L12: Procedures & Executables CSE351, Autumn 2017

Procedures & Executables
CSE 351 Autumn 2017

Instructor:
Justin Hsia

Teaching Assistants:
Lucas Wotton
Michael Zhang
Parker DeWilde
Ryan Wong

Sam Gehman

Sam Wolfson
Savanna Yee

Vinny Palaniappan

L12: Procedures & Executables CSE351, Autumn 2017

Procedures

» Stack Structure

=+ Calling Conventions
® Passing control
® Passing data

" Managing local data

+ Register Saving Conventions

= Illustration of Recursion

L12: Procedures & Executables CSE351, Autumn 2017

Administrivia

« Lab 2 due Friday (10/27)
+ Homework 3 released tomorrow (10/24)
« Lab 1 grading

® Double-check your total

= See Piazza for common misconceptions

« Midterm next Monday (10/30, 5pm, KNE 120)
= Make a cheat sheet! —two-sided letter page, handwritten
® Check Piazza this week for announcements
= Review session 5:30-7:30pm on Friday (10/27) in EEB 105

L12: Procedures & Executables CSE351, Autumn 2017

Register Saving Conventions

« “Caller-saved” registers
= |tis the caller’s responsibility to save any important data in
these registers before calling another procedure (i.e. the
callee can freely change data in these registers)
= Caller saves values in its stack frame before calling Callee,
then restores values after the call
« “Callee-saved” registers
® |tis the callee’s responsibility to save any data in these
registers before using the registers (i.e. the caller assumes
the data will be the same across the callee procedure call)

= Callee saves values in its stack frame before using, then
restores them before returning to caller

L12: Procedures & Executables CSE351, Autumn 2017

Register Saving Conventions

= When procedure y0o0 calls who:
= yoo is the caller
= who is the callee

+ Can registers be used for temporary storage?

yoo0: who:
movq $15213, subq $18213, [%rdx |
call who ? . e o
addg Y%rax ret
ret

= No! Contents of register %rdx overwritten by who!
= This could be trouble — something should be done. Either:
« Caller should save %rdx before the call (and restore it after the call)
« Callee should save %rdx before using it (and restore it before returning)

L12: Procedures & Executables CSESS1, Autumn 2017

Silly Register Convention Analogy

1) Parents (caller) leave for the weekend and give the keys to the
house to their child (callee)

= Being suspicious, they put away/hid the valuables (caller-saved) before
leaving

= Warn child to leave the bedrooms untouched: “These rooms better look
the same when we return!”
2) Child decides to throw a wild party (computation), spanning
the entire house
® To avoid being disowned, child moves all of the stuff from the bedrooms
to the backyard shed (callee-saved) before the guests trash the house
= Child cleans up house after the party and moves stuff back to bedrooms
3) Parents return home and are satisfied with the state of the
house
= Move valuables back and continue with their lives

L12: Procedures & Executables

CSE351, Autumn 2017

x86-64 Linux Register Usage, part 1

= Y%rax

= Return value

= Also caller-saved & restored

= Can be modified by procedure
« %rdi, ..., %r9

= Arguments

= Also caller-saved & restored

= Can be modified by procedure
= %ri0, %rill

® Caller-saved & restored

= Can be modified by procedure

Return value

Caller-saved
temporaries

%rcx

112: Procedures & Executables

CSE351, Autumn 2017

x86-64 Linux Register Usage, part 2

« %rbx, %ril2, %ri3, %ril4
= Callee-saved
= Callee must save & restore
« %rbp
= Callee-saved
= Callee must save & restore
® May be used as frame pointer
= Can mix & match
« %rsp
= Special form of callee save

= Restored to original value upon
exit from procedure

%ri2
PO wraa

Special

L12: Procedures & Executables

CSE351, Autumn 2017

x86-64 64-bit Registers: Usage Conventions

| %rax Return value - Caller saved | %r8 Argument #5 - Caller saved
| %rbx Callee saved | %r9 Argument #6 - Caller saved
| %rex Argument #4 - Caller saved | %r10 Caller saved
| %rdx Argument #3 - Caller saved | %rll Caller Saved
| %rsi Argument #2 - Caller saved | %ri2 Callee saved
| %rdi Argument #1 - Caller saved | %ri3 Callee saved
| %rsp Stack pointer | %ri4 Callee saved
| %rbp Callee saved | %ri5 Callee saved

L12: Procedures & Executables

CSE351, Autumn 2017

Callee-Saved Example (step 1)

long call_incr2(long x) {

Initial Stack Structure

long vl = 351;
long v2 = increment(&vl, 100);
return x+v2;

4 retaddr [——%rsp
call_incr2:

pushqg %rbx

subq $16, %rsp Resulting Stack Structure

movq %rdi, %rbx

movq $351, 8(%rsp)

movl $100, %esi

leaq 8(%rsp), %rdi

call increment ret addr

addq %rbx, %rax saved %rbx

addq $16, %rsp

popq %rbx 351 —"Y%rsp+8

ret Unused [——%rsp

L12: Procedures & Executables

CSE351, Autumn 2017

L12: Procedures & Executables

Callee-Saved Example (step 2)

Why Caller and Callee Saved?

Stack Structure
long call_incr2(long x) {
long vl = 351;
long v2 = increment(&vl, 100);
(LT 2R Rtn address
i
Saved %rbx
0
call_incr2: 351 |[—%rsp+8
pushq %rbx Unused [——%rsp
subq $16, %rsp
movq %rdi, %rbx
351, 8(%
mgz? 2100, %ESESP) Pre-return Stack Structure
leaq 8(%rsp), %rdi
call increment
addq %rbx, %rax
addg $16, %rsp Rtn address |——%rsp
popq %rbx
ret

« We want one calling convention to simply separate
implementation details between caller and callee

« In general, neither caller-save nor callee-save is “best”:
= |f caller isn’t using a register, caller-save is better
= |f callee doesn’t need a register, callee-save is better

" |f “do need to save”, callee-save generally makes smaller
programs
« Functions are called from multiple places

« So0... “some of each” and compiler tries to “pick registers”
that minimize amount of saving/restoring

L12: Procedures & Executables

Register Conventions Summary

= Caller-saved register values need to be pushed onto
the stack before making a procedure call only if the
Caller needs that value later
® Callee may change those register values

= Callee-saved register values need to be pushed onto
the stack only if the Callee intends to use those
registers
= Caller expects unchanged values in those registers

« Don’t forget to restore/pop the values later!

CSE351, Autumn 2017

CSE351, Autumn 2017

Recursive Function

/* Recursive popcount */
long pcount_r(unsigned long x) {

if (x == 0)
return 0;
else
return (x&l)+pcount_r(x >> 1);
T pcount_r:
movl $0, %eax
testq %rdi, %rdi
je .L6
Compiler Explorer: pushq ;/Zr3>_< wrb
https://godbolt.org/g/W8DxeR zﬁ\rlg %:d:’ orox
* Compiled with -O1 for brevity call pcount_r
instead of -Og andl $1, %ebx
* Try -02 instead! addq %rbx, %rax
popq %rbx
.L6:
rep ret

L12: Procedures & Executables

Procedures

» Stack Structure

+ Calling Conventions
= Passing control

® Passing data

® Managing local data

+ Register Saving Conventions
» Illustration of Recursion

CSE351, Autumn 2017

L12: Procedures & Executables

Recursive Function: Callee Register Save

/* Recursive popcount */
long pcount_r(unsigned long x) {

CSE351, Autumn 2017

Fesser st | e |

if (x == 0) %rdi X Argument
return 0;
else
return (x&l)+pcount_r(x >> 1);
3 pcount_r:
movl $0, %eax
test %rdi, %rdi
Need original value The Stack je & L6
of X after recursive pushq %rbx
call to pcount_r. movq %rdi, %rbx
shrq Y%rdi
“Save” by putting in Pr— call pcount_r
%rbx (callee : andl $1, %ebx
saved), but need to %rsp - saved %rbx addq %rbx, %rax
save old value of popq %rbx
%rbx before you .L6:
change it. rep ret

L12: Procedures & Executables

Recursive Function: Base Case

Trick because some AMD
hardware doesn’t like
jumping to ret

/* Recursive popcount */ m
Ior_1g pcogftfr(unmgned long x) { wrdi p A
if (x == 0)
return 0; %rax Returnvalue Return value
else
return (x&l)+pcount_r(x >> 1);
3 pcount_r:
mov |l $0, %eax
testq %rdi, %rdi
Je .L6
pushq %rbx
movq %rdi, %rbx
shrq %rdi
call pcount_r

andl $1, %ebx
addq %rbx, %rax
popqg %rbx

L12: Procedures & Executables

Recursive Function: Call Setup

long pcount_r(unsigned long x) { =
it (x == 0) %rdi X (new) Argument
return 0; %rbx X (old) Callee saved
else
return (x&l)+pcount_r(x >> 1);
T pcount_r:
movl $0, %eax
testq %rdi, %rdi
The Stack je L6
pushq %rbx
movq %rdi, %rbx
shrq %rdi
P call pcount_r
rtn <main+?> andl $1’ %ebx
%rsp - saved %rbx addq %rbx, %rax
popq %rbx
RIY6H
rep ret

Recursive Function: Call

/* Recursive popcount */
long pcount_r(unsigned long x) {

if (x == 0)
return 0;
else

return (x&l)+pcount_r(x >> 1);

