 1
PP 2
PP 3

Virtual memory
(DRAM/disk)

VP 3

VP 6

26
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Page Table Address Translation

hanged o
Chan )
yd /0\ Covd% xT suircn

CP

Virtual address (VA) /

% Virtual page number (VPN) / Virtual page offset (VPO) n \or}l
[

Page table address Page table

for process 5 Valid PPN

Page table
base register
(PTBR)
|

N\

dedk proe 1 VPop o
folde o VPN ety

Valid bit = 0:
page not in memory <€

( fault)
page fau ! / ‘l’

Physical page number (PPN) / Physical page offset (PPO) m \o{’b'
In most cases, the MMU can Physical address (PA) /

perform this translation
without software assistance

27
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Page Hit

+» Page hit: VM reference is in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
pTEO [0 null ] vwe1 PP O

1 VP 2

Y 1 VP 7 PP2
2 VP4 PP 3
0
0 Virtual memory

— > p1eQ)[ 1 (DRAM/disk)

) N S~ VP 3
Example: Page size =4 KiB=7'"B <= p=I2Lits= 3 hex Jigits pS

® N
. ) : . 4 VP 6
Virtual Addr: OX\QQ?/?E&)E+ P\hys:caIAddr :{Ox 2 Hob

() ven: e @pPpN: 2
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Page Fault

Page fault: VM reference is NOT in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
PTEO [0 null ] vp1 PPO
1 — > VP2
211 o—
VP 7
Byo L /
= > VP 4 PP 3
1 e—
0 null .
0 e S Virtual memory
PTE7 [ 1 N Ss (DRAM/disk)
) . RN EEECE
Example: Page size = 4 KiB O
Provide a virtual address request (in hex) that ‘\A Y-

results in this particular pag\e/falu\lt: sy Fhre

he
Virtual Addr: Ox 3/000 \hest 3&5\'“ (4

\_ J 29
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Page Fault Exception

int af1000];
User writes to memory location int main ()

{
That portion (page) of user’s memory a[500] = 13:
is currently on disk ks
P e—
80483b7: c7 05 10 9d 04 08 0Od movl $0xd (_Ox8049d1§

User code OS Kernel code

exception: w . handle_page_fault:

movil % =5
Create page and
returns load into memory

'

Page fault handler must load page into physical memory
Returns to faulting instruction: mov is executed again!

= Successful on second try
30
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Handling a Page Fault

+ Page miss causes page fault (an exception)

Virtual address

Page Table (DRAM)

CSE351, Autumn 2017

Physical memory

Valid PPN/Disk Addr (DRAM)
PTEO [0 null S VP 1 PP O
1 VP 2
S é VP 7
1 VP 4 PP 3
0 Virtual memory
0 (DRAM/disk)
PTE7 | 1

VP 3

VP 6

31
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Virtual address

Valid PPN/Disk Addr (DRAM)
pTE0 [0 null I
1 — | , VP 2
1 —
VP 7
> 0 e /
1 —= | VP4
0 il "~ Virtual memory
0 =N o (DRAM/disk)
PTE7 [ 1 o~ . e

Page Table (DRAM)

L21: Virtual Memory |

Handling a Page Fault

Page miss causes page fault (an exception) by
+ Page fault handler selects a victim to be evicted (here VP

Physical memory

VP 3

VP 6

CSE351, Autumn 2017

PP O

PP 3

Q) w?re
ack of
&"\r'\'y

32
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Handling a Page Fault

+ Page miss causes page fault (an exception)
+» Page fault handler selects a victim to be evicted (here VP 4)

U\pA ated
Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
pTE0 [0 null ] vp1
1 — > VP 2
1 o—
VP 7
Thvalidated > 0 e
0 null “~ Virtual memory
0 e < (DRAM/disk)
PTE7 [ 1 - |-

VP 4

VP 6

CSE351, Autumn 2017

PP O

PP 3

33
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Handling a Page Fault

+ Page miss causes page fault (an exception)

+ Page fault handler selects a victim to be evicted (here VP 4)

+ Offending instruction is restarted: page hit!

Page Table (DRAM)

CSE351, Autumn 2017

Physical memory

Virtual address Valid PPN/Disk Addr (DRAM)
PTE0 [0 null ] vp1 PP O
/ 1 — : VP 2
hit. o VP 7
g= = — —r3 PP 3
0 e
0 null "~ Virtual memory
0 e S (DRAM/disk)
PTE7 [ 1 o R

VP 4

VP 6

34
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Peer Instruction Question

L)

How many bits wide are the following fields?

. 16 K|B pages =Y kits

. 4§ bltbwrtual addresses n =4 bits &> 256 TiB virfua memory
- 16 G|B physical memory m =4 bits

" Vote at: http://PollEv.com/justinh

Y .
PN = n-p= 24 )Dﬂ_g &~ 2 kges Virtus addcess Spoce
VPN PPN |V P i

(B) 32 18 PPN = M’P = 20 Las <____> 27-° eajgj n P\\\/S\.(Q‘ AJA(QSJ SP“CC

" |

35
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Summary

+ Virtual memory provides:

= Ability to use limited memory (RAM) across multiple
processes

" |llusion of contiguous virtual address space for each process
" Protection and sharing amongst processes

+ Indirection via address mapping by page tables
= Part of memory management unit and stored in memory

= Use virtual page number as index into lookup table that
holds physical page number, disk address, or NULL
(unallocated page)

" On page fault, throw exception and move page from swap
space (disk) to main memory

36



