YA/ UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Procedures & Executables
CSE 351 Autumn 2017

MY NEW LANGUAGE 15 GREAT, BUT IT

|nstructor: HHB H FE!..J mi% REGHRE'HE T‘(PE.
Justin Hsia 2+7
> Y (91> RANGE(" %)
Teaching Assistants: T 1;£] (fr,
Lucas Wotton [2] Tzz
. (2/0)
Michael Zhang NaN %)
Parker DeWilde (2/0)+2
NaP : RANGE (1,
Ryan Wong e (,4,3,4,5)
Sam Gehman i FLOOR(10.5)
Sam Wolfson [1,2,3]+2 :
Savanna Yee FALSE |
1,2,
Vinny Palaniappan Er;::ug]i-'-l | _10.5___

2/(2-(3/2¢'/2)) https://xkcd.com/1537/
NaN.000000000000013

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Administrivia

» Lab 2 due Friday (10/27)
» Homework 3 released tomorrow (10/24)

» Lab 1 grading
"= Double-check your total
= See Piazza for common misconceptions

+» Midterm next Monday (10/30, 5pm, KNE 120)

" Make a cheat sheet! — two-sided letter page, handwritten
" Check Piazza this week for announcements
= Review session 5:30-7:30pm on Friday (10/27) in EEB 105

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Procedures

>

Stack Structure

L)

o®

Calling Conventions
= Passing control

= Passing data

" Managing local data

+» Register Saving Conventions
« |llustration of Recursion

W UNIVERSITY of WASHINGTON

L12: Procedures & Executables CSE351, Autumn 2017

Register Saving Conventions

<+ When procedure y0o0 calls who:
" yO0oO is the caller
= whois the callee

+» Can registers be used for temporary storage?

yO0O0:

movq $15213, |%rdx

call who

addq |%rdx,

ret

?
%rax

who:

subg $18213, |%rdx

ret

= No! Contents of register %rdx overwritten by who!

" This could be trouble — something should be done. Either:
- Caller should save %rdx before the call (and restore it after the call)
- Callee should save %rdx before using it (and restore it before returning)

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Register Saving Conventions

+» “Caller-saved” registers

" |tis the caller’s responsibility to save any important data in
these registers before calling another procedure (i.e. the
callee can freely change data in these registers)

= Caller saves values in its stack frame before calling Callee,
then restores values after the call
« “Callee-saved” registers

" |tis the callee’s responsibility to save any data in these
registers before using the registers (i.e. the caller assumes
the data will be the same across the callee procedure call)

= Callee saves values in its stack frame before using, then
restores them before returning to caller

CSE351, Autumn 2017

W UNIVERSITY of WASHINGTON L12: Procedures & Executables

Silly Register Convention Analogy

1) Parents (caller) leave for the weekend and give the keys to the
house to their child (callee)
= Being suspicious, they put away/hid the valuables (caller-saved) before

leaving
= Warn child to leave the bedrooms untouched: “These rooms better look

the same when we return!”

2) Child decides to throw a wild party (computation), spanning

the entire house

"= To avoid being disowned, child moves all of the stuff from the bedrooms
to the backyard shed (callee-saved) before the guests trash the house

= Child cleans up house after the party and moves stuff back to bedrooms
3) Parents return home and are satisfied with the state of the

house
= Move valuables back and continue with their lives

L12: Procedures & Executables

WA/ UNIVERSITY of WASHINGTON

x86-64 Linux Register Usage, part 1

«» %rax
= Return value

= Also caller-saved & restored
= Can be modified by procedure

« Yrdr, ..., %r9
" Arguments

= Also caller-saved & restored
= Can be modified by procedure

< %rl0, %rill

= Caller-saved & restored
= Can be modified by procedure

Return value

Arguments <

Caller-saved —

\(

temporaries

CSE351, Autumn 2017

%rax

Y%rdu

%rsi

%rdx

%rcx

%r8

%r9

%rl10

%rll

WA UNIVERSITY of WASHINGTON L12: Procedures & Executables

x86-64 Linux Register Usage, part 2

« %rbx, %rl2, %rl1l3, %rl4

= Callee-saved
= Callee must save & restore

= Yrbp
= Callee-saved
= Callee must save & restore

= May be used as frame pointer
= Can mix & match

+ %rsp
= Special form of callee save

= Restored to original value upon
exit from procedure

Callee-saved <
Temporaries

CSE351, Autumn 2017

%rbx

%rl2

%ril3

%rld

Special

%rbp

%rsp

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

x86-64 64-bit Registers: Usage Conventions

%rax Return value - Caller saved %ra8 Argument #5 - Caller saved
%rbx Callee saved %ro Argument #6 - Caller saved
%rcx Argument #4 - Caller saved %rio Caller saved
%rdx Argument #3 - Caller saved %ril Caller Saved
%rsi Argument #2 - Caller saved %ri2 Callee saved
%rdi Argument #1 - Caller saved %ril3 Callee saved
%rsp Stack pointer %ri4d Callee saved
%rbp Callee saved %ris Callee saved

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Callee-Saved Example (step 1)

long call _incr2(long x) { Initial Stack Structure

long vl = 351;
long v2 = iIncrement(&vl, 100);
return x+v2;

} /‘Lneecl X (in %rdi) affer procebure call retaddr [«——%Irsp

call _i1ncr2:
pushq %rbx &—save gld Avbx
subq _$16, %rsp Resulting Stack Structure
movg & %rdi, ,%rbx <— change %rbx

movqg 3« /$351, 8(%rsp)

movl < [$100, %esi

leaq § 8%rsp), %rdi

call © \Jncrement aoes prowlure all ret addr
addg %rbx, %rax Saved %Ibx

addq $16, %rsp
popq %rbx
ret Unused [«——%I'sp

351 «— %rsp+8

10

W UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Callee-Saved Example (step 2) Herocy
tack Structure

long call _incr2(long x) { R%‘—ﬁe(j
long vl = 351; .. G :
long v2 = increment(&vl, 100);
return x+v2;

Y\DXI’CD |
Rtn address /(D/Q@’
saved%rbxf

351 —Wrsp+8

call _i1ncr2:

(\)pushq %rbx Unused [«——%Irsp
subq $16, %rsp ’}7é\

-@movq %rdr, %rbx
movq $351, 8(%rsp)

stadk d (scip]-?*\e !

movl $100, %esi :;*i/;‘:lj\ Pre-return Stack Structure
Ieaq 8(%rsp) . hrdi Mugt be 5ymm3'h'7c

call Increment whthin pracefure

addg %rbx, %rax

addq $16, %rsp | ¢ E—— rsp

(3popq %rbx

11

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Why Caller and Callee Saved?

+» We want one calling convention to simply separate
implementation details between caller and callee

L)

4

D)

- In general, neither caller-save nor callee-save is “best”:
= |f caller isn’t using a register, caller-save is better

L)

= |f callee doesn’t need a register, callee-save is better

" |f “do need to save”, callee-save generally makes smaller
programs

« Functions are called from multiple places

% So... “some of each” and compiler tries to “pick registers”
that minimize amount of saving/restoring

12

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Register Conventions Summary

+ Caller-saved register values need to be pushed onto
the stack before making a procedure call only if the
Caller needs that value later

= Callee may change those register values

+ Callee-saved register values need to be pushed onto
the stack only if the Callee intends to use those
registers

= Caller expects unchanged values in those registers

+» Don’t forget to restore/pop the values later!

13

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Procedures

>

Stack Structure

L)

o®

Calling Conventions
= Passing control

= Passing data

" Managing local data

+» Register Saving Conventions
« [llustration of Recursion

14

W UNIVERSITY of WASHINGTON

Recursive Function

L12: Procedures & Executables

L 'og?cal n‘ql& it

/* Recursive popcount */
long pcount r(unS|gned long x) {

IT (X == 0)¢— stop wce all 15 shiffe) off

return O;
else r a\ue O'F LS%

return (x&1)+pcount r(x > 1)
} shift off LSB J

ONnad rewmrse

Compiler Explorer:

https://godbolt.org/g/W8DxeR

 Compiled with =01 for brevity
instead of -0Og

e Try -02 instead!

CSE351, Autumn 2017

oty all Vs m loﬂ«ary
re(:refen‘l'x"im s ¥

—

movl $0, %eax
testq %rdir, %rdi
je L6

pushq %rbx

movq %rdi, %rbx
shrq %rdi

call count r
andl $1, %ebx
addg %rbx, %rax
popq %rbx
L6:

rep ret

15

W UNIVERSITY of WASHINGTON

L12: Procedures & Executables

Recursive Function: Base Case

/* Recursive popcount */
long pcount r(unsigned long x) {
It (x 0)
return O;
else
return (x&l)+pcount r(x >> 1);

‘umr’}b .Lé
if x kx==0

<o\or\“\’ \A()Yry a\oovﬁ l'\;)

Trick because some AMD
hardware doesn’t like
jumping to ret

W

Regiser|_Usels) | Tipe

%rdi X

%rax

CSE351, Autumn 2017

Argument

Return value Return value

prepare return val sf O

pcount r:
movl

[testq

Lje
pushq
mov(q
shrq
call
andl
addg
POPg

JLG:
rep

ret

$0, %eax &
%rdr, %rdi

_.L6

%rbx

%rdi, %rbx
Y%rdi
pcount_r
$1, %ebx
%rbx, %rax
%rbx

16

W UNIVERSITY of WASHINGTON

L12: Procedures & Executables

CSE351, Autumn 2017

Recursive Function: Callee Register Save

Ioril% E)C(oggtag(unmgned Io? x) { wrdi Argument
return O; 4 e\
e I se /‘\(\QC «oteb“re
return (x&1)+pcount r(x >> 1);
1 pcount r:
mov $0, %eax
s test %rdr, %rdi
Need original value The Stack "gf’",’- 1 je) L6
of X after recursive S'Cj__> pushg %rbx
call to pcount_r. ~> movg %rdi, %rbx
ste X' shrg %rdi
“Save” by putting in - 'ﬁif*c s call pcount_r
%rbx (callee rtn <main+?> fracq —
g andll $1, %ebx
saved)l,(jlbutlnee(ilc to %rsp-— saved %rbx addg %rbx, Y%rax
save old value O 0
%rbx before you g’“"”"ﬁ"m /?Lg?pq oo
Change |t f‘cbft h_"wrmr\g rep ret

17

WA/ UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Recursive Function: Call Setup

/* Recursive popcount */ m
Io?g r())c(ogztE;(unSIgned ey 2oy < %rdi X (new) Argument
return O: %rbx X (old) Callee saved
else
return (x&l)+pcount r(x >> 1);
} pcount r:
movl $0, %eax
0 i 0 i
The Stack }gStq fo[g" Ards
pushq %rbx
movq %rdir, %rbx
shrq_{g}%rdi
: call """ “"pcount_r
rtn <main+?> andl $1. Y%ebx
%rSp—> saved %rbx addq %rbX, %rax
popq %rbx
.L6:
rep ret

18

W UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Recursive Function: Call

long pcount_r(unsigned long x) { Seeuieie @l

i == %rax
|fr§>éu - 8) 0 e el Return value
else ’ %rbx X (old) Callee saved
return (x&l)+pcount_r(x >> 1); .
pcount _r:
’ T o 3 movl $0, %eax
¥ _orfginal X= ObIOD: testq %rdi, %rdi
The Stack e L6
pushq %rbox
| ... movq %rdi, %rbx
i shrq %rdi
B —) — call count r
P(wn‘hr T <|°(uw\‘\:"'f12>\ F‘“"‘—\.‘r rtn <main+?> andl gl %eb—x
Prds = OLOO\ OLolo 90 di = Ol ~ ’
P {4 Cpoetritd) TP| savedHrbx=1 addq %rbx, %rax
Tarki =05 %gcsp_ﬁ ('tn <pcount_r+22>, POpPQg %rbx
ol 0000 _L6:
il |
Zd'me_QE@Q___J rep ret

_J 19

W UNIVERSITY of WASHINGTON L12: Procedures & Executables

Recursive Function: Resul

/* Recursive popcount */
long pcount r(unsigned long x) {

iIfT (x == 0)
return O;
else

return (x&l)+pcount r(x >> 1);

The Stack

rtn <main+?>

%rsp - saved %rbx

t

Regiser|Usels) | Tipe

CSE351, Autumn 2017

%rax Returnvalue Return value
%rbx x&1 Callee saved
pcount_r:
movl $0, %eax
testq %rdir, %rdi
je L6
pushq %rbx X
movq %rdi, m
shrq Y%rdi o bumed
scepss call pcount _r /T same
andl $1, %ebXx
addq %rbx, %rax
popq %rbx
.L6:
rep ret

