L18: Caches Iil

Caches Il

CSE 351 Autumn 2017

Instructor:
Justin Hsia

Teaching Assistants:
Lucas Wotton
Michael Zhang
Parker DeWilde
Ryan Wong

Sam Gehman

Sam Wolfson
Savanna Yee

Vinny Palaniappan

CSE351, Autumn 2017

L18: Caches Iil

CSE351, Autumn 2017

Making memory accesses fast!

» Cache basics

=+ Principle of locality

> Memory hierarchies

» Cache organization

= Direct-mapped (sets; index + tag)
= Associativity (ways)

= Replacement policy

® Handling writes

Program optimizations that consider caches

L18: Caches Il

Cache Organization (3)

CSE351, Autumn 2017

Note: The textbook
uses “b” for offset bits

« Associativity (E'): # of ways for each set
® Such a cache is called an “E-way set associative cache”

= We now index into cache sets, of which there are C/K /E

= Use lowest log,(C/K/E) = s bits of block address
- Direct-mapped: E =1,s0s =1log,(C/K) as we saw previously

- Fully associative: E = C/K, so s = 0 bits

Used for tag comparison

Selects the set

Selects the byte from block

Tag () | Index (s)

[offset (k)

. o Increasing associativity
Decreasing associativity

. Fully associative
Direct mapped |_; (only one set)

(only one way)

L18: Caches Iil CSE351, Autumn 2017

Administrivia

« Midterm regrade requests due end of tonight
« Lab 3 due Friday

« HW 4 is released, due next Friday (11/17)

« No lecture on Friday — Veteran’s Day!

Associativity

+ What if we could store data in any place in the cache?
= More complicated hardware = more power consumed, slower
+ So we combine the two ideas:
= Each address maps to exactly one set
= Each set can store block in more than one way

1-way: 2-way: 4-way: 8-way:
8 sets, 4 sets, 2 sets, 1set,
1 block each 2 blocks each 4 blocks each 8 blocks
0 Set] Se Se
1 0
2 0
3 1
" 0
2
5 1
il 3
7

direct mapped

fully associative,

L18: Caches Iil CSESS1, Autumn 2017

block size: 16 B
capacity: 8 blocks
address: 16 bits

= Where would data from address 0x1833 be placed?
= Binary: Ob 0001 1000 0011 0011

Example Placement

=m-s-k s=1log,(C/K/E) k=log,(K)

m-bitaddress: | Tag(t) | Index(s) | offset(k) |
s=7 s=7 s=7?
Direct-mapped 2-way set associative 4-way set associative
Set Tag Data Set Tag Data Set Tag Data
0
0

0

1

2

N U A WwN e

118: Caches Il CSE351, Autumn 2017

Block Replacement

« Any empty block in the correct set may be used to store block
+ If there are no empty blocks, which one should we replace?
= No choice for direct-mapped caches

= Caches typically use something close to least recently used (LRU)
(hardware usually implements “not most recently used”)

Direct-mapped 2-way set associative 4-way set associative
Set Tag Data Set Tag Data Set Tag Data
0 0
1
0
2 1
3
4 2
5 1
6 3
7

L18: Caches Iil CSE351, Autumn 2017

Peer Instruction Question

« We have a cache of size 2 KiB with block size of 128 B.
If our cache has 2 sets, what is its associativity?
= Vote at http://PollEv.com/justinh
A.
B. 4
C. 8
D. 16
E. We're lost...

« If addresses are 16 bits wide, how wide is the Tag
field?

L18: Caches Il CSE351, Autumn 2017

General Cache Organization (S, E, K)

E = blocks/lines per set
A

Ve \/ set
[I[Joooel |
“line” (block plus
I ” I' e I | management bits)
S = # sets [Il Joooe|]

=25

®ececcccccccccccccccscccccnce

[If foeeell |

Cache size:
C =K XE XS data bytes
| Tag | |°| 1 I ZI """ | K1 | (doesn’t include V or Tag)

lid bit
valia bt K = bytes per block

118: Caches Il CSE351, Autumn 2017

CSE351, Autumn 2017

Notation Review

« We just introduced a lot of new variable names!

® Please be mindful of block size notation when you look at
past exam questions or are watching videos

[Variable | Thsquarter | roumus

Block size K (B in book)

Cache size C
M=2"om=log, M

Associativity 5} S=25os=log,S
Number of Sets S K=2Kok=log, K
Address space M

C=KxXEXS
Address width m s =log,(C/K/E)
Tag field width m=i+s+k
Index field width s

Offset field width k& (b in book)

L18: Caches Iil CSESS1, Autumn 2017

1) Locate set
Cache Read 5 ey

Check if any line in set
is valid and has
E = blocks/lines per set matching tag: hit
A Locate data starting
at offset

N

7/
w

=

I I J ooel |
Address of byte in memory:
I I | +e- |

S =#sets | Il Jooo| |
=25

tag set block
index offset

I If ‘”I"-I IQ

data begins at this offset

|
[o] GLEL—-T)|

valid bit

K = bytes per block

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Block Size K =8B

r

Address of int:

[C@bits T o..01 [100]

g

[Coe) CLEGLGLE)

[oo CLELLEGLE] T
s=2se [0 o CLELLGL]
& el CLELLEGLL|

51, Autumn 2017

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Block Size K =8B

Address of int:

valid? + match?: yes = hit

:
[oe] [o]:[2]5]4]s]6]7]
.
|

block offset

L18: Caches Il CSE351, Autumn 2017

L18: Caches Iil

Example: Direct-Mapped Cache (E = 1)

