11/17/2017

L21: Virtual Memory | CSE351, Autumn 2017 L21: Virtual Memory | CSE351, Autumn 2017

Virtual Memory | Administrivia
CSE 351 Autumn 2017

« Homework 4 due tonight
Instructor: -
Justin Hsia « Lab 4 due after Thanksgiving (11/27)

Teaching Assistants:

= Next week’s section: “Virtual section”
Lucas Wotton

Michael Zhang = Worksheet and solutions released like normal
Parker DeWilde = Videos of TAs working through problems will also be
Ryan Wong released

Sam Gehman
Sam Wolfson
Savanna Yee
Vinny Palaniappan

21 Vitul Memory | G351, Autumn 2017 21 Vil Memory | CSE381, Auturn 2017
Roadmap Virtual Memory (VM*)
C: Java:
car *c = malloc(sizeof(car)); | [Car c = new Car(); +» Overview and motivation
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17); o i
e o U e e » VM as a tool for caching
free(c); C-getMPG(); ES i

— = + Address translation
Assembl get_mpg: .
| v L0 - . + VM as a tool for memory management
anguage: e %rsp, %rbp Virtual memory .

« VM as a tool for memory protection
popq %rbp
ret I 0S:
v
Machine 0111010000011000 . s e /i :
coder 100011010000010000000010 =- \/\’ Warning: Virtual memory is pretty complex,
: igggéggﬁﬂg?gigooouln &= ; but crucial for understanding how processes
¥ _ —— work and for debugging performance
Computer
system: \/
= *Not to be confused with “Virtual Machine” which is a whole other thing.
3 4

L21: Virtual Memory | CSE351, Autumn 2017

L21: Virtual Memory |

Memory as we know it so far... is virtual! Problem 1: How Does Everything Fit?
Programs refer to virtual memory addresses OXFF 64-bit virtual addresses can address Physical main memory offers
. - several exabytes a few gigabytes
movq (%rdi),%rax (18,446,744,‘:)73,7(;(9,5\/51,616 bytes) (e.g. 8,58‘2)’,9;4,592 bytes)

= Conceptually memory is just a very large array of bytes

= System provides private address space to each process

+ Allocation: Compiler and run-time system
= Where different program objects should be stored ?
= All allocation within single virtual address space

(Not to scale; physical memory would be smaller
But than the period at the end of this sentence compared
to the virtual address space.)

= We probably don’t have 2" bytes of physical memory
= We certainly don’t have 2" bytes of physical memory

for every process 1 virtual address space per process,
= Processes should not interfere with one another 0x00----0 with many processes...

« Except in certain cases where they want to share code or data

11/17/2017

L21: Virtual Memory | CSE351, Autumn 2017 L21: Virtual Memory | CSE351, Autumn 2017

Problem 2: Memory Management Problem 3: How To Protect
Physical main memory
Physical main memory Process i
We have multiple h N
processes: Each process has... Process j
Pra 1
Process 3 X . t:]:)flp: What goes
Process n .data where? Problem 4: How To Share?

Physical main memory

Process i \
Process j /

L21: Virtual Memory | CSE351, Autumn 2017

L21: Virtual Memory | CSE351, Autumn 2017

How can we solve these problems? Indirection
1) Fitting a huge address space into a tiny physical + “Any problem in computer science can be solved by adding
memory another level of indirection.” - pavid Wheeler, inventor of the subroutine

2) Managing the address spaces of multiple processes

3) Protecting processes from stepping on each other’s + Without Indirection
memory

4) Allowing processes to share common parts of
memory + With Indirection

T I:lNewThing

What if | want to move Thing?

L21: Virtual Memory | CSE351, Autumn 2017

L21: Virtual Memory | CSESS1, Autumn 2017

Indirection Indirection in Virtual Memory

Virtual memory

- Indirection: The ability to reference something using a name,
reference, or container instead of the value itself. A flexible
mapping between a name and a thing allows changing the Process 1
thing without notifying holders of the name. Physical memory
= Adds some work (now have to look up 2 things instead of 1)
= But don’t have to track all uses of name/address (single source!)

mapping

3 eessee

- Examples: Virtual memory
= Phone system: cell phone number portability
= Domain Name Service (DNS): translation from name to IP address Process n
= Call centers: route calls to available operators, etc.

= Dynamic Host Configuration Protocol (DHCP): local network address
assignment

+ Each process gets its own private virtual address space
« Solves the previous problems!

L21: Virtual Memory | CSE351, Autumn 2017

Address Spaces

+ Virtual address space: Set of N = 2™ virtual addr
" {0,1,2,3,..,N-1}

« Physical address space: Set of M = 2™ physical addr
= {0,1,2,3,.., M1}

+ Every byte in main memory has:
® one physical address (PA)
= zero, one, or more virtual addresses (VAs)

L21: Virtual Memory | CSE351, Autumn 2017

A System Using Physical Addressing

Main memory

Physical address (PA)
Ox4

CPU

YU RONEQ

Data (int/float)

Used in “simple” systems with (usually) just one process:

= Embedded microcontrollers in devices like cars, elevators, and digital
picture frames

11/17/2017

L21: Virtual Memory | CSE351, Autumn 2017

Mapping

- Avirtual address (VA) can be mapped to either physical
memory or disk
= Unused VAs may not have a mapping
= VAs from different processes may map to same location in memory/disk

Process 1’s Virtual
Address Space

Physical
Memory

Process 2’s Virtual

Address Space
“Swap Space”

L21: Virtual Memory | CSE351, Autumn 2017

Why Virtual Memory (VM)?

Efficient use of limited main memory (RAM)
= Use RAM as a cache for the parts of a virtual address space
« Some non-cached parts stored on disk
« Some (unallocated) non-cached parts stored nowhere
= Keep only active areas of virtual address space in memory
« Transfer data back and forth as needed
+ Simplifies memory management for programmers
= Each process “gets” the same full, private linear address space
Isolates address spaces (protection)
= One process can't interfere with another’s memory
- They operate in different address spaces
= User process cannot access privileged information
- Different sections of address spaces have different permissions

L21: Virtual Memory | CSE351, Autumn 2017

A System Using Virtual Addressing

Main memory

CPU Chip

Virtual address Physical address

(VA)
v 0x4100 MMU 0Ox4

YU RIRNRQ

Memory Management Unit

Data (int/float)

Physical addresses are completely invisible to programs
= Used in all modern desktops, laptops, servers, smartphones...
= One of the great ideas in computer science

L21: Virtual Memory |

VM and the Memory Hierarchy

> Think of virtual memory as array of N = 2" contiguous bytes
Pages of virtual memory are usually stored in physical
memory, but sometimes spill to disk
= Pages are another unit of aligned memory (size is P = 27 bytes)
= Each virtual page can be stored in any physical page (no fragmentation!)

Virtual memory Physical memory

Empty _|PPO

VP 0 [Unallocated . PP 1
VP1

Empty

Unallocated Empty

dd) sa8ed |eaisAyd

PP 2me-1

(s

Virtual pages (VP's)

VP 21

“Swap Space”

L21: Virtual Memory | CSE351, Autumn 2017

or: Virtual Memory as DRAM Cache for Disk

+ Think of virtual memory as an array of N = 2" contiguous
bytes stored on a disk

+ Then physical main memory is used as a cache for the
virtual memory array
= These “cache blocks” are called pages (size is P = 27 bytes)

Virtual memory Physical memory

VP 0 | Unallocated

VP 1| Cached Empty | PPO
e |] PP1

Unallocated Empty
Cached
Uncached Empty
Cached pp 2me.1

M1

vp2ro.1| | Uncached

N1

Virtual pages (VPs) Physical pages (PPs)
“stored on disk” cached in DRAM

L21: Virtual Memory | CSE351, Autumn 2017

Virtual Memory Designh Consequences

+ Large page size: typically 4-8 KiB or 2-4 MiB
= Can be up to 1 GiB (for “Big Data” apps on big computers)
® Compared with 64-byte cache blocks

- Fully associative
= Any virtual page can be placed in any physical page
= Requires a “large” mapping function — different from CPU caches

+ Highly sophisticated, expensive replacement algorithms in OS
= Too complicated and open-ended to be implemented in hardware

Write-back rather than write-through

= Really don’t want to write to disk every time we modify something in
memory

= Some things may never end up on disk (e.g. stack for short-lived process)

11/17/2017

L21: Virtual Memory | CSE351, Autumn 2017

Memory Hierarchy: Core 2 Duo Not drawn to scale

SRAM DRAM
Static Random Access Memory Dynamic Random Access Memory
A |
f ~ame_ VT ~8 GB ! ~500 GB

5] L2 Main .
I-cache unified D IS k

’ Memaor

u cache Y

328 . ! a
. ¥
D-cache o ¥7" -

CPU | Reg
Throughput: 16 B/cycle 8 B/cycte 2 B/cycle 18/30 cycles
Latency: 3 cycles 14 cycles 100 cycles millions
Miss Penalty Miss Penalty
(latency) (latency)
33x 10,000x

L21: Virtual Memory | CSE351, Autumn 2017

Virtual Memory (VM)

« Overview and motivation

> VM as a tool for caching

+ Address translation

« VM as a tool for memory management
« VM as a tool for memory protection

L21: Virtual Memory |

Why does VM work on RAM/disk?

« Avoids disk accesses because of locality
= Same reason that L1 /L2 / L3 caches work

« The set of virtual pages that a program is “actively”
accessing at any point in time is called its working set

= If (working set of one process < physical memory):
- Good performance for one process (after compulsory misses)

= If (working sets of all processes > physical memory):

« Thrashing: Performance meltdown where pages are swapped
between memory and disk continuously (CPU always waiting or
paging)

+ This is why your computer can feel faster when you add RAM

L21: Virtual Memory | CSESS1, Autumn 2017

Address Translation

How do we perform the virtual
— physical address translation?

Main memory

CPU Chip

Virtual address Physical address

(VA)
v 0x4100 MMU 0x4

YR RNRQ

Memory Management Unit

Data (int/float)

L21: Virtual Memory | CSE351, Autumn 2017

Address Translation: Page Tables

=« CPU-generated address can be split into:

n-bit address: [Virtual Page Number | Page Offset |

® Request is Virtual Address (VA), want Physical Address (PA)
= Note that Physical Offset = Virtual Offset (page-aligned)

+ Use lookup table that we call the page table (PT)

= Replace Virtual Page Number (VPN) for Physical Page
Number (PPN) to generate Physical Address

® Index PT using VPN: page table entry (PTE) stores the PPN
plus management bits (e.g. Valid, Dirty, access rights)

® Has an entry for every virtual page — why?

L21: Virtual Memory | CSE351, Autumn 2017

11/17/2017

L21: Virtual Memory | CSE351, Autumn 2017

Page Table Diagram

Physical memory

(DRAM)
Page Table
Virtual page # (DRAM) VP1 PPO
\4 Valid_PPN/Disk Addr % VP2 PP 1
PTEO: 0] 0 null
PTEL 11 ve7 FP2
PrE2: 2|1 el VP4 PP3
PTE3: 3|0 .
prEa: 4|1 << Virtual memory
pres: 5[0 null AT (DRAM/disk)
PTE6: 6| 0 . RSN
PTE7: 7|1 TS AR

S~ h VP3

Page tables stored in physical memory ~~<_

= Too big to fit elsewhere — managed by MMU & 0OS T e

How many page tables in the system?
= One per process

Page Table Address Translation

cpPu
Virtual address (VA)
Page table
base register —| _ Virtual page number (vPN) | Virtual page offset (VPO)
(PTBR)
Page table address Page table
for process Valid PPN
L)
Valid bit = 0:
page not in memory €,
(page fault)
Physical page number (PPN) | _Physical page offset (PPO)

In most cases, the MMU can Physical address (PA)
perform this translation
without software assistance