20

W UNIVERSITY of WASHINGTON L12: Procedures & Executables

Recursive Function: Completion

/* Recursive popcount */
long pcount r(unsigned long x) {

iIT (x == 0)
return O;
else
return (x&1)+pcount_r(x >> 1);
+
The Stack
%rsp -
I rtn <main+?> I
| caved Uirhy |
| _saved %rbx |

Regiser|Usels) | Tipe

CSE351, Autumn 2017

%rax Return value Return value

Previous Callee
7185 %rbx value restored
pcount_r:
movl $0, %eax
testq %rdir, %rdi
je L6
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount r
andl $1, %ebx
addg %rbx, %rax
popq %rbx
.L6:
rep ret

21

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Observations About Recursion

+» Works without any special consideration

= Stack frames mean that each function call has private
storage
- Saved registers & local variables
- Saved return pointer

= Register saving conventions prevent one function call from
corrupting another’s data

- Unless the code explicitly does so (e.g. buffer overflow)

= Stack discipline follows call / return pattern
« If P calls Q, then Q returns before P
. Last-In, First-Out (LIFO)

+ Also works for mutual recursion (P calls Q; Q calls P)

22

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

x86-64 Stack Frames

+» Many x86-64 procedures have a minimal stack frame

" Only return address is pushed onto the stack when
procedure is called

+» A procedure needs to grow its stack frame when it:
" Has too many local variables to hold in caller-saved registers
" Has local variables that are arrays or structs
= Uses & to compute the address of a local variable
= Calls another function that takes more than six arguments
" |s using caller-saved registers and then calls a procedure
= Modifies/uses callee-saved registers

23

WA UNIVERSITY of WASHINGTON

x86-64 Procedure Summary

+ |Important Points

Procedures are a combination of
instructions and conventions

- Conventions prevent functions from
disrupting each other

= Stack is the right data structure for
procedure call/return

If P calls Q, then Q returns before P

= Recursion handled by normal calling
conventions

+ Heavy use of registers
= Faster than using memory

= Use limited by data size and conventions
« Minimize use of the Stack 4x

L12: Procedures & Executables

Caller <
Frame

%rbp —
(Optional)

CSE351, Autumn 2017

\.

Arguments
7+

Return Addr

Old %rbp

Saved
Registers
+
Local
Variables

Argument

%rsp —

Build

24

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Roadmap
C: Java:
car *c = malloc(sizeof(car)); Car ¢ = new Car();
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get _mpg(c); float mpg = Executables
free(c); C.getMPG();
~~ &~
Assembly get_mpg:
language: pushq %rbp

mov(q %rsp, %rbp

popqg %rbp

ret] 0S:

W

Machine 0111010000011000 .- \/

_ 100011010000010000000010
code: 1000100111000010 =] /N
110000011111101000011111 Windows 10 | 05X vosemie & W 4

A4 v

Computer

system:

25

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Building an Executable from a C File

- Codeinfiles pl.c p2.c
» Compile with command: gcc -0Og pl.c p2.c -0 p

= Put resulting machine code in file p

» Run with command: ./p

text C program (pl.c p2.c)

l Compiler (gcc —0g -9)

text Asm program (pl.s p2.s)

l Assembler (gcc -cor as)

binary | Object program (pl.0 p2.0) Static libraries (. a)
l Linker (gcc or V
binary Executable program (p)

26

l Loader (the OS)

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Compiler

» Input: Higher-level language code (e.g. C, Java)
= foo.c

/
>

+» Output: Assembly language code (e.g. x86, ARM, MIPS)
= foo.s

» First there’s a preprocessor step to handle #directives
= Macro substitution, plus other specialty directives
= |f curious/interested: http://tigcc.ticalc.org/doc/cpp.html

+ Super complex, whole courses devoted to these!
» Compiler optimizations
= “Level” of optimization specified by capital ‘O’ flag (e.g. -0g, —-03)
= Options: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

27

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Compiling Into Assembly

. C Code (Sum.c)

voild sumstore(long x, long y, long *dest) {
long t = X + y;
*dest = t;

}

» x86-64 assembly (gcc —0Og @sum-c)
" Generates file sum.s (see https://godbolt.org/g/034FHp)

sumstore(long, long, long*):
addq %rdr, %rsi
mov(q %rsi, (%rdx)
ret

Warning: You may get different results with other versions of
gcc and different compiler settings

