CSE351, Autumn 2017

W UNIVERSITY of WASHINGTON

LO7: Floating Point Il, x86-64 Intro

Floating Point Il, x86-64 Intro

CSE 351 Autumn 2017

Instructor:
Justin Hsia

Teaching Assistants:

Lucas Wotton
Sam Gehman

Michael Zhang
Sam Wolfson

Parker DeWilde Ryan Wong
Savanna Yee Vinny Palaniappan

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

Administrivia

+» Lab 1 due on Friday (10/13)
= Submitbits.c, pointer.c, lablreflect.txt

+» Homework 2 due next Friday (10/20)
" On Integers, Floating Point, and x86-64

+ Section tomorrow on Integers and Floating Point

+ Peer Instruction Questions are for your benefit!
"= TAs are scattered about as well to help

CSE351, Autumn 2017

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro

Floating point topics

+ Fractional binary numbers

+ |EEE floating-point standard
+ Floating-point operations and rounding
+ Floating-point in C

+» There are many more details that
we won’t cover

" |t's a 58-page standard...

LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2017

WA UNIVERSITY of WASHINGTON

Floating Point Encoding Summary

Exponent Mantissa Meaning
0x00 0 +0
0x00 non-zero + denorm num
0x01 — OxFE anything + norm num
OxFF 0 t oo
OxFF non-zero NaN

W UNIVERSITY of WASHINGTON

LO7: Floating Point Il, x86-64 Intro

CSE351, Autumn 2017

Distribution of Values

+» What ranges are NOT representable?

= Between largest norm and infinity Overflow (Exp too large)

= Between zero and smallest denorm Underflow (Exp too small)
= Between norm numbers? Rounding

+» Given a FP number, what’s the bit pattern of the next
largest representable number?

= What is this “step” when Exp =0?
" What is this “step” when Exp = 100?

« Distribution of values is denser toward zero

Kk A A A A A A AAAAMMMEENMMA A A A A —A—A A A A A
-15 -10 -5 0 5

¢ Denormalized A Normalized Infinity

A—
10 15

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

CSE351, Autumn 2017

Floating Point Operations: Basic Idea

Value = (-1) xMantissax2Ftxponent

E M
+ X +¢ Yy = Round(X + Yy)
+ X *e Yy = Round(X * y)

+ Basic idea for floating point operations:
" First, compute the exact result

" Then round the result to make it fit into desired precision:
- Possibly over/underflow if exponent outside of range
- Possibly drop least-significant bits of mantissa to fit into M bit vector

WA/ UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2017

Floating Point Addition |line up the binary points!

2 (-1)1xMan1x2EBxrl + (-1)52xMan2x2Exp2

= Assume Expl > Exp2 1.010*22 1.0100%*22
+ 1.000*2-1 + 0.0010*22
« Exact Result: (-1)°xManx28xp 7 1.0110*22
= Sign S, mantissa Man: [— Exp1-Exp2 —
- Result of signed align & add (-1)°* Man1
= Exponent E: E1 + (-1)*2 Man2

(-1)° Man

+» Adjustments:
= If Man = 2, shift Man right, increment Exp
= |f Man < 1, shift Man left k positions, decrement Exp by k
= QOver/underflow if Exp out of range
®" Round Man to fit mantissa precision

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro

CSE351, Autumn 2017

Floating Point Multiplication

2 (-1)°1xMan1x2Exrl x (-1)2xMan2x 2Exp2

+» Exact Result: (-1)>xMx 2F
= Sign S: S1/7S2
" Mantissa Man: Manl x Man2
" Exponent Exp: Expl + Exp2

+» Adjustments:

= If Man 2 2, shift Man right, increment Exp
= QOver/underflow if Exp out of range
"= Round Man to fit mantissa precision

w UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2017

Mathematical Properties of FP Operations

+» Exponent overflow yields +o< or -oo

+» Floats with value +oo, -co, and NaN can be used in
operations
" Result usually still +e<, -oo, or NaN; but not always intuitive

+ Floating point operations do not work like real math,
due to rounding
" Not associative: (3.14+1e100)—-1e100 != 3.14+(1e100-1el100)

0 3.14
" Not distributive: 100*%(0.1+0.2) != 100*0.1+100*0.2
30.000000000000003553 30

"= Not cumulative
- Repeatedly adding a very small number to a large one may do nothing

CSE351, Autumn 2017

W UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro

Floating point topics

+ Fractional binary numbers

+ |EEE floating-point standard
+ Floating-point operations and rounding
+ Floating-point in C

+» There are many more details that
we won’t cover

" |t's a 58-page standard...

10

w UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro

CSE351, Autumn 2017

Floating Point in C

+ C offers two (well, 3) levels of precision
float 1.0Ff single precision (32-bit)
double 1.0 double precision (64-bit)

long double 1.0L (“double double” or quadruple)
precision (64-128 bits)

« #1nclude <math.h> toget INFINITY and NAN
constants

+» Equality (==) comparisons between floating point
numbers are tricky, and often return unexpected
results, so just avoid them!

11

WA/ UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2017

Floating Point Conversions in C 111

+» Casting between Int, Tloat, and double changes
the bit representation
= Int —» float

- May be rounded (not enough bits in mantissa: 23)
- Overflow impossible

= Intor float —» double
- Exact conversion (all 32-bit 1nts representable)

= long — double

- Depends on word size (32-bit is exact, 64-bit may be rounded)
= doubleor float — Int

- Truncates fractional part (rounded toward zero)

- “Not defined” when out of range or NaN: generally sets to Tmin

(even if the value is a very big positive)
12

YA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2017

Floating Point and the Programmer

#include <stdio.h>

_ L $./a.out
int main(int argc, char® argvll) { | ox3f800000 0x3f800001
::Oai :% B f1 = 1.000000000
rloat Te = U.-U, 2 = 1.000000119
int i;
for (i = 0; 1 < 10; 1++) —— £
2 += 1.0/10.0; f1 == 137 yes

printf("0x%08x O0x%08x\n"", *(int*)&F1l, *(int*)&f2);

printf("fl = %10.9A\n", f1);

printf("ft2 = %10.9f\n\n", 2);

1 = 1E30;

2 = 1E-30;

float f3 = 1 + 12;

printf("fl —— f3’) %S\n", fl == f3 ’7 "yes" - "noll);
return O;

13

w UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2017

Floating Point Summary

+ Floats also suffer from the fixed number of bits
available to represent them
= Can get overflow/underflow

= “Gaps” produced in representable numbers means we can
lose precision, unlike Ints
- Some “simple fractions” have no exact representation (e.g. 0.2)
- “Every operation gets a slightly wrong result”

+ Floating point arithmetic not associative or

distributive

= Mathematically equivalent ways of writing an expression
may compute different results

+» Never test floating point values for equality!
+» Careful when converting between 1nts and floats!

14

w UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2017

Number Representation Really Matters

@,
0‘0

1991: Patriot missile targeting error
= clock skew due to conversion from integer to floating point

1996: Ariane 5 rocket exploded (S1 billion)

= overflow converting 64-bit floating point to 16-bit integer

2000: Y2K problem

" |imited (decimal) representation: overflow, wrap-around

L)

*

@,
0‘0

L)

*

2038: Unix epoch rollover

" Unix epoch =seconds since 12am, January 1, 1970

" signed 32-bit integer representation rolls over to TMin in 2038

Other related bugs:

= 1982: Vancouver Stock Exchange 10% error in less than 2 years

= 1994: Intel Pentium FDIV (floating point division) HW bug (S475 million)
= 1997: USS Yorktown “smart” warship stranded: divide by zero

= 1998: Mars Climate Orbiter crashed: unit mismatch (5193 million)

D)

%

15

WA/ UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2017

Roadmap
C: Java:
car *c = malloc(sizeof(car)); Car ¢ = new Car();
c->miles = 100: c.setMiles(100); x86 assembly
c->gals = 17; c.setGals(17);
float mpg = get mpg(c); float mpg =
free(c); c.getMPG(Q);
— —
Assembly get_mpg:
language: pushq %rbp

mov(q %rsp, %rbp

popg %rbp

ret * 0S:
Machine 0111010000011000 -- \/
de- 100011010000010000000010 A
coge: 1000100111000010 .. ' :
110000011111101000011111 Windows 10 osx vosernite Nl

n [|
i \

Computer

system:

16

w UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2017

Translation

Code Time Compile Time Run Time

User
program > C _ Assembler Hardware
in C compiler

_C file _exe file

What makes programs run fast(er)?

17

w UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2017

HW Interface Affects Performance

Source code Compiler Architecture Hardware
Different applications Perform optimizations, Instruction set Ditferent
or algorithms generate instructions implementations
fmmmmm oo N Intel Pentium 4
. C Language :
| N |
: Pro : Intel Core 2
! gram , , Smmmmmm - .
A ' '
! GCC \ Xx86-64 i Intel Core i7
| |
I ——————————)
| T)
| 1
l B
| AMD Athlon
i Clang
|
: Your ‘ ; ‘ s .
I : | I
| Program : Ak ARM Cortex-A53
G , ' (AArch64/A64) |
oo b
Apple A7

18

W UNIVERSITY of WASHINGTON

LO7: Floating Point Il, x86-64 Intro

Instruction Set Architectures

« The ISA defines:

" The system’s state (e.g. registers, memory, program

counter)

® The instructions the CPU can execute

CSE351, Autumn 2017

" The effect that each of these instructions will have on the

system state

CPU

PC

Registers

Memory

19

WA/ UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2017

Instruction Set Philosophies

+» Complex Instruction Set Computing (CISC): Add more

and more elaborate and specialized instructions as
needed

= |ots of tools for programmers to use, but hardware must be
able to handle all instructions

= x86-64 is CISC, but only a small subset of instructions
encountered with Linux programs

Reduced Instruction Set Computing (RISC): Keep

instruction set small and regular

= Easier to build fast hardware

= |et software do the complicated operations by composing
simpler ones

20

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

General ISA Design Decisions

< Instructions

" What instructions are available? What do they do?
"= How are they encoded?

+» Registers
" How many registers are there?
" How wide are they?

< Memory

" How do you specify a memory location?

CSE351, Autumn 2017

21

YA UNIVERSITY of WASHINGTON

LO7: Floating Point Il, x86-64 Intro

CSE351, Autumn 2017

Mainstream ISAs

Designer
Bits

Introduced

Design

Type
Encoding

intel

x86

Intel, AMD
16-bit, 32-bit and 64-bit

1978 (16-bit), 1985 (32-bit), 2003
(64-bit)

cisC
Register-memory

Variable (1 to 15 bytes)

Endianness Little

Macbooks & PCs
(Core i3, i5, i7, M)
X86-64 Instruction Set

ARM

ARM architectures

Designer ARM Holdings
Bits 32-bit, 64-bit
Introduced 1985; 31 years ago
Design RISC

Type Register-Register

Encoding AArch64/A64 and AArch32/A32
use 32-bit instructions, T32
(Thumb-2) uses mixed 16- and
32-bit instructions. ARMv7 user-
space compatibilitym

Endianness Bi (little as default)

Smartphone-like devices
(iPhone, iPad, Raspberry Pi)
ARM Instruction Set

MIIFPS

MIPS
Designer MIPS Technologies, Inc.
Bits 64-bit (32—64)
Introduced 1981; 35 years ago
Design RISC
Type Register-Register
Encoding Fixed
Endianness Bi

Digital home & networking
equipment

(Blu-ray, PlayStation 2)
MIPS Instruction Set

22

WA/ UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2017

Definitions

+ Architecture (ISA): The parts of a processor design
that one needs to understand to write assembly code

= “What is directly visible to software”

+» Microarchitecture: Implementation of the
architecture
= CSE/EE 469, 470

+ Are the following part of the architecture?
" Number of registers?
®" How about CPU frequency?
" Cache size? Memory size?

23

WA/ UNIVERSITY of WASHINGTON

LO7: Floating Point Il, x86-64 Intro

CSE351, Autumn 2017

Assembly Programmer’s View

CPU
PC Registers
Condition
Codes

+» Programmer-visible state
" PC: the Program Counter (%rip in x86-64)

- Address of next instruction

" Named registers

- Together in “register file”

Heavily used program data

= Condition codes

- Store status information about most recent
arithmetic operation

- Used for conditional branching

Addresses Memory
' e Code
Data
« > e Data
~ Instructions Stack
+ Memory

= Byte-addressable array
" Code and user data

" |ncludes the Stack (for
supporting procedures)

24

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

x86-64 Assembly “Data Types”

>

L)

*

)
0‘0

>

L)

Integral data of 1, 2, 4, or 8 bytes
= Data values
= Addresses (untyped pointers)

Floating point data of 4, 8, 10 or 2x8 or 4x4 or 8x2
= Different registers for those (e.g. %xmm1, %ymm2)
= Come from extensions to x86 (SSE, AVX, ...)

CSE351, Autumn 2017

5 Not covered
In 351

No aggregate types such as arrays or structures
= Just contiguously allocated bytes in memory
Two common syntaxes

= “AT&T”: used by our course, slides, textbook, gnu tools, ...
= “Intel”: used by Intel documentation, Intel tools, ...
" Must know which you’re reading

25

W UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

CSE351, Autumn 2017

What is a Register?

« A location in the CPU that stores a small amount of

data, which can be accessed very quickly (once every
clock cycle)

+ Registers have names, not addresses
" |n assembly, they start with % (e.g. %rsi)

+ Registers are at the heart of assembly programming

" They are a precious commodity in all architectures, but
especially x86

26

YA/ UNIVERSITY of WASHINGTON

x86-64 Integer Registers — 64 bits wide

LO7: Floating Point Il, x86-64 Intro

CSE351, Autumn 2017

%rax %eax
%rbx Y%ebx
%rcx %ecx
%rdx Y%edx
%rsi Y%esi
%rdi Y%edi
%rsp Y%esp
%rbp %ebp

%r8 %r8d

%ro %r9d

%ri10 %r10d
%Bril %rild
%ril2 %ri2d
%ri3 %r13d
%ril4 %ri4d
%ril5 %ri15d

= Can reference low-order 4 bytes (also low-order 2 & 1 bytes)

27

w UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2017

Some History: IA32 Registers — 32 bits wide

—

Yeax Y%ax %ah %al accumulate

o %ecx %CcXx %ch %cl counter

% %edx %dx %dh %d | data

o

g) %ebx %bx %bh %ol base

c

& %esi %si source index

g Y%ed %di destination index
%esp %sp stack pointer
%Ebp %bp base pointer
\)
16-bit virtuYaI registers Name Origin

(backwards compatibility) (mostly obsolete)
28

WA/ UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2017

Memory vs. Registers
« Addresses vs. Names
= OX7FFFD024C3DC %rdi
+ Big vs. Small
= ~8GiB (16 x 8 B)=128B
« Slow vs. Fast
= ~50-100 ns sub-nanosecond timescale
+» Dynamic vs. Static
= Can “grow” as needed fixed number in hardware

while program runs

29

YA/ UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro CSE351, Autumn 2017

Three Basic Kinds of Instructions

1) Transfer data between memory and register

" |oad data from memory into register

- %reg = Mem[address] Remember: Memory
= Store register data into memory 'S '”de’;es JtUStI like an
array of bytes!

- Mem[address] = %regd

2) Perform arithmetic operation on register or memory
data
"Cc =a + b; Z = X << Vy; 1 = h & Qg;

3) Control flow: what instruction to execute next
= Unconditional jumps to/from procedures
" Conditional branches

30

WA UNIVERSITY of WASHINGTON LO7: Floating Point II, x86-64 Intro

Operand types

+» Immediate: Constant integer data
"= Examples: $0x400, $-533
= Like C literal, but prefixed with “$~

" Encoded with 1, 2, 4, or 8 bytes
depending on the instruction

+ Register: 1 of 16 integer registers
= Examples: %rax, %rl3
= But %rsp reserved for special use

= Others have special uses for particular
instructions

+» Memory: Consecutive bytes of memory

at a computed address
" Simplest example: (%rax)

= Various other “address modes”

CSE351, Autumn 2017

%rax

%rcx

%rdx

%rbx

%rsi

%rdi

%rsp

%rbp

%rN

31

w UNIVERSITY of WASHINGTON LO7: Floating Point Il, x86-64 Intro CSE351, Autumn 2017

Summary

L)

Converting between integral and floating point data
types does change the bits

" Floating point rounding is a HUGE issue!
- Limited mantissa bits cause inaccurate representations
- Floating point arithmetic is NOT associative or distributive

x86-64 is a complex instruction set computing (CISC)
architecture

Registers are named locations in the CPU for holding
and manipulating data

= x86-64 uses 16 64-bit wide registers

Assembly operands include immediates, registers,
and data at specified memory locations

32

