WA/ UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2017

Caches |l

CSE 351 Autumn 2017

Instructor:
Justin Hsia

Teaching Assistants:
Lucas Wotton
Michael Zhang
Parker DeWilde
Ryan Wong

Sam Gehman

Sam Wolfson
Savanna Yee

Vinny Palaniappan

WA UNIVERSITY of WASHINGTON L17: Caches Ii CSE351, Autumn 2017

Administrivia

Homework 4 released tomorrow (Structs, Caches)
Midterm Regrade Requests due Wednesday (11/8)
Lab 3 due Friday (11/10)

Mid-Quarter Survey Feedback
= Paceis “moderate” to “a bit too fast”

" You talk too fast in lecture (or rush at the end) and | wish
there were more peer instruction questions

= Canvas quiz answer keys are annoying, but instant
homework feedback is great

WA UNIVERSITY of WASHINGTON L17: Caches Ii

CSE351, Autumn 2017

Memory Hierarchies

+» Some fundamental and enduring properties of
hardware and software systems:

= Faster storage technologies almost always cost more per
byte and have lower capacity

" The gaps between memory technology speeds are widening
- True for: registers €<= cache, cache <> DRAM, DRAM <& disk, etc.

= Well-written programs tend to exhibit good locality

+» These properties complement each other beautifully

" They suggest an approach for organizing memory and
storage systems known as a memory hierarchy

WA/ UNIVERSITY of WASHINGTON

L17: Caches Il CSE351, Autumn 2017

An Example Memory Hierarchy

A

Smaller,
faster,

costlier
per byte

registers CPU registers hold words retrieved from L1 cache

on-chip L1

cache (SRAM) L1 cache holds cache lines retrieved from L2 cache
off-chip L2

cache (SRAM) L2 cache holds cache lines retrieved

from main memory

main memory

(DRAM) Main memory holds disk blocks
retrieved from local disks

local secondary storage

| | disk Local disks hold files
(ocaldis S) retrieved from disks on

remote network servers

remote secondary storage
(distributed file systems, web servers)

W UNIVERSITY of WASHINGTON L17: Caches Ii CSE351, Autumn 2017

An Example Memory Hierarchy

A
Ve b explicitly program-controlled
(e.g. refer to exactly %rax, %rbx)
me:uer, program sees “memory”’;
aster,)
costlier hardware manages caching
off-chip L2 t
ransparentl
per byte cos cache (SRAM) P y
Larger main memory
’ (e (DRAM)
slower,
cheaper
per byte s local secondary storage
(6® (local disks)

remote secondary storage
(distributed file systems, web servers)

CSE351, Autumn 2017

WA UNIVERSITY of WASHINGTON L17: Caches Ii

Memory Hierarchies

+» Fundamental idea of a memory hierarchy:
" For each level k, the faster, smaller device at level k serves
as a cache for the larger, slower device at level k+1
+» Why do memory hierarchies work?

= Because of locality, programs tend to access the data at
level k more often than they access the data at level k+1

" Thus, the storage at level k+1 can be slower, and thus larger
and cheaper per bit
+» Big Idea: The memory hierarchy creates a large pool
of storage that costs as much as the cheap storage
near the bottom, but that serves data to programs at
the rate of the fast storage near the top

4

WA UNIVERSITY of WASHINGTON L17: Caches Ii CSE351, Autumn 2017

Intel Core i7 Cache Hierarchy

Processor package

Block size:
64 bytes for all caches

()t(ﬁo\’r &Ndmc‘\’l omS$

L1 i-cache and d-cache:

LT > 1‘;\"4"“"*" L1 L1 32 KiB, 8-way,
d-cache| |i-cache | |™ s¢eed d-cache| |i-cache Access: 4 cycles
L2 unified cache:
L2 unified cache ¢—— e dimize <or L2 unified cache 256 KiB, 8-way,
low miss rote

Access: 11 cycles

/

L3 unified cache
(shared by all cores)

L3 unified cache:
8 MiB, 16-way,
Access: 30-40 cycles

Main memory

WA UNIVERSITY of WASHINGTON L17: Caches Ii

Making memory accesses fast!

+ Cache basics
+ Principle of locality
+» Memory hierarchies
+» Cache organization
. Direct-maioped (sets; index + tag)
= Associativity (ways)
= Replacement policy
®= Handling writes

+» Program optimizations that consider caches

CSE351, Autumn 2017

WA/ UNIVERSITY of WASHINGTON L17: Caches |l CSE351, Autumn 2017

Note: The textbook
uses “B” for block size

Cache Organization (1)

J

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g. 64 B)

= Blocks consist of adjacent bytes (differ in address by 1)
- Spatial locality!

° % VM Blsck 0
LGLﬂ_ . \A,H'L\’,»\ B IDCJ(l:r — Ne "
T ‘ ‘I MBlock L

O: 0LO...00|co ddO
C3: OL Oo... OOl 11

6H: OpO ... O\ [o0s 030
23 O0LO...Ol[{tL T\

- —
block lolack
Aurbe ™ o’c'(:sé('

Whch go(/\c’]]\ x_ WL\C(Q N UDC\<".(

WA/ UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2017

Note: The textbook
uses “b” for offset bits

Cache Organization (1)

+ Block Size (K): unit of transfer between $ and Mem
" Given in bytes and always a power of 2 (e.g. 64 B)

" Blocks consist of adjacent bytes (differ in address by 1)
. Spatial locality! cacdh bt in addreg has walue 2
{ n_ [O met (56 uprer hs)
+ Offset field 2 med 2 {7_ w7l Ceep o W)
g Low—orderTloE(K) = ﬂbits of address tell you which byte
within a block/rmwer

“an : Fow many bits do L
- (address) mod 2™ = n lowest bItS. ofaddress =+ 1 s ey every
= (address) modulo (# of bytes in a block) - bvfe & o block?

m — k bits k bits

m-bit address: Block Number Block Offset
(refers to byte in memory)

10

W UNIVERSITY of WASHINGTON L17: Caches Ii CSE351, Autumn 2017

Cache Organization (2)

+ Cache Size (C): amount of data the $ can store

® Cache can only hold so much data (subset of next level)

= Given in bytes (C) or number of blocks (C/K)
= Example: C = 32 KiB = 512 bIocks if using 64 B blocks

22 1%=1"B <32 = 2% ods
+» Where should data go in the cache?

" We need a mapping from memory addresses to specific
locations in the cache to make checking the cache for an
address fast

+» What is a data structure that provides fast lookup?
" Hash table!

11

W UNIVERSITY of WASHINGTON L17: Caches Ii

Review: Hash Tables for Fast Lookup

Insert: mod 10

Apply hash function to map data
to “buckets”
GOQ\S i (D ’FC\S“’/SIM‘)\& CGJCU\‘GHDV\

@ wse 0\“ budée'f_(“\,,QUH

CSE351, Autumn 2017

12

WA/ UNIVERSITY of WASHINGTON L17: Caches Il CSE351, Autumn 2017

Place Data in Cache by Hashing Address
addresses are 6 bls: Ok X)(XX/XX

Memory Cache block num * offset
Block N\ﬁrm Block Data Index Block Data
oopa | |, ;00 [T T
0001 I 01 . Here K =4B
o010 [I 1 | 10 o —and C/K 24
0011 Lo 11 o oees
0100 B oHser-: 00 OL 10 11 -
0101 L "~ .
o2 [Map to cache index from block
] ML address
1000 [T T .
1001 | 1 1 = Use nextl@z (C/K)=s blts}
1812 —— " (block address) mod (# blocks in
]]]
1100 T cache) o
1101 L How Mny bt Ad ‘_l’
1110 ; ; ; need Ty SPQU"‘K/ ever\/
1111 [1 1 st/index in my (ache 7

13

W UNIVERSITY of WASHINGTON

L17: Caches Il

CSE351, Autumn 2017

Place Data in Cache by Hashing Address

Block Addr Block Data

Memory

Index

»00

Cache
Block Data

__HereK=4B
and C/K =4

address

Map to cache index from block

" | ets adjacent blocks fit in cache

simultaneously!

- Consecutive blocks go in consecutive

cache indices

14

W UNIVERSITY of WASHINGTON

L17: Caches Il

CSE351, Autumn 2017

Place Data in Cache by Hashing Address

Block Addr

0000
0001
0010
0011
0100
0101
01j10)
0111
1000

Memory
Block Data

TT11TTIHRL LK

Cache
Index Block Data
00 [T 11
01 111
10 IC) !
11 L1
Collision!

__HereK=4B
and C/K =4

" This might confuse the cache later
when we access the data

= Solution?

15

W UNIVERSITY of WASHINGTON L17: Caches Ii CSE351, Autumn 2017

Tags Differentiate Blocks in Same Index

Memory Cache

Block Addr Block Data Index ﬁ\;\ Block Data

oooo [T T 1 ~00 [[00 T

0001 11 01 1 Here K =4 B
0010 T 410 01 o — and C/K =4
0011 L1 11 || o1 L1

0100 [1 1 1 = -

e T f address bit

oiho [ag = rest, of ad ress bits

o111 [T " bits =1t bgv_ws

1000 Lo 2 & — 2.

10010 | v 1 = Check this durmgacache lookup
@w [V 1]

1011 Lo

1100 111

1101 ;o

1110 I

1122 | 1 1

16

W UNIVERSITY of WASHINGTON L17: Caches Ii

Checking for a Requested Address

% CPU sends address request for chunk of data

= Address and requested data are not the same thing!
- Analogy: your friend # his or her phone number

« T10 address breakdown:
m-bit address: Tag (1) Index (s) | Offset (k)

\)
Y
Block Number

@)‘ Index field tells you where to look in cache
@l field lets you check that data is the block you want
= Offset field selects specified start byte within block

" Note: 7 and s sizes will change based on hash function

CSE351, Autumn 2017

17

YA/ UNIVERSITY of WASHINGTON L17: Caches |l CSE351, Autumn 2017

Cache Puzzle #1 Vote at http://PollEv.com/justinh

+» Based on the following behavior, which of the

following block sizes is NOT possible for our cache?

" Cache starts empty, also known as a cold cache _
_ _ k_'__: block wilh dada o\ ready m i
" Access (addr: hit/miss) stream: ic: ddy nstin 3, pls blods coibining el

ror~ M
« (14: miss), (15: hit), (16: mjss) ! -

L S
>© 14 :‘;’1'5 are nthe some block
© (M\\S blodke” cortamg M iato $

A. e addr - = \g/\é
byfeadde: 0 | 2245 6 F 5 A Nl 31415
B. 8 bytes L L N O 60
I<: Y: W B\ ocle blsd< blsck _\iﬁ—\f_d
\/\/—h/
Co 16 bytes k<=3': i bm U.od;/ \ \olook —
=6’ N
/D. 32bytes| <. i .
\< ’111 block

E. We're lost... IK.=18 , Ko = 16 Bl

18

W UNIVERSITY of WASHINGTON

L17: Caches Il

Direct-Mapped Cache

Block Addr Block Data

00
00
00
00
01
01
01
01
10
10
10
10
11
11
11
11

Memory

Index

00
01
10
11
00|
01
10
11
00
01
10
11
00
01
10
11

»00

01

10

11

Cache
Tag

Block Data

00

11

01

01

CSE351, Autumn 2017

__HereK=4B
and C/K =4

Hash function: (block address)
mod (# of blocks in cache)

" Each memory address maps to
exactly one index in the cache

" Fast (and simpler) to find an
address

19

W UNIVERSITY of WASHINGTON

L17: Caches Il

Block Addr Block Data
0, 1,2,
4151 617

00
00
00
00
01
01
01
01
10
10
10
10
11
11
11
11

Memory

00|
01
10
11
00
01
10
11
00
01
10
11
00|
01
10
11

g1

Index

00
01
10

24,

11

Cache

Tag

CSE351, Autumn 2017

] - Ob 005\0100
Direct-Mapped Cache Problem 24 0:0 1'10/00

Block Data

??

??

Lo

??

" 2] 28] 26] 22

g

—

Tas ‘Trhdex O‘HSC"'

Et) Gots) (k)

Here K =4 B

 and C/K =4

+» What happens if we access the
following addresses?
= 8,24,8, 24,8, ..?
= Conflict in cache (misses!)

= Rest of cache goes unused

« Solution?

20

W UNIVERSITY of WASHINGTON

0
1
2

3
4
5
6
7

Associativity

L17: Caches Il

CSE351, Autumn 2017

+» What if we could store data in any place in the cache?

" More complicated hardware = more power consumed, slower

+ So we combine the two ideas:

= Each address maps to exactly one set

" Each set can store block in more than one way

1-way:
8 sets,
1 block each

I |
|

—

direct mapped

Set

0

2-way:
4 sets,
2 blocks each

solves
c_tw(: \TCY [

P{o\a\em .

4-way:
2 sets,
4 blocks each

Set

1

Set

8-way:
1 set,
8 blocks

fully associative21

