

Administrivia Lab 1 Prelim due tonight at 11:59pm Only submit bits.c Lab 1 due Friday (10/13) Submit bits.c, pointer.c, lablreflect.txt Homework 2 released tomorrow, due 10/20 On Integers, Floating Point, and x86-64

Representation of Fractions

 "Binary Point," like decimal point, signifies boundary between integer and fractional parts:

Example 6-bit representation: 2^1 2^0 2^{-1} 2^{-2} 2^{-3} 2^{-4}

- * Example: $10.1010_2 = 1 \times 2^1 + 1 \times 2^{-1} + 1 \times 2^{-3} = 2.625_{10}$
- Binary point numbers that match the 6-bit format above range from 0 (00.0000₂) to 3.9375 (11.1111₂)

Scientific Notation (Decimal)

mantissa exponent
6.02₁₀ × 10²³
decimal point radix (base)

- Normalized form: exactly one digit (non-zero) to left of decimal point
- Alternatives to representing 1/1,000,000,000

Normalized:
1.0×10-9

• Not normalized: 0.1×10⁻⁸,10.0×10⁻¹⁰

Scientific Notation (Binary)

mantissa exponent

1.01₂ × 2⁻¹

binary point radix (base)

- Computer arithmetic that supports this called floating point due to the "floating" of the binary point
 - Declare such variable in C as float (or double)

Scientific Notation Translation

- · Convert from scientific notation to binary point
 - Perform the multiplication by shifting the decimal until the exponent disappears
 - Example: $1.011_2 \times 2^4 = 10110_2 = 22_{10}$
 - Example: $1.011_2 \times 2^{-2} = 0.01011_2 = 0.34375_{10}$
- * Convert from binary point to normalized scientific notation
 - Distribute out exponents until binary point is to the right of a single digit
 - Example: $1101.001_2 = 1.101001_2 \times 2^3$
- Practice: Convert 11.375₁₀ to binary scientific notation
- Practice: Convert 1/5 to binary

Floating Point Topics

- Fractional binary numbers
- * IEEE floating-point standard
- Floating-point operations and rounding
- * Floating-point in C
- There are many more details that we won't cover
 - It's a 58-page standard...

IEEE Floating Point

- ◆ IEEE 754
 - Established in 1985 as uniform standard for floating point arithmetic
 - Main idea: make numerically sensitive programs portable
 - Specifies two things: representation and result of floating operations
 - Now supported by all major CPUs
- Driven by numerical concerns
 - Scientists/numerical analysts want them to be as real as possible
 - Engineers want them to be easy to implement and fast
 - In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - · Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer ops

12

Floating Point Encoding Use normalized, base 2 scientific notation: Value: ±1 × Mantissa × 2 Exponent Bit Fields: (-1)^S × 1.M × 2(E-bias) Representation Scheme: Sign bit (0 is positive, 1 is negative) Mantissa (a.k.a. significand) is the fractional part of the number in normalized form and encoded in bit vector M Exponent weights the value by a (possibly negative) power of 2 and encoded in the bit vector E 31.30 23.22 0 S E M 1 bit 8 bits 23 bits

Precision and Accuracy Precision is a count of the number of bits in a computer word used to represent a value Capacity for accuracy Accuracy is a measure of the difference between the actual value of a number and its computer representation High precision permits high accuracy but doesn't guarantee it. It is possible to have high precision but low accuracy. Example: float pi = 3.14; pi will be represented using all 24 bits of the mantissa (highly precise), but is only an approximation (not accurate)

Representing Very Small Numbers But wait... what happened to zero? Using standard encoding 0x00000000 = Special case: E and M all zeros = 0 Two zeros! But at least 0x000000000 = 0 like integers New numbers closest to 0: a = 1.0...0₂×2⁻¹²⁶ = 2⁻¹²⁶ b = 1.0...01₂×2⁻¹²⁶ = 2⁻¹²⁶ + 2⁻¹⁴⁹ Normalization and implicit 1 are to blame Special case: E = 0, M ≠ 0 are denormalized numbers

Denorm Numbers

This is extra (non-testable) material

- * Denormalized numbers
 - No leading 1
 - Uses implicit exponent of −126 even though E = 0x00
- Denormalized numbers close the gap between zero and the smallest normalized number
 - Smallest norm: ± 1.0...0_{two}×2⁻¹²⁶ = ± 2⁻¹²⁶
 - Smallest denorm: $\pm 0.0...01_{two} \times 2^{-126} = \pm 2^{-149}$
 - There is still a gap between zero and the smallest denormalized number

Other Special Cases

- - e.g. division by 0
 - Still work in comparisons!
- E = 0xFF, M ≠ 0: Not a Number (NaN)
 - e.g. square root of negative number, 0/0, $\infty \infty$
 - NaN propagates through computations
 - Value of M can be useful in debugging
- New largest value (besides ∞)?
 - E = 0xFF has now been taken!
 - **E** = 0xFE has largest: $1.1...1_2 \times 2^{127} = 2^{128} 2^{104}$

Floating Point Encoding Summary

Exponent	Mantissa	Meaning	
0x00	0	± 0	
0x00	non-zero	± denorm num	
0x01 - 0xFE	anything	± norm num	
0xFF	0	± ∞	
0xFF	non-zero	NaN	

What ranges are NOT representable? ■ Between largest norm and infinity Overflow ■ Between zero and smallest denorm Underflow ■ Between norm numbers? Rounding ❖ Given a FP number, what's the bit pattern of the next largest representable number? ■ What is this "step" when Exp = 0? ■ What is this "step" when Exp = 100? ❖ Distribution of values is denser toward zero

Infinity

Floating Point Topics

- Fractional binary numbers
- * IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C
- There are many more details that we won't cover
 - It's a 58-page standard...

25

Floating Point Operations: Basic Idea Value = (-1)^S×Mantissa×2^{Exponent} SEM * x +_f y = Round(x + y) * x *_f y = Round(x * y) * Basic idea for floating point operations: First, compute the exact result Then round the result to make it fit into desired precision: Possibly over/underflow if exponent outside of range Possibly drop least-significant bits of mantissa to fit into M bit vector

Over/underflow if E out of range

• Round Man to fit mantissa precision

Mathematical Properties of FP Operations

Exponent overflow yields +∞ or -∞

Floats with value +∞, -∞, and NaN can be used in operations

Result usually still +∞, -∞, or NaN; but not always intuitive

Floating point operations do not work like real math, due to rounding

Not associative: (3.14+1e100)-1e100 != 3.14+(1e100-1e100)

Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2

30.00000000000003553

Not cumulative

Repeatedly adding a very small number to a large one may do nothing

Summary Floating point approximates real numbers: M (23) Handles large numbers, small numbers, special numbers Exponent in biased notation (bias = 2^{w-1}-1) · Outside of representable exponents is overflow and underflow Mantissa approximates fractional portion of binary point · Implicit leading 1 (normalized) except in special cases · Exceeding length causes rounding Mantissa Exponent Meaning 0x00 non-zero ± denorm num 0x01 - 0xFE anything ± norm num non-zero

W UNIVERSITY of WASI	HINGTO	ON		L06: F	loating Point		CSE351, Autumn 20
Dynam	ic I	Ran	ige (I	Positi	ive Only	·)	
	s	E	м	Exp	Value		
Denormalized	0	0000	000	-6	0		
	0	0000	001	-6	1/8*1/64 =	1/512	closest to zero
	0	0000	010	-6	2/8*1/64 =	2/512	
numbers	•••						
		0000			6/8*1/64 =		
	-		111	-			largest denorm
Normalized							smallest norm
	0	0001	001	-6	9/8*1/64 =	9/512	
	-	0110		-1			
	-		111				closest to 1 below
numbers	-	0111			8/8*1 =		
numbers	-	0111		0			closest to 1 above
	0	0111	010	0	10/8*1 =	10/8	
	-		110	7	14/8*128 =		
		1110		7	15/8*128 =	240	largest norm
	0	1111	000	n/a	inf		
							3

Special Properties of Encoding

- * Floating point zero (0 $^{+}$) exactly the same bits as integer zero
 - All bits = 0
- * Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider 0⁻ = 0⁺ = 0
 - NaNs problematic
 - · Will be greater than any other values
 - · What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - · Normalized vs. infinity

34