Direct-mapped: One line per set
Block Size K =8B

Address of int:

valid? + match?: yes = hit

Cee] LR
:

block offset

int (4 B) is here

No match? Then old line gets evicted and replaced

Example: Set-Associative Cache (E =2)

2-way: Two lines per set .
Block Size K =8 B Address of short int:

CLLLLGED)| |
LG
L LGLGL])| |

cee

LLLLLGLED])| CLLELGL)|

LLLLLE)|
CLLLLEGED|
LLLGLE|

find set

Autumn 2017

Example: Set-Associative Cache (E =2)

2-way: Two lines per set

Block Size K =8 B Address of short int:

compare both

valid? + | match: yes = hit

] G CLLGLGEH)| [Geed ELELLEGEH)

block offset

Example: Set-Associative Cache (E = 2)

2-way: Two lines per set .
Block Size K =8 B Address of short int:

compare both

valid? + [match: yes = hit

[[J G CLELEGELED)|
I

T) CLLGLEGLL])|

block offset
short int(2B)is here
No match?

* One line in set is selected for eviction and replacement
* Replacement policies: random, least recently used (LRU), ...

Types of Cache Misses: 3 C’s!

« Compulsory (cold) miss
= Occurs on first access to a block
« Conflict miss

= Conflict misses occur when the cache is large enough, but multiple data
objects all map to the same slot
« e.g. referencing blocks 0, 8, 0, 8, ... could miss every time
= Direct-mapped caches have more conflict misses than
E-way set-associative (where E > 1)
« Capacity miss

= Occurs when the set of active cache blocks (the working set)
is larger than the cache (just won't fit, even if cache was fully-
associative)

® Note: Fully-associative only has Compulsory and Capacity misses

CSE351, Autumn 2017

What about writes?

+ Multiple copies of data exist:
® L1, L2, possibly L3, main memory
+ What to do on a write-hit?
= Write-through: write immediately to next level

= Write-back: defer write to next level until line is evicted (replaced)
« Must track which cache lines have been modified (“dirty bit”)
« What to do on a write-miss?
= \Write-allocate: (“fetch on write”) load into cache, update line in cache
+ Good if more writes or reads to the location follow
= No-write-allocate: (“write around”) just write immediately to memory
+ Typical caches:
= Write-back + Write-allocate, usually

= Write-through + No-write-allocate, occasionally

L18: Caches Il CSE351, Autumn 2017

Write-back, write-allocate example

mov OXFACE, F

Cache | @ OXBEEF lo] |<\ dirty bit

Memory F OXCAFE
G OXBEEF

L18: Caches Iil Autumn 2017

Write-back, write-allocate example

Contents of memory stored at address G

2
Cache | |f | OxBEEF [o] |<\ dirty bit

tag (there is only one set in this tiny cache, so the tag is the entire block address!)

In this example we are sort of
F
Memory OXCAFE ignoring block offsets. Here a block
G OXBEEF holds 2 bytes (16 bits, 4 hex digits).

Normally a block would be much
bigger and thus there would be
multiple items per block. While only
one item in that block would be
written at a time, the entire line would
be brought into cache. 20

118: Caches Il CSE351, Autumn 2017

CSE351, Autumn 2017

Write-back, write-allocate example

mov OXFACE, F

Cache | | OXCAFE |o||<\dirtybit

Step 1: Bring F into cache

Memory F OXCAFE
G OXBEEF

Write-back, write-allocate example

mov OxFACE, F

Cache | F | OXFACE |1||<\dirty bit

Step 2: Write OXFACE
to cache only and set
dirty bit

Memory F OXCAFE
G OXBEEF

L18: Caches Iil CSESS1, Autumn 2017

Write-back, write-allocate example

mov OxFACE, F mov OxFEED, F

Cache | F | OXFACE |1||<\dirtybit

Write hit!
Write OXFEED to
cache only

Memory F OXCAFE
G OXBEEF

L18: Caches Iil

Write-back, write-allocate example

mov OxFACE, F mov OxFEED, F mov G, %rax

Cache | [F1 OXFEED [1] |<\ dirty bit

Memory F OXCAFE
G OXBEEF

CSE351, Autumn 2017

L18: Caches Iil

CSE351, Autumn 2017

Write-back, write-allocate example

mov OXFACE, F mov OXFEED, F mov G, %rax

Cache | [c] OXBEEF [o] |<\ dirty bit

1. Write F back to memory
since it is dirty
2. Bring G into the cache so

Memory F OXFEED we can copy it into %rax
G OxBEEF

Peer Instruction Question

+ Which of the following cache statements is FALSE?
= Vote at http://PollEv.com/justinh
A.

B. We can reduce conflict misses by increasing
associativity

C. A write-back cache will save time for code with
good temporal locality on writes

D. A write-through cache will always match data
with the memory hierarchy level below it

E. We're lost...

L18: Caches Il

Example Code Analysis Problem

> Assuming the cache starts cold (all blocks invalid),
calculate the miss rate for the following loop:
" m =20 bits, C =4KiB, K=16B,E =4
#define AR_SIZE 2048

for (int i=0; i<AR_SIZE; i++)
sum += int_ar[i];

for (int j=AR_SIZE-1; j>=0; j--)
sum += int_ar[i];

int int_ar[AR_SIZE], sum=0; // &int_ar=0x80000

CSE351, Autumn 2017

Example Cache Parameters Problem

« 1 MiB address space, 125 cycles to go to memory.
Fill in the following table:

Cache Size 4 KiB
Block Size 168B
Associativity 4-way

Hit Time 3 cycles
Miss Rate 20%
Write Policy Write-through
Replacement Policy LRU
Tag Bits
Index Bits
Offset Bits
AMAT