The Stack

rtn <main+?>

saved %rbx

%rsp - |rtn <pcount_r+22>

CSE351, Autumn 2017

Recursive call
%rax Return value
return value

%rbx X (old) Callee saved
pcount_r:
movl $0, %eax
testq %rdi, %rdi
Jje .L6
pushq %rbx
movq %rdi, %rbx
shrqg Y%rdi
call pcount_r

andl $1, %ebx
addq %rbx, %rax
popg %rbx

BIEGE
rep ret

CSE351, Autumn 2017

Recursive Function: Completion

/* Recursive popcount */
long pcount_r(unsigned long x) {

if (x == 0)
return 0;
else
return (x&l)+pcount_r(x >> 1);
b
The Stack
%rsp —
| rtn <main+?> |
L saved %rbx J

Fesser|—uset) ||

%rax Returnvalue Return value

Previous Callee

iR Y%rbxvalue restored
pcount_r:

movl $0, %eax

testq Y%rdi, %rdi

Jje .L6

pushq %rbx

movq %rdi, %rbx

shrq Y%rdi

call pcount_r

andl $1, %ebx
addq %rbx, %rax
popq %rbx

.L6:
rep ret

L12: Procedures & Executables

Recursive Function: Result

/* Recursive popcount */
long pcount_r(unsigned long x) {
if (x ==0)

CSE351, Autumn 2017

Regsier|—uses) | Tipe

%rax Returnvalue Return value

return 0; %rbx x&1 Callee saved
else
return (x&l)+pcount_r(x >> 1);
3 pcount_r:
mov i $0, %eax
The Stack }Zstq ﬂ?’[g" Hrdi

rtn <main+?>

saved %rbx

%rsp —

pushq %rbx
movq %rdi, %rbx

shrq Y%rdi
call pcount_r
andl $1, %ebx
addq %rbx, %rax
popq %rbx

BIYGH
rep ret

x86-64 Stack Frames

CSE351, Autumn 2017

+ Many x86-64 procedures have a minimal stack frame
® Only return address is pushed onto the stack when

procedure is called

« A procedure needs to grow its stack frame when it:

® Has too many local variables to hold in caller-saved registers

® Has local variables that are arrays or structs

= Uses & to compute the address of

a local variable

Calls another function that takes more than six arguments
Is using caller-saved registers and then calls a procedure
Modifies/uses callee-saved registers

L12: Procedures & Executables

CSE351, Autumn 2017

Observations About Recursion

« Works without any special consideration

= Stack frames mean that each function call has private

storage
- Saved registers & local variables
« Saved return pointer

= Register saving conventions prevent one function call from

corrupting another’s data

« Unless the code explicitly does so (e.g. buffer overflow)

= Stack discipline follows call / return pattern

« If P calls Q, then Q returns before P
+ Last-In, First-Out (LIFO)

« Also works for mutual recursion (P calls Q; Q calls P)

L12: Procedures & Executables

x86-64 Procedure Summary

Important Points

= Procedures are a combination of

instructions and conventions

« Conventions prevent functions from
disrupting each other

Stack is the right data structure for

procedure call/return

« If P calls Q, then Q returns before P

Recursion handled by normal calling

conventions

Heavy use of registers
= Faster than using memory
= Use limited by data size and conventions

Minimize use of the Stack

Caller
Frame
Arguments
7+
Return Addr
%rbp —| old %rbp
(Optional)
Saved
Registers
+
Local
Variables
Argument
%rsp — Build

L12: Procedures & Executables CSE351, Autumn 2017

Roadmap

C Java:
car *c = malloc(sizeof(car)); | [Car ¢ = new Car();
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get_mpg(c); Float mpg = Executables
free(c); c.getMPGQ);
Y &~
Assembly get_mpg:
. pushq %rbp
language' movq %rsp, %rbp
r-x;r-aq %rbp
ret | 0S:
. 2
Machine 0111010000011000 - p
de: 100011010000010000000010 -- \,:\
code: 1000100111000010 .- /
110000011111101000011111 cexvmemie Tl
3

v vV
Computer

CSE351, Autumn 2017

Compiler

= Input: Higher-level language code (e.g. C, Java)
= foo.c

= Output: Assembly language code (e.g. x86, ARM, MIPS)
= foo.s

= First there’s a preprocessor step to handle #directives
= Macro substitution, plus other specialty directives
= |f curious/interested: http://tigcc.ticalc.org/doc/cpp.html
=« Super complex, whole courses devoted to these!
+ Compiler optimizations
= “Level” of optimization specified by capital ‘O’ flag (e.g. -0g, -03)
= Options: https://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

L12: Procedures & Executables

Building an Executable from a C File

» Code infiles pl.c p2.c
+ Compile with command: gcc -Og pl.c p2.c -0 p
= Put resulting machine code in file p

