Floating Point
CSE 351 Autumn 2017

Instructor:
Justin Hsia

Teaching Assistants:
Lucas Wotton Michael Zhang Parker DeWilde Ryan Wong
Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan

http://xkcd.com/571/
Administrivia

- Lab 1 Prelim due tonight at 11:59pm
 - Only submit `bits.c`
- Lab 1 due Friday (10/13)
 - Submit `bits.c, pointer.c, lab1reflect.txt`
- Homework 2 released tomorrow, due 10/20
 - On Integers, Floating Point, and x86-64
Unsigned Multiplication in C

Operands:

\[w \text{ bits} \]

\[u \]

\[* \]

\[v \]

True Product:

\[2w \text{ bits} \]

\[u \cdot v \]

Discard \(w \) bits:

\[w \text{ bits} \]

\[\text{UMult}_w(u \ , \ v) \]

- **Standard Multiplication Function**
 - Ignores high order \(w \) bits

- **Implements Modular Arithmetic**
 - \[\text{UMult}_w(u \ , \ v) = u \cdot v \mod 2^w \]
Multiplication with shift and add

- Operation \(u \ll k \) gives \(u \times 2^k \)
 - Both signed and unsigned

Operands: \(w \) bits

True Product: \(w + k \) bits

Discard \(k \) bits: \(w \) bits

Examples:
- \(u \ll 3 \) \(\equiv \) \(u \times 8 \)
- \(u \ll 5 \) \(- u \ll 3 \) \(\equiv \) \(u \times 24 \) \(\rightarrow 32 - 8 \)
- \(u \ll 4 \) \(+ u \ll 3 \) \(\rightarrow 16 + 8 \)
- Most machines shift and add faster than multiply
 - *Compiler generates this code automatically*
Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses

- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10^23) — Avogadro's number
 - Very small numbers (e.g. 6.626×10^{-34}) — Planck's constant
 - Special numbers (e.g. ∞, NaN)
Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
Representation of Fractions

- “Binary Point,” like decimal point, signifies boundary between integer and fractional parts:

 Example 6-bit representation:

 \[xx \cdot yyyyy \]

 \[2^1 \xrightarrow{2^0} 2^{-1} \xrightarrow{2^{-2}} 2^{-3} \xrightarrow{2^{-4}} \]

 \[0.5 \xrightarrow{0.25} 0.125 \xrightarrow{0.0625} \]

- Example: \(10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}\)

- Binary point numbers that match the 6-bit format above range from 0 (00.0000\(_2\)) to 3.9375 (11.1111\(_2\))

\[
= 4 - 2^{-4} + \frac{1}{100.0000}
\]
Scientific Notation (Decimal)

- **Normalized form**: exactly one digit (non-zero) to left of decimal point

- Alternatives to representing 1/1,000,000,000
 - **Normalized**: \(1.0 \times 10^{-9} \)
 - Not normalized: \(0.1 \times 10^{-8}, 10.0 \times 10^{-10} \)
Scientific Notation (Binary)

- Computer arithmetic that supports this called **floating point** due to the “floating” of the binary point
 - Declare such variable in C as `float` (or `double`)
Scientific Notation Translation

- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$

- Convert from binary point to normalized scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$

- Practice: Convert 11.375_{10} to binary scientific notation (normalized)
 $8 + 2 + 1 + 0.25 + 0.125$
 $2^3 + 2^1 + 2^0 + 2^{-2} + 2^{-3} = 1011.011_2 = 1.011011 \times 2^3$

- Practice: Convert $1/5$ to binary
 $\frac{1}{5} - \frac{1}{8} = \frac{3}{40}$, $\frac{3}{40} - \frac{1}{16} = \frac{1}{80} = \frac{1}{16} \left(\frac{1}{5} \right)$
 $\frac{1}{5} = \frac{1}{8} + \frac{1}{16} + \frac{1}{16} \left(\frac{1}{5} \right)$
 $= 0.0011_2$
Floating Point Topics

- Fractional binary numbers
- **IEEE floating-point standard**
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won’t cover
 - It’s a 58-page standard...
IEEE Floating Point

- **IEEE 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs

- Driven by numerical concerns
 - **Scientists**/numerical analysts want them to be as *real* as possible
 - **Engineers** want them to be *easy to implement* and *fast*
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - **Float operations can be an order of magnitude slower than integer ops**

\[\text{FLOPs} \]
Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: \(\pm 1 \times \text{Mantissa} \times 2^{\text{Exponent}} \)
 - Bit Fields: \((-1)^{S} \times 1.M \times 2^{(E-\text{bias})}\)

- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector \(M \)
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector \(E \)

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 bit</td>
<td>8 bits</td>
<td>23 bits</td>
</tr>
</tbody>
</table>

3 separate fields within 32 bits
The Exponent Field

- **Use biased notation**
 - Read exponent as unsigned, but with bias of \(2^{w-1}-1 = 127\)
 - Representable exponents roughly \(\frac{1}{2}\) positive and \(\frac{1}{2}\) negative
 - Exponent 0 (\(\text{Exp} = 0\)) is represented as \(E = 0b \ 0111 \ 1111\)

- **Why biased?**
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two’s complement

- **Practice:** To encode in biased notation, add the bias then encode in unsigned:
 - \(\text{Exp} = 1\) → 128 → \(E = 0b \ 0100 \ 0000\)
 - \(\text{Exp} = 127\) → 254 → \(E = 0b \ 1111 \ 1110\)
 - \(\text{Exp} = -63\) → 64 → \(E = 0b \ 0100 \ 0000\)
The Mantissa (Fraction) Field

\[(-1)^S \times (1 \cdot M) \times 2^{(E - \text{bias})} \]

- Note the implicit 1 in front of the M bit vector
 - Example: 0b 0011 1111 1100 0000 0000 0000 0000 0000 is read as 1.1₂ = 1.5₁₀, not 0.1₂ = 0.5₁₀
 - Gives us an extra bit of precision

- Mantissa “limits”
 - Low values near \(M = 0b0...0 \) are close to \(2^{E} \)
 - High values near \(M = 0b1...1 \) are close to \(2^{E+1} \)
Peer Instruction Question

What is the correct value encoded by the following floating point number?

\[\begin{array}{c}
S & E & M \\
\text{0b 0 10000000 11000000000000000000000} \\
\text{(128 - 127)} & \text{Exp = 1} & \text{Man = 1.110...0 (implicit)} \\
\end{array} \]

A. +0.75
B. +1.5
C. +2.75
D. +3.5
E. We’re lost...

\[+\frac{1.11_2}{2} \times 2^1 \]

\[1.11_2 = 2^1 + 2^0 + 2^{-1} = 3.5 \]
Precision and Accuracy

- **Precision** is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy

- **Accuracy** is a measure of the difference between the actual value of a number and its computer representation

 - *High precision permits high accuracy but doesn’t guarantee it. It is possible to have high precision but low accuracy.*

 - **Example:** float pi = 3.14;
 - pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)
Need Greater Precision?

- **Double Precision** (vs. Single Precision) in 64 bits

- C variable declared as `double`
- Exponent bias is now $2^{10} - 1 = 1023$, $\text{bias} = 2^{10} - 1$
- **Advantages:** greater precision (larger mantissa), greater range (larger exponent)
- **Disadvantages:** more bits used, slower to manipulate
Representing Very Small Numbers

- But wait... what happened to zero?
 - Using standard encoding $0x00000000 = 1.0 \times 2^{-127} \neq 0$
 - **Special case:** E and M all zeros = 0
 - Two zeros! But at least $0x00000000 = 0$ like integers
 - $0x80000000 = -\infty$

- New numbers closest to 0:
 - $a = 1.0...0_2 \times 2^{-126} = 2^{-126}$
 - $b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$
 - Normalization and implicit 1 are to blame
 - **Special case:** $E = 0$, $M \neq 0$ are denormalized numbers
Denorm Numbers

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though $E = 0x00$

- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{two} \times 2^{-126} = \pm 2^{-126}$
 - Smallest denorm: $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number
Other Special Cases

- \(E = 0xFF, M = 0: \pm \infty \)
 - e.g. division by 0
 - Still work in comparisons!

- \(E = 0xFF, M \neq 0: \) Not a Number (NaN)
 - e.g. square root of negative number, 0/0, \(\infty - \infty \)
 - NaN propagates through computations
 - Value of \(M \) can be useful in debugging

- New largest value (besides \(\infty \))?
 - \(E = 0xFF \) has now been taken!
 - \(E = 0xFE \) has largest: \(1.1...12 \times 2^{127} = 2^{128} - 2^{104} \)
Floating Point Encoding Summary

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Mantissa</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
Summary

- Floating point approximates real numbers:
 - Handles large numbers, small numbers, special numbers
 - Exponent in biased notation (bias = $2^{w-1}-1$)
 - Outside of representable exponents is overflow and underflow
 - Mantissa approximates fractional portion of binary point
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

<table>
<thead>
<tr>
<th>Exponent</th>
<th>Mantissa</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td>0</td>
<td>± 0</td>
</tr>
<tr>
<td>0x00</td>
<td>non-zero</td>
<td>± denorm num</td>
</tr>
<tr>
<td>0x01 – 0xFE</td>
<td>anything</td>
<td>± norm num</td>
</tr>
<tr>
<td>0xFF</td>
<td>0</td>
<td>± ∞</td>
</tr>
<tr>
<td>0xFF</td>
<td>non-zero</td>
<td>NaN</td>
</tr>
</tbody>
</table>
An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don’t need to read these, the information is “fair game.”
Tiny Floating Point Example

- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1} - 1 = 7$
 - The last three bits are the mantissa

- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞
Dynamic Range (Positive Only)

<table>
<thead>
<tr>
<th>S</th>
<th>E</th>
<th>M</th>
<th>Exp</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0000 000</td>
<td>-6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0000 001</td>
<td>-6</td>
<td>1/8*1/64 = 1/512</td>
<td>closest to zero</td>
</tr>
<tr>
<td>0</td>
<td>0000 010</td>
<td>-6</td>
<td>2/8*1/64 = 2/512</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0000 110</td>
<td>-6</td>
<td>6/8*1/64 = 6/512</td>
<td>largest denorm</td>
</tr>
<tr>
<td>0</td>
<td>0000 111</td>
<td>-6</td>
<td>7/8*1/64 = 7/512</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0001 000</td>
<td>-6</td>
<td>8/8*1/64 = 8/512</td>
<td>smallest norm</td>
</tr>
<tr>
<td>0</td>
<td>0001 001</td>
<td>-6</td>
<td>9/8*1/64 = 9/512</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0110 110</td>
<td>-1</td>
<td>14/8*1/2 = 14/16</td>
<td>closest to 1 below</td>
</tr>
<tr>
<td>0</td>
<td>0110 111</td>
<td>-1</td>
<td>15/8*1/2 = 15/16</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0111 000</td>
<td>0</td>
<td>8/8*1 = 1</td>
<td>closest to 1 above</td>
</tr>
<tr>
<td>0</td>
<td>0111 001</td>
<td>0</td>
<td>9/8*1 = 9/8</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0111 010</td>
<td>0</td>
<td>10/8*1 = 10/8</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1110 110</td>
<td>7</td>
<td>14/8*128 = 224</td>
<td>largest norm</td>
</tr>
<tr>
<td>0</td>
<td>1110 111</td>
<td>7</td>
<td>15/8*128 = 240</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>1111 000</td>
<td>n/a</td>
<td>inf</td>
<td></td>
</tr>
</tbody>
</table>
Special Properties of Encoding

- Floating point zero \((0^+)\) exactly the same bits as integer zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider \(0^- = 0^+ = 0\)
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity