Floating Point

CSE 351 Autumn 2017

Instructor:

Justin Hsia

Teaching Assistants:

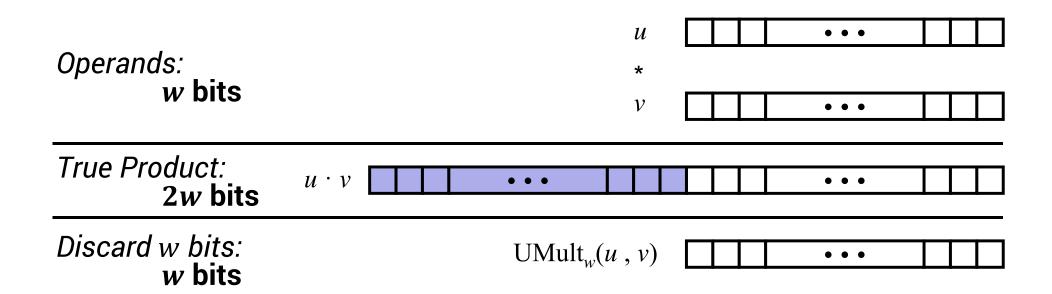
Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong

Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan

Administrivia

- Lab 1 Prelim due tonight at 11:59pm
 - Only submit bits.c
- Lab 1 due Friday (10/13)
 - Submit bits.c, pointer.c, lab1reflect.txt
- Homework 2 released tomorrow, due 10/20
 - On Integers, Floating Point, and x86-64

Unsigned Multiplication in C



- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic
 - UMult_w $(u, v) = u \cdot v \mod 2^w$

Multiplication with shift and add

- ❖ Operation u<<k gives u*2^k
 - Both signed and unsigned

Examples:

- **u**<<3 == u * 8
- u << 5 u << 3 == u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses
- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10²³)
 - Very small numbers (e.g. 6.626×10⁻³⁴)
 - Special numbers (e.g. ∞, NaN)

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

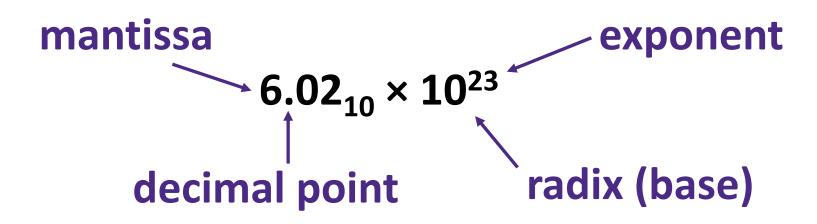
Representation of Fractions

"Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

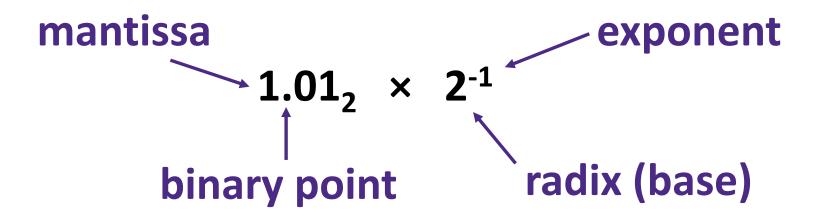
- * Example: $10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}$
- Binary point numbers that match the 6-bit format above range from 0 (00.0000₂) to 3.9375 (11.1111₂)

Scientific Notation (Decimal)



- Normalized form: exactly one digit (non-zero) to left of decimal point
- Alternatives to representing 1/1,000,000,000
 - Normalized:
 1.0×10⁻⁹
 - Not normalized: $0.1 \times 10^{-8}, 10.0 \times 10^{-10}$

Scientific Notation (Binary)



- Computer arithmetic that supports this called floating point due to the "floating" of the binary point
 - Declare such variable in C as float (or double)

Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$
- Convert from binary point to normalized scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$
- Practice: Convert 11.375₁₀ to binary scientific notation

Practice: Convert 1/5 to binary

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

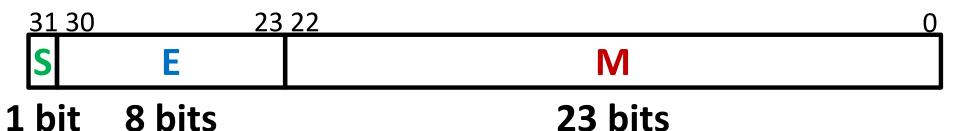
- There are many more details that we won't cover
 - It's a 58-page standard...