28

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Assembler

L)

0‘0

Input: Assembly language code (e.g. x86, ARM, MIPS)
= foo.s

Output: Object files (e.g. ELF, COFF)
= foo.o0

L)

*

= Contains object code and information tables

+» Reads and uses assembly directives

" e.g. .text, .data, .quad

= x86: https://docs.oracle.com/cd/E26502 01/html/E28388/eoiyg.html
+ Produces “machine language”

= Does its best, but object file is not a completed binary

+~ Example: gcc @ foo.s

29

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Producing Machine Language

6.&8?\' 75(&\) 73(‘5‘\
Simple cases: arithmetic and logical operations, shifts, etc.

= All necessary information is contained in the instruction itself

J/
0’0

+» What about the following?
= Conditional jump
= Accessing static data (e.g. global var or jump table)
= call addc/label

+» Addresses and labels are problematic because final executable
hasn’t been constructed yet!

= So how do we deal with these in the meantime?

30

CSE351, Autumn 2017

W UNIVERSITY of WASHINGTON L12: Procedures & Executables

Object File Information Tables

» Symbol Table holds list of “items” that may be used by other

files
= Non-local labels — function names for cal |

= Static Data — variables & literals that might be accessed across files

Relocation Table holds list of “items” that this file needs the

address of later (currently undetermined)
= Any label or piece of static data referenced in an instruction in this file

« Both internal and external

Each file has its own symbol and relocation tables

31

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Object File Format

1) object file header: size and position of the other pieces of the
object file fable of cotents

2) text segment: the machine code (Ir\;}mc}mw;)
3) data segment: data in the source file (binary) <5‘fadk D« ¢ L’Hemls)

4) relocation table: identifies lines of code that need to be
“handled”

5) symbol table: list of this file’s labels and data that can be
referenced

6) debugging information

- More info: ELF format
= http://www.skyfree.org/linux/references/ELF Format.pdf

32

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Linker

+ Input: Object files (e.g. ELF, COFF)
= f00.0

+» Output: executable binary program
= a.out

+» Combines several object files into a single executable (/inking)
+» Enables separate compilation/assembling of files

= Changes to one file do not require recompiling of whole program

33

w UNIVERSITY of WASHINGTON L12: Procedures & Executables

CSE351, Autumn 2017
Linking

1) Take text segment from each .0 file and put them together
2) Take data segment from each .0 file, put them together

concatenate this onto end of text segments l}ﬁjﬁ >
3) Resolve References SH;L{’
" Go through Relocation Table; handle each entry CMM/\%
object file 1

a.out

—>1 data 1
——,>| text 1 |

Relocated data 2
Relocated text 1

object file 2
info 2

—> data 2
S| text 2

34

W UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Disassembling Object Code

« Disassembled:

000000000049053§ <sumstore>:
4005367 48 01 fe add %rdi,%rsi
4005§g€\ﬂ§§ 89 32 mov %rsi , (%rdx)
40053c< ¥ c3 retq
\/-\/-V’ \/\/_J _——/\H/
0::\:]-;::;1-?5\,\ ol;jed' Code by‘f‘es O\EY) m‘h?fprejeek GSSE\MH\/ Mot ong

L)

» Disassembler (objdump -d sum)

L)

= Useful tool for examining object code (man 1 objdump)
" Analyzes bit pattern of series of instructions

" Produces approximate rendition of assembly code
= Canrun on either a.out (complete executable) or . 0O file

35

w UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

What Can be Disassembled?

—
% objdump -o@ NWOR@

WINWORD . EXE: file format peil-1386

No symbols 1n "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:

30001000:

30001001:

30001003 - Reverse engineering forbidden by
30001005 - Microsoft End User License Agreement
3000100a:

+» Anything that can be interpreted as executable code

+» Disassembler examines bytes and attempts to reconstruct

assembly source
36

W UNIVERSITY of WASHINGTON L12: Procedures & Executables CSE351, Autumn 2017

Loader

+~ Input: executable binary program, command-line arguments
= _/a.out argl argZ2

+» Output: <program is run>

» Loader duties primarily handled by OS/kernel

" More about this when we learn about processes
» Memory sections (Instructions, Static Data, Stack) are set up
+ Registers are initialized

37