Run with command: ./p

text | Cprogram (pl.c p2.c) |

I Compiler (gcc —0g -S)

text | Asm program (pl.s p2.s) |

Assembler (gcc -c or as)

binary | Object program (p1.0 p2.0) |

Static libraries (-a)

Linker (gcc or 1d)

binary | Executable program (p)

Loader (the OS)

L12: Procedures & Executables

Assembler

Input: Assembly language code (e.g. x86, ARM, MIPS)
= foo.s

+ Output: Object files (e.g. ELF, COFF)
= foo.o

= Contains object code and information tables

Reads and uses assembly directives
= eg. -text, .data, .quad
= x86: https://docs.oracle.com/cd/E26502 01/html/E28388/eoiyg.html
Produces “machine language”
= Does its best, but object file is not a completed binary
« Example: gcc -c foo.s

29

L12: Procedures & Executables

Compiling Into Assembly

+ CCode (sum.c)

void sumstore(long x, long y, long *dest) {
long t = x + y;
*dest = t;

3

- x86-64 assembly (gcc —Og —S sum.c)
= Generates file sum.s (see https://godbolt.org/g/034FHp)
sumstore(long, long, long*):
addq %rdi, %rsi
movq Y%rsi, (Grdx)
ret

Warning: You may get different results with other versions of
gcc and different compiler settings

L12: Procedures & Executables

Producing Machine Language

. Simple cases: arithmetic and logical operations, shifts, etc.
= All necessary information is contained in the instruction itself

+ What about the following?
= Conditional jump
= Accessing static data (e.g. global var or jump table)
= call

- Addresses and labels are problematic because final executable
hasn’t been constructed yet!

= So how do we deal with these in the meantime?

L12: Procedures & Executables CSE351, Autumn 2017 L12: Procedures & Executables CSE351, Autumn 2017

Object File Information Tables Object File Format

+ Symbol Table holds list of “items” that may be used by other 1) object file header: size and position of the other pieces of the
files object file
= Non-local labels - function names for cal l 2) text segment: the machine code

= Static Data — variables & literals that might be accessed across files 3) data segment: data in the source file (binary)
data segment:

+ Relocation Table holds list of “items” that this file needs the 4) relocation table: identifies lines of code that need to be

“ ”
. handled
address of later (currently undetermined)) L
= Any label or piece of static data referenced in an instruction in this file 5) symbol table: list of this file’s labels and data that can be
« Both internal and external referenced

6) debugging information
- Each file has its own symbol and relocation tables
> More info: ELF format

= http://www.skyfree.org/linux/references/ELF_Format.pdf

31 32

L12: Procedures & Executables CSE351, Autumn 2017 L12: Procedures & Executables CSE351, Autumn 2017

Linker Linking
« Input: Object files (e.g. ELF, COFF) 1) Take text segment from each .0 file and put them together

= foo.o 2) Take data segment from each .0 file, put them together, and
+ Output: executable binary program concatenate this onto end of text segments

" a.out 3) Resolve References

. s = Go through Relocation Table; handle each entry
+ Combines several object files into a single executable (/inking)

+ Enables separate compilation/assembling of files object file 1 aout
= Changes to one file do not require recompiling of whole program info 1 -
data 1 Relocated data 1
Relocated data 2
LEx Linker
object file 2 Relocated text 1
info 2 Relocated text 2
data 2
text 2
33 34

L12: Procedures & Executables CSE351, Autumn 2017 L12: Procedures & Executables

Disassembling Object Code What Can be Disassembled?

« Disassembled:

% objdump -d WINWORD.EXE

0000000000400536 <sumstore>:
400536: 48 01 fe add %rdi,%rsi WINWORD. EXE: file format pei-i386
400539: 48 89 32 mov %rsi, (%rdx)
40053c: c3 retq No symbols in "WINWORD.EXE".

Disassembly of section .text:

30001000 <.text>:

« Disassembler (objdump -d sum) 30001000+
= Useful tool for examining object code (man 1 objdump) ggggigg; Reverse engineering forbidden by
= Analyzes bit pattern of series of instructions 30001005: Microsoft End User License Agreement
® Produces approximate rendition of assembly code 3000100a:
= Can run on either a.out (complete executable) or .0 file + Anything that can be interpreted as executable code

> Disassembler examines bytes and attempts to reconstruct
assembly source

L12: Procedures & Executables CSE351, Autumn 2017

Loader

+ Input: executable binary program, command-line arguments
= _/a.out argl arg2

+ Output: <program is run>

+ Loader duties primarily handled by OS/kernel

®= More about this when we learn about processes
- Memory sections (Instructions, Static Data, Stack) are set up
+ Registers are initialized

37