IEEE Floating Point

- ❖ IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs
- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops

Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: $\pm 1 \times Mantissa \times 2^{Exponent}$
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E-bias)}$
- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E



The Exponent Field

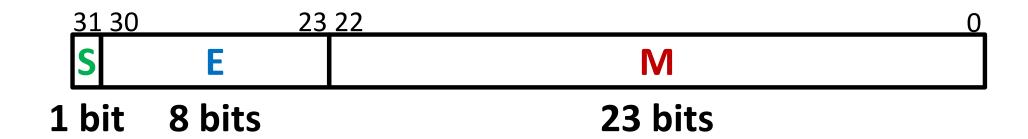
- Use biased notation
 - Read exponent as unsigned, but with *bias* of 2^{w-1}-1 = 127
 - Representable exponents roughly ½ positive and ½ negative
 - Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111
- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two's complement
- Practice: To encode in biased notation, add the bias then encode in unsigned:

■
$$Exp = 1$$
 \rightarrow $E = 0b$

■
$$Exp = 127 \rightarrow E = 0b$$

■
$$Exp = -63 \rightarrow E = 0b$$

The Mantissa (Fraction) Field



$$(-1)^{s} \times (1.M) \times 2^{(E-bias)}$$

- Note the implicit 1 in front of the M bit vector

 - Gives us an extra bit of precision
- Mantissa "limits"
 - Low values near M = 0b0...0 are close to 2^{Exp}
 - High values near M = 0b1...1 are close to 2^{Exp+1}

Peer Instruction Question

- What is the correct value encoded by the following floating point number?
 - 0b 0 10000000 1100000000000000000000
 - Vote at http://PollEv.com/justinh

$$A. + 0.75$$

B.
$$+1.5$$

$$C. + 2.75$$

$$D. + 3.5$$

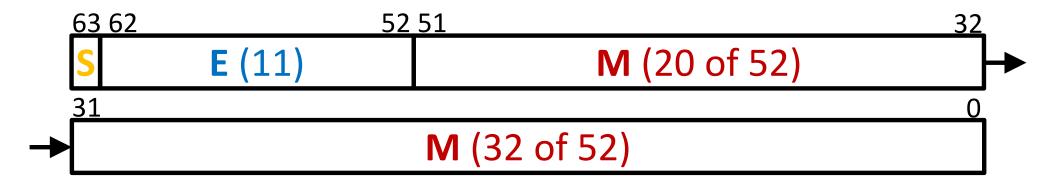
E. We're lost...

Precision and Accuracy

- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- Accuracy is a measure of the difference between the actual value of a number and its computer representation
 - High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
 - Example: float pi = 3.14;
 - pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits



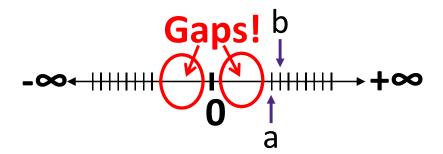
- C variable declared as double
- Exponent bias is now $2^{10}-1 = 1023$
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding 0x00000000 =
 - Special case: E and M all zeros = 0
 - Two zeros! But at least 0x00000000 = 0 like integers
- New numbers closest to 0:

$$a = 1.0...0_2 \times 2^{-126} = 2^{-126}$$

$$b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$$



- Normalization and implicit 1 are to blame
- Special case: E = 0, M ≠ 0 are denormalized numbers

Denorm Numbers

This is extra (non-testable) material

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though E = 0x00
- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{two} \times 2^{-126} = \pm 2^{-126}$

So much closer to 0

- Smallest denorm: $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

Other Special Cases

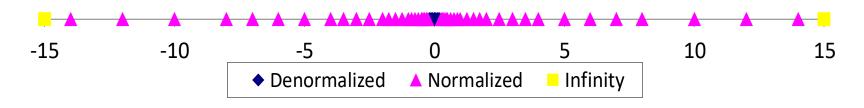
- \star E = 0xFF, M = 0: $\pm \infty$
 - *e.g.* division by 0
 - Still work in comparisons!
- \star E = 0xFF, M \neq 0: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, $\infty-\infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging
- New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - **E** = 0xFE has largest: $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$

Floating Point Encoding Summary

Exponent	Mantissa	Meaning
0x00	0	± 0
0x00	non-zero	± denorm num
0x01 – 0xFE	anything	± norm num
0xFF	0	± ∞
OxFF	non-zero	NaN

Distribution of Values

- What ranges are NOT representable?
 - Between largest norm and infinity Overflow
 - Between zero and smallest denorm Underflow
 - Between norm numbers? Rounding
- Given a FP number, what's the bit pattern of the next largest representable number?
 - What is this "step" when Exp = 0?
 - What is this "step" when Exp = 100?
- Distribution of values is denser toward zero



Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

Floating Point Operations: Basic Idea

Value =
$$(-1)^{s}$$
×Mantissa×2^{Exponent}

$$\star x +_f y = Round(x + y)$$

$$* x *_f y = Round(x * y)$$

- Basic idea for floating point operations:
 - First, compute the exact result
 - Then round the result to make it fit into desired precision:
 - Possibly over/underflow if exponent outside of range
 - Possibly drop least-significant bits of mantissa to fit into M bit vector



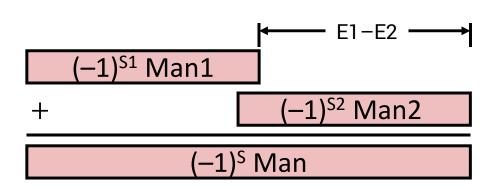
Floating Point Addition

Line up the binary points!

- \star (-1)^{S1}×Man1×2^{Exp1} + (-1)^{S2}×Man2×2^{Exp2}
 - Assume E1 > E2

$$1.010*2^{2}$$
 $1.0100*2^{2}$
+ $1.000*2^{-1}$ + $0.0001*2^{2}$
??? $1.0101*2^{2}$

- ❖ Exact Result: (−1)^S×Man×2^{Exp}
 - Sign S, mantissa Man:
 - Result of signed align & add
 - Exponent E: E1



- Adjustments:
 - If Man ≥ 2, shift Man right, increment E
 - if Man < 1, shift Man left k positions, decrement E by k
 - Over/underflow if E out of range
 - Round Man to fit mantissa precision

Floating Point Multiplication

$$(-1)^{S1} \times M1 \times 2^{E1} \times (-1)^{S2} \times M2 \times 2^{E2}$$

- * Exact Result: $(-1)^S \times M \times 2^E$
 - Sign S: s1 ^ s2
 - Mantissa Man: M1 × M2
 - Exponent E: E1 + E2
- Adjustments:
 - If Man ≥ 2, shift Man right, increment E
 - Over/underflow if E out of range
 - Round Man to fit mantissa precision

Mathematical Properties of FP Operations

- Exponent overflow yields +∞ or -∞
- ❖ Floats with value +∞, -∞, and NaN can be used in operations
 - Result usually still $+\infty$, $-\infty$, or NaN; but not always intuitive
- Floating point operations do not work like real math, due to rounding

 - Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2
 30.00000000000003553 30
 - Not cumulative
 - Repeatedly adding a very small number to a large one may do nothing

Summary

Floating point approximates real numbers:

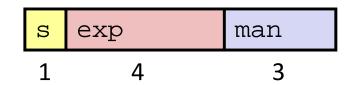
- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = 2^{w-1}-1)
 - Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

Exponent	Mantissa	Meaning
0x00	0	± 0
0x00	non-zero	± denorm num
0x01 – 0xFE	anything	± norm num
0xFF	0	± 8
0xFF	non-zero	NaN

BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

Tiny Floating Point Example



- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1}-1=7$
 - The last three bits are the mantissa

- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

	SE	M	Exp	Value
Denormalized numbers	0 0000	000	-6	0
	0 0000	001	-6	1/8*1/64 = 1/512 closest to zero
	0 0000	010	-6	2/8*1/64 = 2/512
	•••			
	0 0000	110	-6	6/8*1/64 = 6/512
	0 0000	111	-6	7/8*1/64 = 7/512 largest denorm
N 1:1	0 0001	. 000	-6	8/8*1/64 = 8/512 smallest norm
	0 0001	001	-6	9/8*1/64 = 9/512
	•••			
	0 0110	110	-1	14/8*1/2 = 14/16
	0 0110	111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0 0111	. 000	0	8/8*1 = 1
numbers	0 0111	. 001	0	9/8*1 = 9/8 closest to 1 above
	0 0111	010	0	10/8*1 = 10/8
	•••			
	0 1110	110	7	14/8*128 = 224
	0 1110	111	7	15/8*128 = 240 largest norm
	0 1111	. 000	n/a	inf

Special Properties of Encoding

- Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^{-} = 0^{+} = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity