Floating Point

CSE 351 Autumn 2017

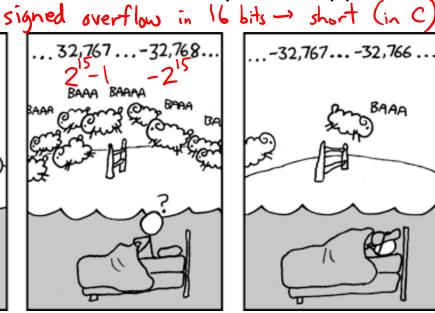
Instructor:

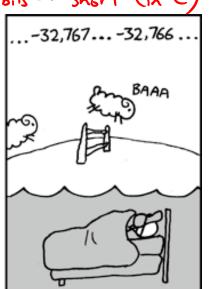
Justin Hsia

Teaching Assistants:

Lucas Wotton Parker DeWilde Ryan Wong Michael Zhang

Sam Wolfson Sam Gehman Vinny Palaniappan Savanna Yee



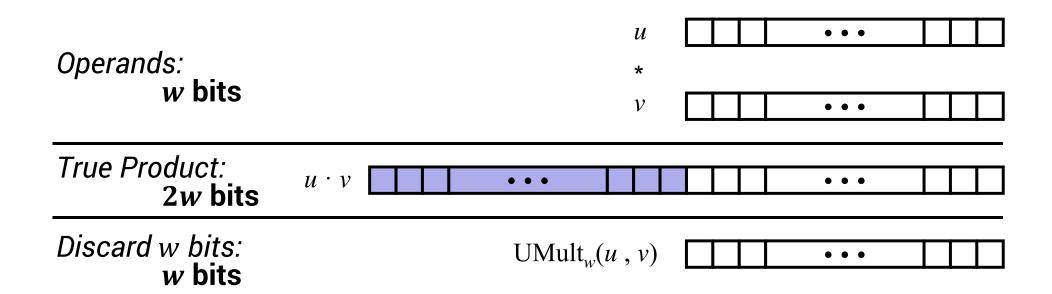


http://xkcd.com/571/

Administrivia

- Lab 1 Prelim due tonight at 11:59pm
 - Only submit bits.c
- Lab 1 due Friday (10/13)
 - Submit bits.c, pointer.c, lab1reflect.txt
- Homework 2 released tomorrow, due 10/20
 - On Integers, Floating Point, and x86-64

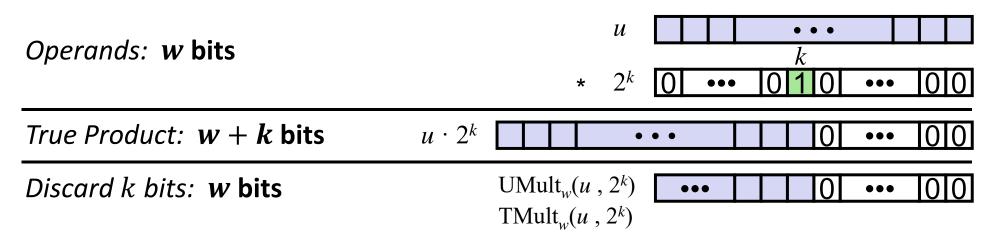
Unsigned Multiplication in C



- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic
 - UMult_w $(u, v) = u \cdot v \mod 2^w$

Multiplication with shift and add

- ❖ Operation u<<k gives u*2^k
 - Both signed and unsigned



Examples:

- u < < 3 == u * 8
- $u < < 5 u < < 3 == u * 24 \rightarrow 32 8$ u < < 4 + u < < 3
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Number Representation Revisited

- What can we represent in one word?
 - Signed and Unsigned Integers
 - Characters (ASCII)
 - Addresses
- How do we encode the following:
 - Real numbers (e.g. 3.14159)
 - Very large numbers (e.g. 6.02×10²³) Avogadro's
 - Very small numbers (e.g. 6.626×10⁻³⁴) Planck 's
 - Special numbers (e.g. ∞, NaN)

Floating Point

Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

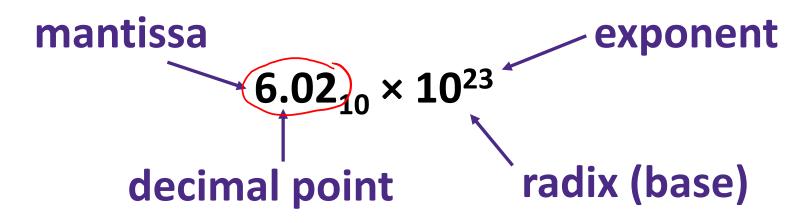
Representation of Fractions

"Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation:

- * Example: $10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}$
- * Binary point numbers that match the 6-bit format $\sqrt{2^{-1}}$ above range from $\sqrt{2}$ (00.0000₂) to $\sqrt{3.9375}$ (11.1111₂) = $4-2^{-1}$

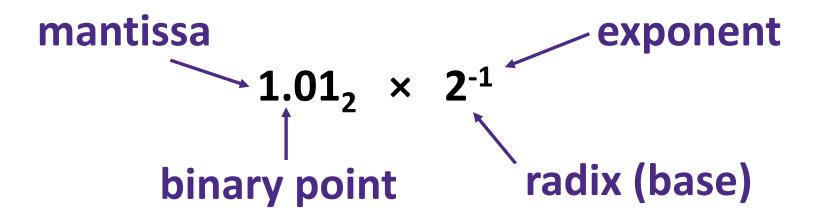
Scientific Notation (Decimal)



- Normalized form: exactly one digit (non-zero) to left of decimal point
- Alternatives to representing 1/1,000,000,000
 - Normalized:
 - Not normalized:

$$(1.0\times10^{-9}) \times (1.0\times10^{-9}) \times (1.0\times10^{-10}) \times (1.0\times1$$

Scientific Notation (Binary)



- Computer arithmetic that supports this called floating point due to the "floating" of the binary point
 - Declare such variable in C as float (or double)

Scientific Notation Translation

$$2^{-1} = 0.5$$
 $2^{-2} = 0.25$
 $2^{-3} = 0.125$
 $2^{-4} = 0.0625$

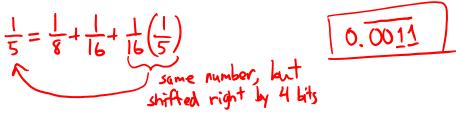
- Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$
- Convert from binary point to normalized scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$
- * **Practice:** Convert 11.375₁₀ to binary scientific notation (normalized)

$$8+2+1+6.2\hat{S}+0.125$$

 $2^{3}+2^{4}+2^{6}+2^{-2}+2^{-3}=1011.011.2=1.011011\times2^{3}$

Practice: Convert 1/5 to binary

$$\frac{1}{5} - \frac{1}{8} = \frac{3}{40}$$
, $\frac{3}{40} - \frac{1}{16} = \frac{1}{80} = \frac{1}{16} \left(\frac{1}{5}\right)$



Floating Point Topics

- Fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

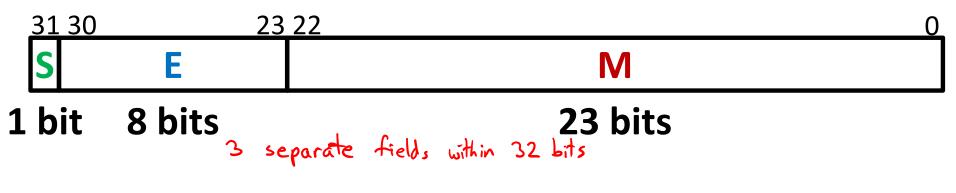
- There are many more details that we won't cover
 - It's a 58-page standard...

IEEE Floating Point

- **IEEE 754**
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs
- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible competing
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops used in computer benchmarks

Floating Point Encoding

- Use normalized, base 2 scientific notation:
 - Value: $\pm 1 \times Mantissa \times 2^{Exponent}$
 - Bit Fields: $(-1)^S \times 1.M \times 2^{(E-bias)}$
- Representation Scheme:
 - Sign bit (0 is positive, 1 is negative)
 - Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M
 - Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E



The Exponent Field

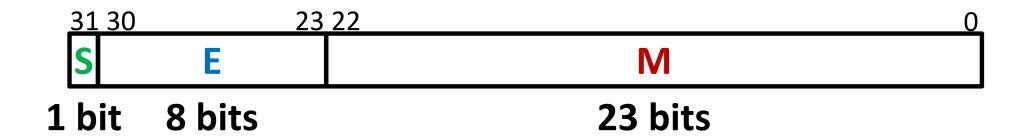
Use biased notation

- Read exponent as unsigned, but with bias of $2^{w-1}-1 = 127$
- Representable exponents roughly ½ positive and ½ negative
- Exponent 0 (Exp = 0) is represented as E = 0b 0111 1111 = 2^{4} -bias
- Why biased?
 - Makes floating point arithmetic easier
 - Makes somewhat compatible with two's complement
- Practice: To encode in biased notation, add the bias then encode in unsigned:

■ Exp = 1
$$\stackrel{\text{+bias}}{\rightarrow}$$
 128 \rightarrow E = 0b|6360006

■ Exp =
$$-63 \rightarrow 64 \rightarrow E = 0b \sqrt{00}$$

The Mantissa (Fraction) Field



$$(-1)^{s} \times (1.M) \times 2^{(E-bias)}$$

- - Gives us an extra bit of precision
- Mantissa "limits"
 - Low values near M = 0b0...0 are close to $2^{Exp} = 4.1...11 \times 2^{Exp}$
 - High values near M = 0b1...1 are close to $2^{Exp+1} = 2^{Exp}(2-2^{-23})$

Peer Instruction Question

- What is the correct value encoded by the following floating point number? bias=127
 - 10000000 11000000000

$$\begin{array}{ccc}
128 - 127 \\
\hline
\text{Exp} = 1
\end{array}$$

Man = 1.110... 0

$$A. + 0.75$$

$$B. + 1.5$$

$$C. + 2.75$$

$$+1.11_2 \times 2^1$$

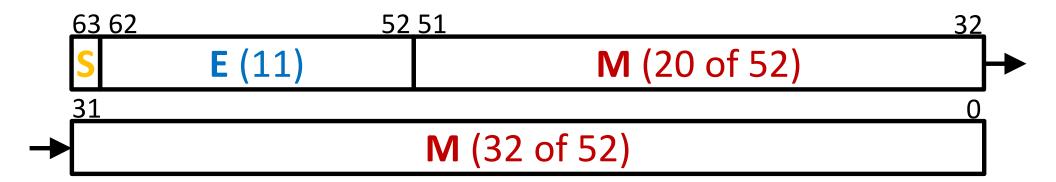
$$11.1_2 = 2^1 + 2^0 + 2^{-1} = 3.5$$

Precision and Accuracy

- Precision is a count of the number of bits in a computer word used to represent a value
 - Capacity for accuracy
- Accuracy is a measure of the difference between the actual value of a number and its computer representation
 - High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy.
 - Example: float pi = 3.14;
 - pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits



- C variable declared as double
- Exponent bias is now $2^{10}-1 = 1023$, $\frac{1}{6}$ = $2^{10}-1$
- Advantages: greater precision (larger mantissa), greater range (larger exponent)
- Disadvantages: more bits used, slower to manipulate

Representing Very Small Numbers

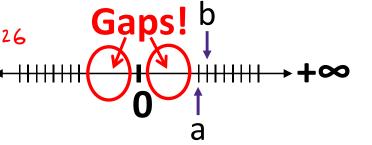
- ♦ But wait... what happened to zero?

 S=0, E=-127, M=0

 - Special case: E and M all zeros = 0
 - Two zeros! But at least 0x00000000 = 0 like integers 0x80000000 = -0
- * New numbers closest to 0: (E = 06 0000 0001) $\rightarrow Exp = -126$

$$a = 1.0...0_2 \times 2^{-126} = 2^{-126}$$

$$b = 1.0...01_2 \times 2^{-126} = 2^{-126} + 2^{-149}$$



- Normalization and implicit 1 are to blame
- Special case: E = 0, M ≠ 0 are denormalized numbers

Denorm Numbers

This is extra (non-testable) material

- Denormalized numbers
 - No leading 1
 - Uses implicit exponent of -126 even though E = 0x00
- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: $\pm 1.0...0_{two} \times 2^{-126} = \pm 2^{-126}$
- So much closer to 0
- Smallest denorm: $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

Other Special Cases

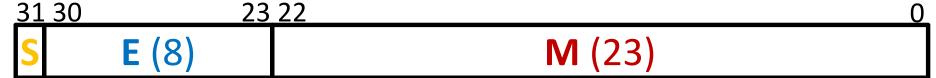
- *e.g.* division by 0
- Still work in comparisons!
- \star E = 0xFF, M \neq 0: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, $\infty-\infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging (M tells you cause of NaN)
- New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - **E** = 0xFE has largest: $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$

Floating Point Encoding Summary

	Exponent	Mantissa	Meaning
smallest E { (all 0's)	0x00	0	± 0
	0x00	non-zero	± denorm num
everything { else	0x01 – 0xFE	anything	± norm num
largest E (all 1's)	OxFF	0	± ∞
	OxFF	non-zero	NaN

Summary

Floating point approximates real numbers:



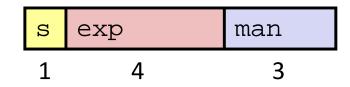
- Handles large numbers, small numbers, special numbers
- Exponent in biased notation (bias = 2^{w-1}-1)
 - Outside of representable exponents is overflow and underflow
- Mantissa approximates fractional portion of binary point
 - Implicit leading 1 (normalized) except in special cases
 - Exceeding length causes rounding

Exponent	Mantissa	Meaning
0x00	0	± 0
0x00	non-zero	± denorm num
0x01 – 0xFE	anything	± norm num
0xFF	0	± ∞
0xFF	non-zero	NaN

BONUS SLIDES

An example that applies the IEEE Floating Point concepts to a smaller (8-bit) representation scheme. These slides expand on material covered today, so while you don't need to read these, the information is "fair game."

Tiny Floating Point Example



- 8-bit Floating Point Representation
 - The sign bit is in the most significant bit (MSB)
 - The next four bits are the exponent, with a bias of $2^{4-1}-1=7$
 - The last three bits are the mantissa

- Same general form as IEEE Format
 - Normalized binary scientific point notation
 - Similar special cases for 0, denormalized numbers, NaN, ∞

Dynamic Range (Positive Only)

	SE	M	Exp	Value
	0 0000	000	-6	0
	0 0000	001	-6	1/8*1/64 = 1/512 closest to zero
Denormalized	0 0000	010	-6	2/8*1/64 = 2/512
numbers	•••			
	0 0000	110	-6	6/8*1/64 = 6/512
	0 0000) 111	-6	7/8*1/64 = 7/512 largest denorm
	0 0001	000	-6	8/8*1/64 = 8/512 smallest norm
	0 0001	001	-6	9/8*1/64 = 9/512
	•••			
	0 0110	110	-1	14/8*1/2 = 14/16
Normalizad	0 0110) 111	-1	15/8*1/2 = 15/16 closest to 1 below
Normalized	0 0111	000	0	8/8*1 = 1
numbers	0 0111	001	0	9/8*1 = 9/8 closest to 1 above
	0 0111	010	0	10/8*1 = 10/8
	•••			
	0 1110	110	7	14/8*128 = 224
	0 1110	111	7	15/8*128 = 240 largest norm
	0 1111	000	n/a	inf

Special Properties of Encoding

- Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0
- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider $0^{-} = 0^{+} = 0$
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity