11/15/2017

120: Processes CSE351, Autumn 2017 120; Processes CSE351, Autumn 2017

Processes Administrivia
CSE 351 Autumn 2017

« Homework 4 due Friday (11/17)
Instructor:

Justin Hsia « Lab 4 due after Thanksgiving (11/27)

= Parts of this lab are new, so don’t hesitate to ask if anything

Teaching Assistants: is unclear or seem buggy!

Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong
Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan

120; Processes CSE351, Autumn 2017 120; Processes

CSE351, Autumn 2017

Processes What is a process? It’s an illusion!
+ Processes and context switching Process 1 =
lemory
« Creating new processes
= fork(), exec*(), andwait() Stack
« Zombies Heap
Data
. Code
CPU

Disk

Chrome.exe

CSE351, Autumn 2017

What is a process? Processes

« Another abstraction in our computer system « A process is an instance of a running program
® Provided by the OS ® One of the most profound ideas in computer science
= OS uses a data structure to represent each process = Not the same as “program” or “processor”

® Maintains the interface between the program and the

underlying hardware (CPU + memory) = Process provides each program with two key

. , abstractions: e
+ What do processes have to do with exceptional * Logical control flow Stack
contro/ﬂow? « Each program seems to have exclusive use of the CPU g‘:js
= Exceptional control flow is the mechanism the OS uses to + Provided by kernel mechanism called context switching Code
enable multiple processes to run on the same system ® Private address space
CcPU

» What is the difference between: « Each program seems to have exclusive use of main memory -
« Provided by kernel mechanism called virtual memory

= A processor? A program? A process?

What is a process?

51, Autumn 2017

It’s an illusion!

Computer

Process 2

“Memory”

Process 1

“Memory”

tiesp

Process 3

“Memory”
Stack

Process 4

“Memory”

[stex]

Disk

/Applications/

Chrome.exe l [Slack.exe l I PowerPoint.exe

Multiprocessing: The lllusion

Memory Memory
Stack Stack
Heap Heap
Data Data e
Code Code
CPU CPU
| Registers | | Registers |

Memory

Stack
Heap
Data
Code

CPU

CSE351, Autumn 2017

« Computer runs many processes simultaneously
= Applications for one or more users

- Web browsers, email clients, editors, ...

= Background tasks
« Monitoring network & I/O devices

N .
Multiprocessing
Memory
Stack Stack Stack
Heap Heap Heap
Data Data .ee Data
Code 3 Code Code
Saved Saved Saved
registers 5 registers registers
VAN
11
CPU

:

« Context switch
1) Save current registers in memory

What is a process?

It’s an illusion!

11/15/2017

Computer

Process 2

“Memory”

[Hean |

[om |

Operating
System

Process 3

“Memory”

‘
[Coaa |

Process 1

“Memory”

Hesp

Process 4

Disk

/Applications/

Chrome.exe] ’ Slack.exe l [PowerPoint.exe

Multiprocessing: The Reality

5

memory

Memory
Stack Stack Stack
Heap Heap Heap
Data Data wee Data
Code Code Code
Saved Saved Saved
registers registers registers
CPU

+ Single processor executes multiple processes concurrently
= Process executions interleaved, CPU runs one at a time
= Address spaces managed by virtual memory system (later in course)

= Execution context (register values, stack, ...) for other processes saved in

:

. .
Multiprocessing
Stack Stack
Heap Heap
Data wee Data
Code Code
Saved Saved Saved
registers registers B registers
CPU

« Context switch
1) Save current registers in memory
2) Schedule next process for execution

120: Processes CSE351, Autumn 2017

Multiprocessing
Memor
Stack Stack Stack
Heap Heap Heap
Data Data .. Data
Code 5 Code 3 Code
Saved Saved Saved
registers registers | : registers
* > g

CPU

> Context switch
1) Save current registers in memory
2) Schedule next process for execution
3) Load saved registers and switch address space

11/15/2017

120; Processes CSE351, Autumn 2017

Multiprocessing: The (Modern) Reality

Memory

Stack
Heap
Data
Code

Multicore processors
Multiple CPUs (“cores”) on single chip

Share main memory (and some of the
caches)

Each can execute a separate process
- Kernel schedules processes to cores
- Still constantly swapping processes

120; Processes CSE351, Autumn 2017

Assume only one CPU

Concurrent Processes

« Each process is a logical control flow

« Two processes run concurrently (are concurrent) if
their instruction executions (flows) overlap in time
= Otherwise, they are sequential

« Example: (running on single core)
= Concurrent: A&B,A&C
" Sequential: B& C Process A Process B Process C
I
time J_ |

L

Assume only one CPU

User’s View of Concurrency

« Control flows for concurrent processes are physically
disjoint in time
= CPU only executes instructions for one process at a time

« However, the user can think of concurrent processes
as executing at the same time, in parallel

Process A Process B Process C Process A Process B Process C

1 User View 1

time

CSE351, Autumn 2017

Assume only one CPU

Context Switching

- Processes are managed by a shared chunk of OS code
called the kernel
= The kernel is not a separate process, but rather runs as part of a user

process
" Mamory

Kemal vi a0 1o

XFFFE FEFF FFEF l u;m;@! =t uses coda
+ In x86-64 Linux: craatod at rn timal R
T ersp (stack pontes

= Same address in each process A
refers to same shared Momory mappod region for

. o i
memory location SRRy

.

Fun-tima hoag:
{croated af run Hime by salle<)

Roadfwrite data
, Loadod from the
aicutabio

FRead-only code and data

CSESS1, Autumn 2017

Assume only one CPU

Context Switching

Processes are managed by a shared chunk of OS code
called the kernel

= The kernel is not a separate process, but rather runs as part of a user
process

. Context switch passes control flow from one process to
another and is performed using kernel code

Process A Process B

user code

kernel code } context switch
time
user code

kernel code } context switch

user code

120: Processes CSE351, Autumn 2017

Processes

« Processes and context switching

« Creating new processes
= fork(), exec*(),andwait()
« Zombies

11/15/2017

120; Processes CSE351, Aut

Creating New Processes & Programs

Process 2

Process 1
fork()
“cPy”
exec*()

Chrome.exe

120; Processes CSE351, Autumn 2017

Creating New Processes & Programs

+« fork-exec model (Linux):
= fork() creates a copy of the current process

= exec*() replaces the current process’ code and address
space with the code for a different program
- Family: execv, execl, execve, execle, execvp, execlp

= fork() and execve() are system calls

« Other system calls for process management:
® getpid()
= exit()
= wait(Q),waitpidQ

umn 2017

Fork: Creating New Processes

= pid_t fork(void)
= Creates a new “child” process that is identical to the calling “parent”
process, including all state (memory, registers, etc.)
= Returns O to the child process
= Returns child’s process ID (PID) to the parent process

» Child is almost identical to parent:

Child gets an identical pid_t pid = forkQ;

(but separate) copy of the | jf (pid == 0) {

parent’s virtual address printf('hello from child\n");
space } else {

Child has a different PID
than the parent

printf(hello from parent\n™);

+ Fork is unique (and often confusing) because it is called once
but returns “twice”

CSE351, Autumn 2017

Understanding fork

Process X (parent) Process Y (child)

{ 4 {
printf(*hello from child\n™); printf(hello from child\n™);

} else { } else {
printf("hello from parent\n™); printf('hello from parent\n™);

Understanding fork

Process X (parent) Process Y (child)

. pid_t pid = fork(); . pid_t pid = fork();
if (pid == 0) { if (pid == 0) {
printf("hello from child\n™); printf(hello from child\n™);
¥ else { } else {
printf("hello from parent\n™); printf('hello from parent\n™)

id_t pid = forkQ:;
» it (pid == 0) {
printf(’hello from child\n™); printf(hello from child\n™);

} else { } else {
printf(’hello from parent\n™); printf(hello from parent\n')

id_t pid = forkQ;
» ’:; z,fiﬁ = 0)02 ©

120: Processes CSE351, Autumn 2017

Understanding fork
Process X (parent) Process Y (child)
» pid_t pid = fork(Q; forkQ:
it (pid == 0) { 0) {
printf('hello from child\n™); printf('hello from child\n™);

} else { } else {

printf(*hello from parent\n™); printf("hello from parent\n™);

forkQ);
D {

o

‘ printfChello from child\n™);
T else {
printf("hello from parent\n);

printf("hello from
} else {
» printf(hello from parent\n™);
3

hello from parent hello from child

Which one appears first?

11/15/2017

120; Processes CSE351, Autumn 2017

Fork Example

void fork1(Q) {

int x = 1;
pid_t pid = fork(Q;
if (pid == 0)
printf("Child has x = %d\n", ++Xx);
else

printf(’Parent has x = %d\n", --x);
printf(*'Bye from process %d with x = %d\n", getpid(), x);

3

Both processes continue/start execution after fork

= Child starts at instruction after the call to fork (storing into pid)
> Can't predict execution order of parent and child

Both processes start with x=1

= Subsequent changes to X are independent

- Shared open files: stdout is the same in both parent and child

120; Processes CSE351, Autumn 2017

Modeling Tork with Process Graphs

« A process graph is a useful tool for capturing the partial
ordering of statements in a concurrent program

Each vertex is the execution of a statement

= a - b means a happens before b

Edges can be labeled with current value of variables
printf vertices can be labeled with output
Each graph begins with a vertex with no inedges

> Any topological sort of the graph corresponds to a feasible
total ordering
= Total ordering of vertices where all edges point from left to right

CSE351, Autumn 2017

Fork Example: Possible Output

void fork1() {

int x = 1;
pid_t pid = forkQ;
if (pid == 0)
printf("'Child has x = %d\n", ++x);
else

printf(C'Parent has x = %d\n", --x);
printf('Bye from process %d with x = %d\n", getpid(), X);

3
x=2 Child Bye
++X printf printf
x=0 Parent Bye
x=1 fork -=x _ printf printf

CSESS1, Autumn 2017

Peer Instruction Question

« Are the following sequences of outputs possible?

= Vote at http://PollEv.com/justinh Seq 1: Seq 2:
void nestedfork() { LO LO
printf('LO\n™);

o (forkQ) == 0) { L1 Bye
printf("L1\n"); Bye L1
it (forkQ == 0) {

' p?:ntf("LZ\n"); Bye L2

y Bye Bye

printf('Bye\n"); L2 Bye

3} A.
B. No Yes
C. Yes No
D. Yes Yes

We're lost...

m

Fork-Exec

Note: the return values of fork and
exec™ should be checked for errors

« fork-exec model:
= fork() creates a copy of the current process

= exec*() replaces the current process’ code and address
space with the code for a different program
« Whole family of exec calls — see exec(3) and execve(2)

// Example arguments: path="/usr/bin/
// argv[0]="/usr/bin/ls", argv[1l]="-ahl", argv[2]=NULL
void fork_exec(char *path, char *argv[]) {
pid_t pid = forkQ;
if (pid 1= 0) {
printf(*Parent: created a child %d\n", pid);
} else {
printf(C'Child: about to exec a new program\n');
execv(path, argv);

3
printf("This line printed by parent only!\n™);

120: Processes CSE351, Autumn 2017

Exec-ing a new program

Stack
Very high-level diagram of what
happens when you run the
Heap command “Is” in a Linux shell:
Data « This is the loading part of CALL!
Code: /usr/bin/bash
parent 1 fork()\ child
Stack
Stack
exec*()
—
Heap
Data Data
Code: /usr/bin/bash Code: /usr/bin/ls

31

11/15/2017

120; Processes CSE351, Autumn 2017

This is extra

execve Example (non-testable)

material
Execute “/usr/bin/ls —I l1ab4” in child process using current
environment:

myargv[argc] = NULL
(argc == 3) myargv[2] +—> “lab4”
myargv[1] +— “-1”
myargv[0] +—> “/usr/bin/ls”
myargv
envp[n] = NULL
envp[n-1] +—> “PWD=/homes/iws/jhsia”
environ envp[O0] +—> “USER=jhsia”

if ((pid = fork(Q)) == 0) { /* Child runs program */
it (execve(myargv[0], myargv, environ) < 0) {
printf("%s: Command not found.\n", myargv[0]);
exit(l);
3
3

Run the printenv command in a Linux shell to see your own environment variables

32

CSE351, Autumn 2017

120; Processes CSE351, Autumn 2017

Structure of Null-terminated Bottom of stack
environment variable strings -
the StaCk When Null-terminated
a hew program __,| command-line arg strings
starts ‘

envp[n] == NULL
envp[n-1] | environ
_| (global var)

envp[0] C =
argv[argc] = NULL envp
argv[argc-1] (in %rdx)

e arg.\./'[o]

gv
(in%rs
argc Stack frame for
i i libc_start_main
(in %rdi) = st Top of stack

Future stack frame for
(non-testable) main

material

This is extra

33

exit: Ending a process

« void exit(int status)

= Exits a process
« Status code: 0is used for a normal exit, nonzero for abnormal exit

CSE351, Autumn 2017

CSESS1, Autumn 2017

Processes

« Processes and context switching

« Creating new processes
= fork(), exec*(), andwait()

« Zombies

Zombies

- When a process terminates, it still consumes system resources
® Various tables maintained by OS
= (Called a “zombie” (a living corpse, half alive and half dead)

+ Reaping is performed by parent on terminated child

® Parent is given exit status information and kernel then deletes zombie
child process

> What if parent doesn’t reap?
= [If any parent terminates without reaping a child, then the orphaned
child will be reaped by init process (pid == 1)
- Note: on more recent Linux systems, init has been renamed systemd

= In long-running processes (e.g. shells, servers) we need explicit reaping

120: Processes CSE351, Autumn 2017

wait: Synchronizing with Children

« Int wait(int *child_status)

= Suspends current process (i.e. the parent) until one of its
children terminates

= Return value is the PID of the child process that terminated
« On successful return, the child process is reaped

= |f child_status !'=NULL, then the *chi ld_status
value indicates why the child process terminated
« Special macros for interpreting this status — see man wait(2)

« Note: If parent process has multiple children, wait
will return when any of the children terminates
= waitpid can be used to wait on a specific child process

wait: Synchronizing with Children

void fork wait(Q) {
int child_status;

if (fork() == 0) {

exit(0);
} else {

wait(&child_status);

3
printf(Bye\n™);

printf("HC: hello from child\n™);

printf(""HP: hello from parent\n™);

printf('CT: child has terminated\n™);

3 forks.c
HC exit
prantf Feasible output: Infeasible output:
HC HP
CcT HP CcT
HP Bye cT Bye
fork printf wait printf Bye HC

11/15/2017

CSE351, Autumn 2017

120; Processes

CSE351, Autumn 2017

120; Processes CSE351, Autumn 2017

void fork7Q) {
if (forkQ) == 0) {

Example: Zombie

/* Child */
printf("Terminating Child, PID = %d\n",
getpid());
exit(0);
3} else {
printf("Running Parent, PID = %d\n",
getpid());

linux> ./forks 7 &
[1] 6639

while (1); /* Infinite loop */

Child

void fork8() {
Example: if (forkQ == 0) {
. . /% Child =/
- printf("Running Child, PID = %d\n",
Non-terminating Ruming ¢

while (1); /7* Infi

3} else {

printf("Terminating Parent, PID = %d\n",

getpid());
exit(0);

te loop */

Running Parent, PID = 6639

forks.c

3 forks.c

Terminating Child, PID = 6640

linux>

./forks 8

linux> ps

PID TTY

6585 ttyp9 00:
6639 ttyp9 00:
6640 ttyp9 00:

6641 ttyp9 00:
linux> kill 6639
1 Terminated
linux> ps
PID TTY

TIME
00:00
00:03
00:00
00:00

TIME

CMD

tcsh

forks

forks <defunct>
ps

CMD

ps shows child process as
“defunct”

Killing parent allows child to be
reaped by init

linux> ps
PID TTY
6585 ttyp9
6676 ttyp9
6677 ttyp9
Linux> kill
nux> ps

Terminating Parent, PID = 6675
Running Child, P = 6676

TIME CMD
00: 00 tcsh
0 forks
00:00: ps

+ Child process still active even
though parent has terminated

Must kill explicitly, or else will
keep running indefinitely

6585 ttyp9 :00:00 tcsh
6642 ttyp9 :00:00 ps

PID TTY CMD
6585 ttyp9 :00: tcsh
6678 ttyp9 :00: ps

L20: Processes

L20: Processes CSESS1, Autumn 2017

Process Management Summary

Fork makes two copies of the same process (parent & child)
= Returns different values to the two processes
exec™ replaces current process from file (new program)
® Two-process program:
« First fork()
« if (pid == 0) { /* child code */} else { /* parent code */}
= Two different programs:
« First fork()
- if (pid == 0) { execv(...) } else { /* parent code */}

> wailtorwaitpid used to synchronize parent/child execution
and to reap child process

a1

Summary

+ Processes
= At any given time, system has multiple active processes

® On aone-CPU system, only one can execute at a time, but
each process appears to have total control of the processor

= OS periodically “context switches” between active processes
+ Implemented using exceptional control flow
=« Process management
= fork: one call, two returns
= execve: one call, usually no return
= waitorwaitpid: synchronization
= exit: onecall, noreturn

120: Processes CSE351, Autumn 2017

BONUS SLIDES

Detailed examples:

« Consecutive forks
« wait() example
« waitpid() example

a3

11/15/2017

120; Processes CSE351, Autumn 2017

Example: Two consecutive Torks

Bye

m——
void fork2() { printf
printf(*'LO\n"); L1 AEXG
fork(Q); printf fork printf
printf("'L1\n™); Bye
forkQ; [printf
printf(*'Bye\n");
¥ LO L1 Bye

120; Processes CSE351, Autumn 2017

Example: Three consecutive forks

+ Both parent and child can continue forking

void fork3(Q) { Bye
printf('LO\N"™); L2 | Bye
fork(}é) Bye
printf('L1\n"); 11 |2 1_5
forkQ; v
printf("L2\n"); Y
fork(); L2 | Bye
printf('Bye\n"); Bye

} Lo |L1|L2 | Bye

a5

printf fork printf fork printf

Feasible output: Infeasible output:
Lo Lo

L1 Bye

Bye L1

Bye Bye

L1 L1

Bye Bye

Bye Bye

CSE351, Autumn 2017

wait() Example

+ If multiple children completed, will take in arbitrary order
+ Can use macros WIFEXITED and WEXITSTATUS to get

information about exit status

CSE351, Autumn 2017

waitpid(): Waiting for a Specific Process

pid_t waitpid(pid_tpid, inté&status, intoptions)
= suspends current process until specific process terminates

® various options (that we won't talk about)

void fork11(Q) {
pid_t pid[N];
int i;
int child_status;
for (i = 0; 1 < N; i++)
if ((pid[i] = forkQ)) == 0)
exit(100+i /* Child */
;i) {
pid_t wpid = waitpid(pid[i], &child_status, 0);
if (WIFEXITED(child_status))
printf("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf('Child %d terminated abnormally\n", wpid);

void fork10Q) {
pid_t pid[N];
int i;
int child_status;
for (i = 0; i < N; i++)
if ((pid[i] = forkQ) == 0)
exit(100+i); /* Child */
for (i = 0; i <N; i++) {
pid_t wpid = wait(&child_status);
if (WIFEXITED(child_status))
printf('Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS(child_status));

else
printf(’Child %d terminated abnormally\n™”, wpid);

a7

