Caches III

CSE 351 Autumn 2017

Instructor:

Justin Hsia

Teaching Assistants:

Lucas Wotton

Michael Zhang

Parker DeWilde

Ryan Wong

Sam Gehman

Sam Wolfson

Savanna Yee

Vinny Palaniappan

Administrivia

- Midterm regrade requests due end of tonight
- Lab 3 due Friday
- * HW 4 is released, due next Friday (11/17)
- No lecture on Friday Veteran's Day!

Making memory accesses fast!

- Cache basics
- Principle of locality
- Memory hierarchies
- Cache organization
 - Direct-mapped (sets; index + tag)
 - Associativity (ways)
 - Replacement policy
 - Handling writes
- Program optimizations that consider caches

Associativity

- What if we could store data in any place in the cache?
 - More complicated hardware = more power consumed, slower
- So we combine the two ideas:
 - Each address maps to exactly one set
 - Each set can store block in more than one way

Cache Organization (3)

Note: The textbook uses "b" for offset bits

- \star Associativity (E): # of ways for each set
 - Such a cache is called an "E-way set associative cache"
 - We now index into cache sets, of which there are C/K/E
 - Use lowest $\log_2(C/K/E) = s$ bits of block address
 - <u>Direct-mapped</u>: E = 1, so $s = \log_2(C/K)$ as we saw previously
 - Fully associative: E = C/K, so s = 0 bits

Example Placement

block size: 16 B
capacity: 8 blocks
address: 16 bits

- ❖ Where would data from address 0x1833 be placed?
 - Binary: 0b 0001 1000 0011 0011

t = m - s - k $s = \log_2(C/K/E)$ $k = \log_2(K)$ m-bit address: Tag (t) Index (s) Offset (k)

s = ?
Direct-mapped

Set	Tag	Data
0		
1		
2		
3		
4		
2 3 4 5 6		
6		
7		

s = ?2-way set associative

Set	Tag	Data
0		
1		
2		
3		

s = ?4-way set associative

Set	Tag	Data
0		
1		

Block Replacement

- Any empty block in the correct set may be used to store block
- If there are no empty blocks, which one should we replace?
 - No choice for direct-mapped caches
 - Caches typically use something close to least recently used (LRU)
 (hardware usually implements "not most recently used")

Direct-mapped

Set	Tag	Data
0		
1		
2		
3		
4		
2 3 4 5 6		
6		
7		

2-way set associative

Set	Tag	Data
0		
1		
2		
3		

4-way set associative

Set	Tag	Data
0		
1		

Peer Instruction Question

- We have a cache of size 2 KiB with block size of 128 B. If our cache has 2 sets, what is its associativity?
 - Vote at http://PollEv.com/justinh
 - A. 2
 - B. 4
 - C. 8
 - D. 16
 - E. We're lost...
- If addresses are 16 bits wide, how wide is the Tag field?

General Cache Organization (S, E, K)

Notation Review

- We just introduced a lot of new variable names!
 - Please be mindful of block size notation when you look at past exam questions or are watching videos

Variable	This Quarter	Formulas
Block size	K (B in book)	
Cache size	С	$M = 2^m \leftrightarrow m = \log_2 M$
Associativity	E	$S = 2^{s} \leftrightarrow \mathbf{s} = \log_2 S$
Number of Sets	S	$K = 2^{k} \leftrightarrow k = \log_2 K$
Address space	М	$C = K \times E \times S$
Address width	m	$\mathbf{s} = \log_2(C/K/E)$
Tag field width	t	m = t + s + k
Index field width	S	
Offset field width	\boldsymbol{k} (\boldsymbol{b} in book)	

Locate set

Check if any line in set

Cache Read

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set

Block Size K = 8 B

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set

Block Size K = 8 B

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set

Block Size K = 8 B

No match? Then old line gets evicted and replaced

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set Address of short int: Block Size K = 8 B**t** bits 0...01 100 5 tag find set 3 5 0 1 2 3 0 4 6 7 tag 5 6 3 tag tag 5 6 0 tag

Example: Set-Associative Cache (E = 2)

Example: Set-Associative Cache (E = 2)

No match?

- One line in set is selected for eviction and replacement
- Replacement policies: random, least recently used (LRU), ...

Types of Cache Misses: 3 C's!

- Compulsory (cold) miss
 - Occurs on first access to a block
- Conflict miss
 - Conflict misses occur when the cache is large enough, but multiple data objects all map to the same slot
 - e.g. referencing blocks 0, 8, 0, 8, ... could miss every time
 - Direct-mapped caches have more conflict misses than E-way set-associative (where E > 1)
- Capacity miss
 - Occurs when the set of active cache blocks (the working set)
 is larger than the cache (just won't fit, even if cache was fullyassociative)
 - Note: Fully-associative only has Compulsory and Capacity misses

What about writes?

- Multiple copies of data exist:
 - L1, L2, possibly L3, main memory
- What to do on a write-hit?
 - Write-through: write immediately to next level
 - Write-back: defer write to next level until line is evicted (replaced)
 - Must track which cache lines have been modified ("dirty bit")
- What to do on a write-miss?
 - Write-allocate: ("fetch on write") load into cache, update line in cache
 - Good if more writes or reads to the location follow
 - No-write-allocate: ("write around") just write immediately to memory
- Typical caches:
 - Write-back + Write-allocate, usually
 - Write-through + No-write-allocate, occasionally

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

In this example we are sort of ignoring block offsets. Here a block holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much bigger and thus there would be multiple items per block. While only one item in that block would be written at a time, the entire line would be brought into cache.

mov 0xFACE, F

mov 0xFACE, F

Step 1: Bring F into cache

mov OxFACE, F

Step 2: Write 0xFACE to cache only and set dirty bit

mov 0xFACE, F mov 0xFEED, F

Memory F OxCAFE

OxBEEF

Write hit!
Write 0xFEED to
cache only

- 1. Write **F** back to memory since it is dirty
- 2. Bring **G** into the cache so we can copy it into %rax

Peer Instruction Question

- Which of the following cache statements is FALSE?
 - Vote at http://PollEv.com/justinh
 - A. We can reduce compulsory misses by decreasing our block size
 - B. We can reduce conflict misses by increasing associativity
 - C. A write-back cache will save time for code with good temporal locality on writes
 - D. A write-through cache will always match data with the memory hierarchy level below it
 - E. We're lost...

Example Cache Parameters Problem

1 MiB address space, 125 cycles to go to memory.
Fill in the following table:

Cache Size	4 KiB
Block Size	16 B
Associativity	4-way
Hit Time	3 cycles
Miss Rate	20%
Write Policy	Write-through
Replacement Policy	LRU
Tag Bits	
Index Bits	
Offset Bits	
AMAT	

Example Code Analysis Problem

- Assuming the cache starts <u>cold</u> (all blocks invalid), calculate the **miss rate** for the following loop:
 - m = 20 bits, C = 4 KiB, K = 16 B, E = 4