Memory, Data, & Addressing II
CSE 351 Autumn 2017

Instructor:
Justin Hsia

Teaching Assistants:
Lucas Wotton
Michael Zhang
Parker DeWilde
Ryan Wong
Sam Gehman
Sam Wolfson
Savanna Yee
Vinny Palaniappan

http://xkcd.com/138/
Administrivia

- Lab 0 due today @ 11:59pm
 - *You will be revisiting this program throughout this class!*
- Homework 1 due Wednesday
 - Reminder: autograded, 20 tries, no late submissions
- Lab 1 released tomorrow
Review Questions

1) If the word size of a machine is 64-bits, which of the following is usually true? (pick all that apply)
 a) 64 bits is the size of a pointer
 b) 64 bits is the size of an integer
 c) 64 bits is the width of a register

2) (True/False) By looking at the bits stored in memory, I can tell if a particular 4-bytes is being used to represent an integer, floating point number, or instruction.

3) If the size of a pointer on a machine is 6 bits, the address space is how many bytes? $64B = 2^6B$
Memory, Data, and Addressing

- Representing information as bits and bytes
- Organizing and addressing data in memory
- **Manipulating data in memory using C**
- Boolean algebra and bit-level manipulations
Addresses and Pointers in C

- \& = “address of” operator
- * = “value at address” or “dereference” operator

```c
int* ptr;
int x = 5;
int y = 2;
ptr = &x;
y = 1 + *ptr;
```

- Declares a variable, `ptr`, that is a pointer to (i.e. holds the address of) an `int` in memory
- Declares two variables, `x` and `y`, that hold `ints`, and initializes them to 5 and 2, respectively
- Sets `ptr` to the address of `x` ("`ptr` points to `x""")
- Sets `y` to “1 plus the value stored at the address held by `ptr`. Because `ptr` points to `x`, this is equivalent to `y=1+x`;

What is *(&y)?
Assignment in C

- A variable is represented by a memory location
- Declaration ≠ initialization (initially holds “garbage”)
- `int x, y;`
 - `x` is at address 0x04, `y` is at 0x18
Assignment in C

- A variable is represented by a memory location
- Declaration ≠ initialization (initially holds “garbage”)
- `int x, y;`
 - `x` is at address 0x04, `y` is at 0x18

32-bit example
(pointers are 32-bits wide)

<table>
<thead>
<tr>
<th>Address</th>
<th>0x00</th>
<th>0x01</th>
<th>0x02</th>
<th>0x03</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x04</td>
<td>00</td>
<td>01</td>
<td>29</td>
<td>F3</td>
</tr>
<tr>
<td>0x08</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x0C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x14</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x18</td>
<td>01</td>
<td>00</td>
<td>00</td>
<td>00</td>
</tr>
<tr>
<td>0x1C</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x20</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x24</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

little-endian
Assignment in C

- left-hand side = right-hand side;
 - LHS must evaluate to a memory location
 - RHS must evaluate to a value (could be an address)
 - Store RHS value at LHS location

- `int x, y;
- `x = 0;`
Assignment in C

- left-hand side = right-hand side;
 - LHS must evaluate to a memory location
 - RHS must evaluate to a value (could be an address)
 - Store RHS value at LHS location

- `int x, y;`
- `x = 0;`
- `y = 0x3CD02700;`

32-bit example (pointers are 32-bits wide)

& = “address of”
* = “dereference”
Assignment in C

- left-hand side = right-hand side;
 - LHS must evaluate to a memory location
 - RHS must evaluate to a value (could be an address)
 - Store RHS value at LHS location
- `int x, y;`
- `x = 0;`
- `y = 0x3CD02700;`
- `x = y + 3;`
 - Get value at `y`, add 3, store in `x`

32-bit example (pointers are 32-bits wide)

& = “address of”
* = “dereference”
Assignment in C

- left-hand side = right-hand side;
 - LHS must evaluate to a memory location
 - RHS must evaluate to a value (could be an address)
 - Store RHS value at LHS location

- `int x, y;`
- `x = 0;`
- `y = 0x3CD02700;`
- `x = y + 3;`
 - Get value at `y`, add 3, store in `x`
- `int* z;`
 - `z` is at address 0x20

32-bit example (pointers are 32-bits wide)

& = “address of”
* = “dereference”
Assignment in C

- left-hand side = right-hand side;
 - LHS must evaluate to a memory location
 - RHS must evaluate to a value (could be an address)
 - Store RHS value at LHS location

- `int x, y;`
- `x = 0;`
- `y = 0x3CD02700;`
- `x = y + 3;`
 - Get value at `y`, add 3, store in `x`
- `int* z = &y + 3;`
 - Get address of `y`, “add 3”, store in `z`

32-bit example (pointers are 32-bits wide)

\& = “address of”
* = “dereference”

Pointer arithmetic
Pointer Arithmetic

- Pointer arithmetic is scaled by the size of target type
 - In this example, `sizeof(int) = 4`

- `int* z = &y + 3;`
 - Get address of `y`, add `3* sizeof(int)`, store in `z`
 - `&y = 0x18 = 1*16^1 + 8*16^0 = 24`
 - `24 + 3*(4) = 36 = 2*16^1 + 4*16^0 = 0x24`

- Pointer arithmetic can be dangerous!
 - Can easily lead to bad memory accesses
 - Be careful with data types and **casting**
Assignment in C

- `int x, y;`
- `x = 0;`
- `y = 0x3CD02700;`
- `x = y + 3;`
 - Get value at `y`, add 3, store in `x`
- `int* z = &y + 3;`
 - Get address of `y`, add 12, store in `z`
- `*z = y;`
 - What does this do?
Assignment in C

- `int x, y;`
- `x = 0;`
- `y = 0x3CD02700;`
- `x = y + 3;`
 - Get value at `y`, add 3, store in `x`
- `int* z = &y + 3;`
 - Get address of `y`, add 12, store in `z`
- `*z = y;`
 - Get value of `y`, put in address stored in `z`
Arrays in C

Declaration: \texttt{int a[6];}

- **element type**: \texttt{int}
- **name**: \texttt{a}
- **number of elements**: 6

Arrays are adjacent locations in memory storing the same type of data object.

\(\&a = 0x10 \)

\(a \) is a name for the array’s address.

64-bit example (pointers are 64-bits wide)
Arrays in C

Declaration: `int a[6];`

Indexing: `a[0] = 0x015f;`
`a[5] = a[0];`

Arrays are adjacent locations in memory storing the same type of data object.

- **a** is a name for the array’s address.
- The address of `a[i]` is the address of `a[0]` plus `i` times the element size in bytes.

![Diagram showing memory layout of array `a` with addresses and values]
Arrays in C

Declaration: `int a[6];`

Indexing: `a[0] = 0x015f;`
`a[5] = a[0];`

No bounds `a[6] = 0xBAD;`
checking: `a[-1] = 0xBAD;`

Arrays are adjacent locations in memory storing the same type of data object

a is a name for the array’s address

The address of *a[i]* is the address of *a[0]* plus *i* times the element size in bytes

```
<table>
<thead>
<tr>
<th>Address</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>AD</td>
</tr>
<tr>
<td>0x1</td>
<td>0B</td>
</tr>
<tr>
<td>0x2</td>
<td>00</td>
</tr>
<tr>
<td>0x3</td>
<td>00</td>
</tr>
<tr>
<td>0x4</td>
<td>AD</td>
</tr>
<tr>
<td>0x5</td>
<td>0B</td>
</tr>
<tr>
<td>0x6</td>
<td>00</td>
</tr>
<tr>
<td>0x7</td>
<td>00</td>
</tr>
<tr>
<td>0x8</td>
<td>5F</td>
</tr>
<tr>
<td>0x9</td>
<td>01</td>
</tr>
<tr>
<td>0xA</td>
<td>00</td>
</tr>
<tr>
<td>0xB</td>
<td>00</td>
</tr>
<tr>
<td>0xC</td>
<td>5F</td>
</tr>
<tr>
<td>0xD</td>
<td>01</td>
</tr>
<tr>
<td>0xE</td>
<td>00</td>
</tr>
<tr>
<td>0xF</td>
<td>00</td>
</tr>
</tbody>
</table>
```
Arrays in C

Declaration: `int a[6];`

Indexing:
- `a[0] = 0x015f;`
- `a[5] = a[0];`

No bounds
- `a[6] = 0xBAD;`

Checking:
- `a[-1] = 0xBAD;`

Pointers:
- `int* p;`
 - `p = a;` (equivalent to `p = &a[0];`)
 - `*p = 0xA;`

Arrays are adjacent locations in memory storing the same type of data object.

- `a` is a name for the array’s address.

The address of `a[i]` is the address of `a[0]` plus `i` times the element size in bytes.

Memory Layout:

```
0x00 0x08 0x10 0x18 0x20 0x28 0x30 0x38 0x40 0x48
| AD 0B 00 00 | 0A 00 00 00 | 0F 01 00 00 | 10 00 00 00 |
```

Address Calculations:

- `a[0]` is at `0x00`.
- Each element is 4 bytes (0x10).
- `a[1]` is at `0x10`, `a[2]` is at `0x18`, and so on.

Memory Map:

- `p` points to `a[0]`.
- `p` is at `0x10`.
- `p` is equivalent to `&a[0]`.
- `*p` is set to `0xA`.

Address of `a[i]`

The address of `a[i]` is the address of `a[0]` plus `i` times the element size in bytes.
Arrays in C

Declaration: `int a[6];`

Indexing: `a[0] = 0x015f;`
`a[5] = a[0];`

No bounds `a[6] = 0xBAD;`

checking: `a[-1] = 0xBAD;`

Pointers: `int* p;`
equivalent
\[
\begin{cases}
p = a; \\
p = &a[0]; \\
*p = 0xA;
\end{cases}
\]

array indexing = address arithmetic
(both scaled by the size of the type)

\[
\begin{align*}
p[1] &= 0xB; \\
*(p+1) &= 0xB; \\
p &= p + 2;
\end{align*}
\]

pointer arithmetic:
\[0x10 + 1 \rightarrow 6x14\]

\[0x10 + 2 \rightarrow 0x18\]

The address of `a[i]` is the address of `a[0]` plus `i` times the element size in bytes

Arrays are adjacent locations in memory storing the same type of data object

`a` is a name for the array’s address

\[a + 2 \times \text{sizeof} (\text{int}) = 0x18\]
Arrays in C

Declaration: `int a[6];`

Indexing:
- `a[0] = 0x015f;`
- `a[5] = a[0];`

No bounds: `a[6] = 0xBAD;`
Checking: `a[-1] = 0xBAD;`

Pointers: `int* p;`
- equivalent:
 - `p = a;`
 - `p = &a[0];`
 - `*p = 0xA;`

Arrays are adjacent locations in memory storing the same type of data object.

- `a` is a name for the array’s address.
- The address of `a[i]` is the address of `a[0]` plus `i` times the element size in bytes.

Array indexing = address arithmetic (both scaled by the size of the type)

- equivalent:
 - `p[1] = 0x1B;`
 - `*(p+1) = 0xB;`
 - `p = p + 2;`

Store at `0x18`: `p = a[1] + 1;` (no pointer arithmetic)
Question: The variable values after Line 3 executes are shown on the right. What are they after Line 4 & 5?


```c
void main() {
    int a[] = {5, 10};
    int* p = a;
    p = p + 1;  // size of int = 4
    *p = *p + 1;
}
```

<table>
<thead>
<tr>
<th>Address (decimal)</th>
<th>Data (decimal)</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>a[0] 5</td>
</tr>
<tr>
<td></td>
<td>a[1] 10</td>
</tr>
<tr>
<td>p 104</td>
<td></td>
</tr>
</tbody>
</table>

- (A) 101 10 5 10 then 101 11 5 11
- (B) 104 10 5 10 then 104 11 5 11
- (C) 100 6 6 10 then 101 6 6 10
- (D) 100 6 6 10 then 104 6 6 10

- after Line 4
- after Line 5
Representing strings

- C-style string stored as an array of bytes (**char***)
 - Elements are one-byte **ASCII** codes for each character
 - No “String” keyword, unlike Java

ASCII Codes

<table>
<thead>
<tr>
<th>ASCII Code</th>
<th>Character</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>space</td>
</tr>
<tr>
<td>33</td>
<td>!</td>
</tr>
<tr>
<td>34</td>
<td>"</td>
</tr>
<tr>
<td>35</td>
<td>#</td>
</tr>
<tr>
<td>36</td>
<td>$</td>
</tr>
<tr>
<td>37</td>
<td>%</td>
</tr>
<tr>
<td>38</td>
<td>&</td>
</tr>
<tr>
<td>39</td>
<td>'</td>
</tr>
<tr>
<td>40</td>
<td>(</td>
</tr>
<tr>
<td>41</td>
<td>)</td>
</tr>
<tr>
<td>42</td>
<td>*</td>
</tr>
<tr>
<td>43</td>
<td>+</td>
</tr>
<tr>
<td>44</td>
<td>,</td>
</tr>
<tr>
<td>45</td>
<td>-</td>
</tr>
<tr>
<td>46</td>
<td>.</td>
</tr>
<tr>
<td>47</td>
<td>/</td>
</tr>
<tr>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>49</td>
<td>1</td>
</tr>
<tr>
<td>50</td>
<td>2</td>
</tr>
<tr>
<td>51</td>
<td>3</td>
</tr>
<tr>
<td>52</td>
<td>4</td>
</tr>
<tr>
<td>53</td>
<td>5</td>
</tr>
<tr>
<td>54</td>
<td>6</td>
</tr>
<tr>
<td>55</td>
<td>7</td>
</tr>
<tr>
<td>56</td>
<td>8</td>
</tr>
<tr>
<td>57</td>
<td>9</td>
</tr>
<tr>
<td>58</td>
<td>:</td>
</tr>
<tr>
<td>59</td>
<td>;</td>
</tr>
<tr>
<td>60</td>
<td><</td>
</tr>
<tr>
<td>61</td>
<td>=</td>
</tr>
<tr>
<td>62</td>
<td>></td>
</tr>
<tr>
<td>63</td>
<td>?</td>
</tr>
<tr>
<td>64</td>
<td>@</td>
</tr>
<tr>
<td>65</td>
<td>A</td>
</tr>
<tr>
<td>66</td>
<td>B</td>
</tr>
<tr>
<td>67</td>
<td>C</td>
</tr>
<tr>
<td>68</td>
<td>D</td>
</tr>
<tr>
<td>69</td>
<td>E</td>
</tr>
<tr>
<td>70</td>
<td>F</td>
</tr>
<tr>
<td>71</td>
<td>G</td>
</tr>
<tr>
<td>72</td>
<td>H</td>
</tr>
<tr>
<td>73</td>
<td>I</td>
</tr>
<tr>
<td>74</td>
<td>J</td>
</tr>
<tr>
<td>75</td>
<td>K</td>
</tr>
<tr>
<td>76</td>
<td>L</td>
</tr>
<tr>
<td>77</td>
<td>M</td>
</tr>
<tr>
<td>78</td>
<td>N</td>
</tr>
<tr>
<td>79</td>
<td>O</td>
</tr>
<tr>
<td>80</td>
<td>P</td>
</tr>
<tr>
<td>81</td>
<td>Q</td>
</tr>
<tr>
<td>82</td>
<td>R</td>
</tr>
<tr>
<td>83</td>
<td>S</td>
</tr>
<tr>
<td>84</td>
<td>T</td>
</tr>
<tr>
<td>85</td>
<td>U</td>
</tr>
<tr>
<td>86</td>
<td>V</td>
</tr>
<tr>
<td>87</td>
<td>W</td>
</tr>
<tr>
<td>88</td>
<td>X</td>
</tr>
<tr>
<td>89</td>
<td>Y</td>
</tr>
<tr>
<td>90</td>
<td>Z</td>
</tr>
<tr>
<td>91</td>
<td>[</td>
</tr>
<tr>
<td>92</td>
<td>\</td>
</tr>
<tr>
<td>93</td>
<td>]</td>
</tr>
<tr>
<td>94</td>
<td>^</td>
</tr>
<tr>
<td>95</td>
<td>_</td>
</tr>
<tr>
<td>96</td>
<td>`</td>
</tr>
<tr>
<td>97</td>
<td>a</td>
</tr>
<tr>
<td>98</td>
<td>b</td>
</tr>
<tr>
<td>99</td>
<td>c</td>
</tr>
<tr>
<td>100</td>
<td>d</td>
</tr>
<tr>
<td>101</td>
<td>e</td>
</tr>
<tr>
<td>102</td>
<td>f</td>
</tr>
<tr>
<td>103</td>
<td>g</td>
</tr>
<tr>
<td>104</td>
<td>h</td>
</tr>
<tr>
<td>105</td>
<td>i</td>
</tr>
<tr>
<td>106</td>
<td>j</td>
</tr>
<tr>
<td>107</td>
<td>k</td>
</tr>
<tr>
<td>108</td>
<td>l</td>
</tr>
<tr>
<td>109</td>
<td>m</td>
</tr>
<tr>
<td>110</td>
<td>n</td>
</tr>
<tr>
<td>111</td>
<td>o</td>
</tr>
<tr>
<td>112</td>
<td>p</td>
</tr>
<tr>
<td>113</td>
<td>q</td>
</tr>
<tr>
<td>114</td>
<td>r</td>
</tr>
<tr>
<td>115</td>
<td>s</td>
</tr>
<tr>
<td>116</td>
<td>t</td>
</tr>
<tr>
<td>117</td>
<td>u</td>
</tr>
<tr>
<td>118</td>
<td>v</td>
</tr>
<tr>
<td>119</td>
<td>w</td>
</tr>
<tr>
<td>120</td>
<td>x</td>
</tr>
<tr>
<td>121</td>
<td>y</td>
</tr>
<tr>
<td>122</td>
<td>z</td>
</tr>
<tr>
<td>123</td>
<td>{</td>
</tr>
<tr>
<td>124</td>
<td></td>
</tr>
<tr>
<td>125</td>
<td>}</td>
</tr>
<tr>
<td>126</td>
<td>~</td>
</tr>
<tr>
<td>127</td>
<td>del</td>
</tr>
</tbody>
</table>

ASCII: American Standard Code for Information Interchange
Null-Terminated Strings

Example: “Donald Trump” stored as a 13-byte array

<table>
<thead>
<tr>
<th>Decimal</th>
<th>Hex</th>
<th>Text</th>
</tr>
</thead>
<tbody>
<tr>
<td>68</td>
<td>0x44</td>
<td>Donald</td>
</tr>
<tr>
<td>111</td>
<td>0x6F</td>
<td>a</td>
</tr>
<tr>
<td>110</td>
<td>0x6E</td>
<td>l</td>
</tr>
<tr>
<td>97</td>
<td>0x61</td>
<td>d</td>
</tr>
<tr>
<td>108</td>
<td>0x6C</td>
<td>T</td>
</tr>
<tr>
<td>100</td>
<td>0x64</td>
<td>r</td>
</tr>
<tr>
<td>32</td>
<td>0x20</td>
<td>u</td>
</tr>
<tr>
<td>84</td>
<td>0x54</td>
<td>m</td>
</tr>
<tr>
<td>114</td>
<td>0x72</td>
<td>p</td>
</tr>
<tr>
<td>117</td>
<td>0x75</td>
<td>\0</td>
</tr>
<tr>
<td>109</td>
<td>0x6D</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>0x70</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>0x00</td>
<td></td>
</tr>
</tbody>
</table>

6 chars \(\uparrow\) 5 chars

Last character followed by a 0 byte (‘\0’) (a.k.a. “null terminator”)
- Must take into account when allocating space in memory
- Note that ‘0’ \(\neq\) ‘\0’ (i.e. character 0 has non-zero value)

How do we compute the length of a string?
- Traverse array until null terminator encountered
Endianness and Strings

char s[6] = "12345";

- Byte ordering (endianness) is not an issue for 1-byte values
 - The whole array does not constitute a single value
 - Individual elements are values; chars are single bytes
Examineing Data Representations

- Code to print byte representation of data
 - Any data type can be treated as a *byte array* by *casting* it to *char*
 - C has *unchecked casts* !! DANGER !!

```c
void show_bytes(char* start, int len) {
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, *(start+i));
    printf("\n");
}
```

`printf` directives:

- `%p` Print pointer
- `	` Tab
- `%x` Print value as hex
- `
` New line
Examining Data Representations

- Code to print byte representation of data
 - Any data type can be treated as a byte array by casting it to char
 - C has unchecked casts !! DANGER !!

```c
void show_bytes(char* start, int len) {
    int i;
    for (i = 0; i < len; i++)
        printf("%p\t0x%.2x\n", start+i, *(start+i));
    printf("\n");
}

void show_int(int x) {
    show_bytes((char*) &x, sizeof(int));
}
```
show_bytes Execution Example

```c
int x = 12345; // 0x00003039
printf("int x = %d;\n",x);
show_int(x); // show_bytes((char *) &x, sizeof(int));
```

- **Result (Linux x86-64):**
 - **Note:** The addresses will change on each run (try it!), but fall in same general range

```c
int x = 12345;
0x7fffb7f71dbc 0x39
0x7fffb7f71dbd 0x30
0x7fffb7f71dbe 0x00
0x7fffb7f71dbf 0x00
```
Summary

- Assignment in C results in value being put in memory location
- Pointer is a C representation of a data address
 - `&` = “address of” operator
 - `*` = “value at address” or “dereference” operator
- Pointer arithmetic scales by size of target type
 - Convenient when accessing array-like structures in memory
 - Be careful when using – particularly when casting variables
- Arrays are adjacent locations in memory storing the same type of data object
 - Strings are null-terminated arrays of characters (ASCII)