L21: Virtual Memory | CSE351, Autumn 2017

Page Hit

« Page hit: VM reference is in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid_PPN/Disk Addr (DRAM)
PTEO| O null VP 1 PP O
1 | VP2
1 — |
VP7
0 o /
1 5 VP4 PP3
0 null Ny
0 o ~o Virtual memory
PTE7 [1 — N (DRAM/disk)

Example: Page size = 4 KiB

Virtual Addr: Physical Addr: I:I ™ VP6

L21: Virtual Memory | CSE351, Autumn 2017

Page Fault

+ Page fault: VM reference is NOT in physical memory

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
pre0 [0 null [VP 1 PPO
1 0—’/_/» VP2
(1) :'/' VP7
1 = VP4 PP3
0 null Ny
0 o S Virtual memory
PTE7 [1 LN (DRAM/disk)
. .
. VP3
Example: Page size = 4 KiB AN
Provide a virtual address request (in hex) that sy VP e

results in this particular page fault:

L21: Virtual Memory |

Page Fault Exception

int a[1000];

User writes to memory location ;"t main O

That portion (page) of user’s memory a[500] = 13;

is currently on disk

[80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10 |
User code OS Kernel code

novl I exception: page fault handle_page_fault:
Create page and
returns load into memory

Page fault handler must load page into physical memory

Returns to faulting instruction: mov is executed again!
= Successful on second try

L21: Virtual Memory | CSE351, Autumn 2017

Handling a Page Fault

Page miss causes page fault (an exception)

Page Table (DRAM) Physical memory
Virtual address Valid PPN/Disk Addr (DRAM)
p1e0 [0 nul | VP 1 PPO
1 — | VP2
(1) :'/' vP7
T < VP4 PP3
0 null S~ b Virtual memory
0 . ~ (DRAM/disk)
PTE7 [1 Ly N
Y N VP 3
N VP 6

31

11/17/2017

L21: Virtual Memory | CSE351, Autumn 2017

Handling a Page Fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

Page Table (DRAM) Physical memory
Virtual address Valid_PPN/Disk Addr (DRAM)
pE0 [0 null | —] w1 PPO
1 — | — VP2
é :'/' VP 7
1 < VP4 PP3
0 null s < Virtual memory
0 - ~ (DRAM/disk)
PTE7 [1 o« - S N
N N VP3

L21: Virtual Memory | CSE351, Autumn 2017

Handling a Page Fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)

Page Table (DRAM) Physical memory
Virtual address Valid_PPN/Disk Addr (DRAM)

PTEO | O null VP 1 PPO
1 — 1 - w2
1 — | vP7
o 3 VP3 PP3
0 null ~~ Virtual memory
0 . < (DRAM/disk)

PTE7 [1 Ll S

33

L21: Virtual Memory |

Handling a Page Fault

Page miss causes page fault (an exception)
Page fault handler selects a victim to be evicted (here VP 4)
Offending instruction is restarted: page hit!

Page Table (DRAM) Physical memory
Virtual address Valid_PPN/Disk Addr (DRAM)

PTEO [0 null vP1 PPO
1 e J——— VP2
i C— vP7
0 a VP 3 PP3
0 null ~~ Virtual memory
0 . < (DRAM/disk)

PTE7 [1 Cal S AN

L21: Virtual Memory | CSE351, Autumn 2017

Peer Instruction Question

+ How many bits wide are the following fields?
= 16 KiB pages
® 48-bit virtual addresses
® 16 GiB physical memory
= Vote at: http://PollEv.com/justinh

VPN PPN

() 32 18

L21: Virtual Memory |

Summary

« Virtual memory provides:
= Ability to use limited memory (RAM) across multiple
processes
= |llusion of contiguous virtual address space for each process
= Protection and sharing amongst processes

« Indirection via address mapping by page tables
® Part of memory management unit and stored in memory
= Use virtual page number as index into lookup table that
holds physical page number, disk address, or NULL
(unallocated page)
= On page fault, throw exception and move page from swap
space (disk) to main memory

