Floating Point
CSE 351 Autumn 2017

Instructor:
Justin Hsia

Teaching Assistants:
Lucas Wotton Michael Zhang  Parker DeWilde Ryan Wong

Sam Gehman Sam Wolfson Savanna Yee Vinny Palaniappan

L06: Floating Point CSE351, Autumn 2017

Unsigned Multiplication in C

Operands: N

wbits U T
True Product: . 500 XD

owhits UV O TTTTTTT [11]
Discard w bits: UMult,u,v) [TTT—-+TTTT]

w bits

« Standard Multiplication Function
= |gnores high order w bits
« Implements Modular Arithmetic

= UMult,(u, v)=u-v mod 2%

L06: Floating Point (CSE3S1, Autumn 2017

Number Representation Revisited

» What can we represent in one word?
® Signed and Unsigned Integers
= Characters (ASCII)
= Addresses
« How do we encode the following:
= Real numbers (e.g. 3.14159)
= Very large numbers (e.g. 6.02x1023)
= Very small numbers (e.g. 6.626x1034)
® Special numbers (e.g. oo, NaN)

Floating
Point

L06: Floating Point

Administrivia

» Lab 1 Prelim due tonight at 11:59pm
= Only submitbits.c

« Lab 1 due Friday (10/13)

+ Homework 2 released tomorrow, due 10/20
= On Integers, Floating Point, and x86-64

= Submitbits.c, pointer.c, lablreflect.txt

CSE351, Autumn 2017

Multiplication with shift and add

+ Operation u<<k gives u*2k

® Both signed and unsigned

Operands: w bits

v OT—=="T7T]
kK
+ 2 [0 == TOMI0[ == _T0[0]

True Product: w + k bits u-2¢ TTT XN [TTTol

XX [0] (0]

Discard k bits: w bits

TMult,(u , 24)
« Examples:
= u<<3 = u*38
" u<<5 - u<<3 == u * 24

= Most machines shift and add faster than multiply
« Compiler generates this code automatically

UMulty(u, 2 o TTTTO[ e TO[OI

L06: Floating Point

Floating Point Topics

» Fractional binary numbers
+ |EEE floating-point standard
« Floating-point operations and rounding
+ Floating-point in C

+ There are many more details that
we won'’t cover
" |t's a 58-page standard...

CSEAS1, Aitama 2017




Representation of Fractions

« “Binary Point,” like decimal point, signifies boundary
between integer and fractional parts:

XX.YYYy
PN

20 21 22 23 24

Example 6-bit
representation: 21

+ Example: 10.1010, = 1x21 + 1x2°1 + 1x2°3 = 2.625,,

« Binary point numbers that match the 6-bit format
above range from 0 (00.0000,) to 3.9375 (11.1111,)

L06: Floating Point CSE351, Autumn 2017

Scientific Notation (Binary)

mantissa
T>1.,01, x 21

exponent

binary point radix (base)

« Computer arithmetic that supports this called floating
point due to the “floating” of the binary point

= Declare such variable in C as Float (or double)

L06: Floating Point

Scientific Notation (Decimal)

mantissa
T~6.02,, x 102

exponent

decimal point radix (base)
=« Normalized form: exactly one digit (non-zero) to left
of decimal point

« Alternatives to representing 1/1,000,000,000
= Normalized: 1.0x10°
= Not normalized: 0.1x10%8,10.0x10°10

CSE351, Autumn 2017

L06: Floating Point

CSE28), Auramin 2017

Scientific Notation Translation

« Convert from scientific notation to binary point
= Perform the multiplication by shifting the decimal until the exponent
disappears
. Example: 1.011,x2* = 10110, = 22,
+ Example: 1.011,X22 =0.01011, = 0.34375,,
= Convert from binary point to normalized scientific notation
= Distribute out exponents until binary point is to the right of a single digit
+ Example: 1101.001, = 1.101001,%23

« Practice: Convert 11.375,, to binary scientific notation

» Practice: Convert 1/5 to binary

Floating Point Topics

+ Fractional binary numbers

« |EEE floating-point standard

« Floating-point operations and rounding
« Floating-point in C

+ There are many more details that
we won'’t cover
" |t's a 58-page standard...

L06: Floating Point

IEEE Floating Point

» |EEE 754
= Established in 1985 as uniform standard for floating point arithmetic
® Main idea: make numerically sensitive programs portable
= Specifies two things: representation and result of floating operations
= Now supported by all major CPUs

> Driven by numerical concerns

= Scientists/numerical analysts want them to be as real as possible

= Engineers want them to be easy to implement and fast

® Intheend:
« Scientists mostly won out
« Nice standards for rounding, overflow, underflow, but...
« Hard to make fast in hardware
- Float operations can be an order of magnitude slower than integer ops




L06: Floating Point

Floating Point Encoding

+ Use normalized, base 2 scientific notation:
+1 x Mantissa x 2&xponent

(_1)5 x 1.M x 2(E—bias)

« Representation Scheme:

" Value:
= Bit Fields:

= Sign bit (O is positive, 1 is negative)
® Mantissa (a.k.a. significand) is the fractional part of the
number in normalized form and encoded in bit vector M

Exponent weights the value by a (possibly negative) power
of 2 and encoded in the bit vector E

CSE351, Autumn 2017

3130 2322 0
Bl e | M |
1bit 8 bits 23 bits

L06: Floating Point

The Exponent Field

» Use biased notation

= Read exponent as unsigned, but with bias of 2%1-1 = 127
= Representable exponents roughly % positive and % negative
= Exponent O (Exp = 0) is represented as E =0b 0111 1111

« Why biased?

= Makes floating point arithmetic easier
= Makes somewhat compatible with two’s complement

« Practice: To encode in biased notation, add the bias then

The Mantissa (Fraction) Field

3130 2322
sl e | M
1 bit 8 bits 23 bits

(-1)° x (1 . M) x 2(E-bias)

+ Note the implicit 1 in front of the M bit vector

= Example: Ob 0011 1111 1100 0000 0000 0000 0000 0000
isreadas 1.1,=1.5,,, not 0.1,=0.5,,

= Gives us an extra bit of precision
+ Mantissa “limits”
= Low values near M = 0b0...0 are close to 25
= High values near M = 0b1...1 are close to 25°+1

encode in unsigned:

= Exp=1 - - E=0b
" Exp=127 > —>E=0b
" Exp=-63 — —E=0b

L06: Floating Point

Precision and Accuracy

+ Precision is a count of the number of bits in a
computer word used to represent a value
® Capacity for accuracy

« Accuracy is a measure of the difference between the
actual value of a number and its computer
representation

® High precision permits high accuracy but doesn’t guarantee
it. It is possible to have high precision but low accuracy.
= Example: Float pi = 3.14;
- pi will be represented using all 24 bits of the mantissa (highly
precise), but is only an approximation (not accurate)

CSE351, Autumn 2017

L06: Floating Point

Peer Instruction Question

» What is the correct value encoded by the following

floating point number?
= Ob 0 10000000 11000000000000000000000

= Vote at http://PollEv.com/justinh

+1.5

+2.75

+3.5

We're lost...

moowm»

L06: Floating Point

CSESS1, Autumn 2017

Need Greater Precision?

Double Precision (vs. Single Precision) in 64 bits

63 62 5251 32

] E(11) | M (20 of 52)

31 (0]
-»{ M (32 of 52) |

= Cvariable declared as double
= Exponent bias is now 29-1 = 1023
= Advantages: greater precision (larger mantissa),
greater range (larger exponent)

® Disadvantages: more bits used,
slower to manipulate

CSE351, Autumn 2017

CSE351, Autumn 2017




L06: Floating Point

Representing Very Small Numbers

« But wait... what happened to zero?
® Using standard encoding 0x00000000 =

= Special case: Eand M all zeros =0
- Two zeros! But at least 0x00000000 = 0 like integers

CSE351, Autumn 2017

+ New numbers closest to 0: Gaps! kf
" a=1.0..0,x2'126 = 2126 0o 400
" b=1.0..01,x2126 = 21264 2149 0 ;

® Normalization and implicit 1 are to blame
= Special case: E =0, M # 0 are denormalized numbers

Other Special Cases

» E=O0xFF, M= 0: +oo

L06: Floating Point

This is extra
(non-testable)
material

Denorm Numbers

. Denormalized numbers
" No leading 1
= Uses implicit exponent of =126 even though E = 0x00

. Denormalized numbers close the gap between zero
and the smallest normalized number
= Smallest norm: + 1.0...0,,,,x2126 = + 2-126
= Smallest denorm: + 0.0...01,,,,x2126 = + 2149

« There is still a gap between zero and the smallest denormalized
number

So much

/ closer to 0

L06: Floating Point

CSE351, Autumn 2017

Floating Point Encoding Summary

= e.g. division by 0
= Still work in comparisons!
+ E=0xFF, M #0: Not a Number (NaN)
= e.g. square root of negative number, 0/0, eo—co
= NaN propagates through computations
® Value of M can be useful in debugging
- New largest value (besides ==)?
® E = OxFF has now been taken!
® E=OxFE has largest: 1.1...1,x21%7 = 2128 2104

Distribution of Values

+ What ranges are NOT representable?
® Between largest norm and infinity ~ Overflow

= Between zero and smallest denorm  Underflow

= Between norm numbers? Rounding

« Given a FP number, what'’s the bit pattern of the next
largest representable number?
= What is this “step” when Exp = 0?
® What is this “step” when Exp = 100?

» Distribution of values is denser toward zero

Ak —k—d—h—h—h—okokk dokkk—h—h—k—k———A—&
-15 -10 -5 0 5 10 15
‘ 4 Denormalized A Normalized Infinity ‘

24

Exponent Mantissa Meaning
0x00 0 +0
0x00 non-zero +denorm num
0x01 — OxFE anything + norm num
OxFF 0 + oo
OxFF non-zero NaN

Floating Point Topics

« Fractional binary numbers

+ |EEE floating-point standard

« Floating-point operations and rounding
+ Floating-point in C

+ There are many more details that
we won'’t cover
" |t's a 58-page standard...




L06: Floating Point

CSE351, Autumn 2017

L06: Floating Point CSE351, Autumn 2017

Floating Point Operations: Basic Idea Floating Point Addition | Line up the binary points!

Value = (-1)’xMantissax2®eonent « (—1)S1xMan1x2EP1 + (-1)S2xMan2x2Exp2

. 1.010*22 1.0100%22
e 1 M Assume E1 > E2 +1.000%2-1 + 0.0001*22
22? 1.0101*22
+ Exact Result: (—1)>xManx2&®
+ X +¢ Y = Round(x + y) ) )
- - = Sign S, mantissa Man: f—— E1-E2 ——
*X g Y = Round(x y) « Result of signed align & add
" Exponent E: E1 +
« Basic idea for floating point operations: Adi [ (=1)5 Man ]
. 3 ments:
® First, compute the exact result justments
. S . ) .
® Then round the result to make it fit into desired precision: _If Man 22, Sh'ft Man right, lncrt.er.nent E
- Possibly over/underflow if exponent outside of range = if Man <1, shift Man left k positions, decrement E by k
« Possibly drop least-significant bits of mantissa to fit into M bit vector = QOver/underflow if E out of range

= Round Man to fit mantissa precision

L06: Floating Point

CSE351, Autumn 2017

L06: Floating Point CSE351, Autumn 2017

Floating Point Multiplication Mathematical Properties of FP Operations

@ (—1)S1xM1x 281 x (—1)32xM2x2F2 « Exponent overflow yields +oo or -oo

« Floats with value +oo, -oo, and NaN can be used in

+ Exact Result: (—1)5xMx 2 operations

= Sign S: s1/7s2
® Mantissa Man: M1 x M2
= Exponent E: E1+E2

= Result usually still +eo, -eo, or NaN; but not always intuitive

« Floating point operations do not work like real math,
due to rounding

= Not associative: (3.14+1e100)-1e100 != 3.14+(1e100-1e100)
« Adjustments: 0 3.14
= |f Man 2 2, shift Man right, increment E = Not distributive: 100*(0.1+0.2) != 100*0.1+100*0.2
= Over/underflow if E out of range 30.000000000000003553 30
® Round Man to fit mantissa precision ® Not cumulative

- Repeatedly adding a very small number to a large one may do nothing

L06: Floating Point

CSE351, Autumn 2017

L06: Floating Point CSESS1, Autumn 2017

Summary

+ Floating point approximates real numbers: B @ N U S S L i B E S
3130 2322 (0]

[l e | M (23) An example that applies the IEEE Floating Point

= Handles large numbers, small numbers, special numbers concepts to a smaller (8-bit) representation scheme.
= Exponent in biased notation (bias = 2%1-1) These slides expand on material covered today, so

- Outside of representable exponents is overflow and underflow while you don’t need to read these, the information is
= Mantissa approximates fractional portion of binary point “fair game.”

« Implicit leading 1 (normalized) except in special cases

- Exceeding length causes rounding

Exponent Mantissa Meaning
0x00 0 +0
0x00 non-zero + denorm num
0x01 — OxFE anything + norm num
OxFF 0 t oo
OxFF non-zero NaN 30




ORI T I AGTTET] . - ISR o e
- . . Dynamic Range (Positive Only)
Tiny Floating Point Example
S E M Exp Value
0 0000 000 -6 0
S | eX] man
. 0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
1 4 3 Denormalized 0 0000 010 -6 2/8*1/64 = 2/512
numbers
. . . . 0 0000 110 -6 6/8*1/64 = 6/512
+ 8-bit Floating Point Representation 00000 111 -6  7/8*1/64 = 7/512 largest denorm
= The sign bit is in the most significant bit (MSB) 0 0001 000 -6 8/8*1/64 = 8/512  smallest norm
) ) ] 0 0001 001 -6 9/8*1/64 = 9/512
= The next four bits are the exponent, with a bias of 241-1=7
. ) 0 0110 110 -1 14/8*1/2 = 14/16
L]
The last three bits are the mantissa ) 0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
Normalized g 0177 goo 0 8/8*1 =1
LUDREE 0 0111 001 O 9/8*1 = 9/8  closest to 1 above
+ Same general form as IEEE Format 0 0111 010 0O 10/8*1 = 10/8
® Normalized binary scientific point notation 0 1110 110 7 14/8*128 = 224
= Similar special cases for 0, denormalized numbers, NaN, e 8 ﬁig ééé Z/a %%8*128 =200 (e e
32 33

L06: Floating Point CSE351, Autumn 2017

Special Properties of Encoding

+ Floating point zero (0*) exactly the same bits as integer zero
= Allbits=0

+ Can (Almost) Use Unsigned Integer Comparison
= Must first compare sign bits
® Must consider 0"=0*=0
= NaNs problematic
< Will be greater than any other values
« What should comparison yield?
= Otherwise OK
+ Denorm vs. normalized
« Normalized vs. infinity

34




