Question 6: Cache in While You Can (17 points, 26 Minutes)
Consider a single 4KiB cache with 512B blocks and a write-back policy. Assume a 32-bit address space.

a) If the cache were direct-mapped, (1 pt each)

sets .
of rews? 8 # of offset bits? 9

2'2/2° = 8. log,(512) = 9.

b) If the cache were 4-way set associative,
line
of tag bits? 22 # of index bits? 1 # of bits per cache slet? 4120

(1 pt) (1 pt) (2 pts)

8/4=2,log,(2)=1. 32—-1-9=22. 512*8 +22 + 2 =4120. If tag wrong, 512*8 + wrong_tag + 2
accepted (if obvious algebraic mistake, -1 pt). 512*8 is data (blocks), 22 is tag, 2 is Valid + Dirty bits.

Consider an array of the following location structs:

typedef struct {
... // some undefined number of other struct members
int visited;
int danger;

} location;

location locs[NUM_LOCS];

Here's a piece of code that counts the number of places we've visited. Assume this gets executed
somewhere in the middle of our program, that count is held in a register, and the size of the array is
greater than 4 KiB.

for(int 1 = 0; 1 < NUM_LOCS;
if(locs[i].visited) count++;

c) What's the fewest possible number of bytes writtenteqmain memory? (1 pt) 0B
d) What's the greatest possible number of bytes written to mainwemory? (1 pt) 4 KiB
We're reading, not writing. What will be written back are dirty blocks already in the cache.

Now consider if we store the visited and danger information in individual arrays instead:

int visited[NUM_LOCS];

int danger[NUM_LOCS]; -0.5 pt if missing the word “locality.”

e) This way, the cache can exploit better ___spatial locality___ for the above task. (1 pt)

We can expect a lower (higher or lower) miss rate (1 pt)

because of the change in the number of compulsory (type of cache miss) misses. (1 pt)

(also accepted: read)

justi
Text Box
sets

justi
Cross-Out

justi
Cross-Out

justi
Text Box
line

justi
Text Box
512*8 is data (blocks), 22 is tag, 2 is Valid + Dirty bits.

Consider the following code with NUM_LOCS > 2710.

for(int i = 0; i < NUM_LOCS; i++)

if(visited[i] && danger[i] > 5) count++;

Two memory accesses are made per iteration: one into visited, the other into danger. Assume that

the cache has no valid blocks initially. You are told that in the worst case, the cache has a miss rate of

100%. Consider each of the following possible changes to the cache individually.

f)

Mark each as E, if it eliminates the chances of this worst-case scenario miss rate, R if it reduces the
chances, or N if it’s not helpful. (2 pts each)

e More sets, same block size, same associativity _R__
e Double associativity, half block size, same total cache size _E
e Everything stays the same but use a write-through policy instead N

Given that the worst case miss rate is 100% for blocks that hold more than 1 piece of array data, our
cache must be direct-mapped. In addition, the worst case happens when the visited and danger
arrays start in blocks that map to the same row AND have the same offset.

e With more sets/rows, we are increasing the size of the cache. If the cache size changes such
that addresses of visited[i] and danger[i] no longer map to the same row, then we no
longer have the worst case scenario. This is not guaranteed to happen, so the chances are
reduced.

e Increasing associativity completely removes the ping-pong effect.

e A write-through policy does not change the behavior of the cache at all.

Question 3: Caches

a)

b)

d)

f)

g)

Block size}é is 16 bytes, so log,(16) =4 = 0. The 32 KiB cache (C) holds 2%%/2% = 2" blocks, so
log»(2'!) =11 = I. Then we are given 32 address bits, so T=A- I -0=32-11-4=17.
17:11:4 (1 pt)
Bits per Tew for a direct-mapped cacheisV+D+ T + 8*}; = 1+0+17+8*16 = 146 bits/rew (1 pt)
Irl1nt?1is case, D = 0 since we are using a write-through policy ine

Every access inside Loop 1 is a miss, since OFFSET*gizeof (int) is equal to the size of the

cache.
Therefore, Hit rate for loop 1: 0% (1 pt)
Types of misses: Compulsory (0.5 pt)
Conflict (0.5 pt)

Notice that in the innermost loop, we call rand 4 times, but with the same arguments (a range
of width 4). Since our array is aligned with a block boundary, every single iteration of the outer
loop follows this pattern (where a, b, ¢, d are the 4 iterations of the inner loop that happen once
every iteration of the outer loop):

a. Miss (loads the block into memory)

b. Hit

c. Hit

d. Hit
Thus, we have a hit rate of 75% (1 pt)
Types of Misses: conflict (1 pt)

(-0.5 pts if extra/incorrect Cs were given)

Modifying our cache to be 2-way set associative creates two “ IneS” in the cache for each mge*
This solves all of the conflicts we had in Loop 1, and thus both sets of 32 ints are Iocatedsm the
cache after the completion of Loop 1. This leads to a hit rate of 100% for loop 2. (3 pts)

Removing the line labeled ACCESS #2 is another way of removing all conflicts from our code. All
values from A that are accessed in Loop 1 remain in the cache after Loop 1 completes, leading to
a hit rate of 100% for loop 2. (3 pts)

We assume that the functionality of this program is to store 64 ints and then randomly print 4
per block from the first set of 32 ints. Thus, we may ignore all of the “junk” that is located
between indices [32, 8191] in A. Since we don’t care about these values, we can reduce
OFFSET to 32. This entirely eliminates the “junk” in between the values we care about. All of
the counts are now stored in [0, 31] and all of the (count + count)s are stored in [32, 63]. Now
the size of our array is far less than that of the cache, and thus the entire array will fit into the
cache at once. Therefore, shrinking OFFSET to 32 will increase our Loop 2 hit rate to 100%,
which is the maximum possible value. Since the wording could be interpreted in two different
ways, points were also given for “shrinking OFFSET by 32,” which achieves the same goal.

(3 pts)

justi
Cross-Out

justi
Text Box
K

justi
Text Box
line

justi
Cross-Out

justi
Cross-Out

justi
Text Box
line

justi
Text Box
K

justi
Cross-Out

justi
Cross-Out

justi
Text Box
lines

justi
Cross-Out

justi
Text Box
set

M2) Cache Money, y’all (10 pts)

The key to this problem was analyzing the memory access pattern of SwapLeft. For everyindex i,

SwapLeft performed (in order) a read from 2, read from B, write to 2, then write to B. So that’s 4

memory accesses per byte (since data is type uint8_t) in strictly alternating fashion.

a)

b)

c)

d)

Best-case scenario for a direct-mapped cache is no conflict misses (i.e. A[i] and B[i] map to
different rows). Since we access bytes in memory sequentially (i++), for every cache block for 2 or
B, we get an initial miss then hit on the block boundary, followed by 2 hits for the rest of the bytes in
the block (a-1 bytes if block size is a). So in total this leaves us with a best ratio of 2* (a-1)+1:1 =
H:1. Solving, we get 2a-1=H, so a= (H+1) /2. (2 pts)

1 ptif answered H+1.

Worst-case scenario is that A and B live at addresses that conflict (i.e. A[i] and B[i] always map to
the same cache row). Because we alternate accesses between the arrays, we always conflict in the
cache and we never get a hit, so the worst ratio is 0:<any non-zero number>. (1 pt)

For swapping, we must read and write from both A and B. To improve the worst case cache
performance, we need to guarantee that we access one of the arrays consecutively. The two
solutions are: read A, read B, write B, then write A and read B, read A, write A, then write B. Both of
these involved using both temporary variables given to you (tmp2, tmpB). (1 pt)

Same worst case scenario as part (b) with conflicting addresses of A[i] and B[i]. But our new
access pattern for SwapRight generates MMHM on the cache block boundary, followed by HMHM
for the remaining a-1 bytes of the block. Notice the compulsory miss on the first byte that actually
becomes a hit in the remaining bytes because of the last write from the previous byte. This means
our ratio for a full cache blockis 1+2* (a-1) : 3+2 (a-1), which simplified to 2a-1:2a+1. (2 pts)

Moving to 2-way set associative, SwapLeft only accesses two arrays, soevenif A[i] and B [i]

map to the same set, they can both co-exist in the cache. With LRU, the read from B cannot kick out
the block of 2, regardless of whether the cache is empty or full, so we end up with the same cache
performance as part (a), where we had 2* (a-1)+1:1=2a-1:1. (2 pts)

1ptifanswereda-1:1
1 ptif answered 2a:1

MRU works essentially the same as direct-mapped once the cache is full (the LRU block in each set
will remain there until the cache gets flushed). This leads us back to our worst-case scenario from
part (b), which is 0:<any non-zero number>. (2 pts)

d) 3 points. Ash Ketchum has six slots in his party, each of which can hold a single Pokémon.
Additionally, Ash has access to a PC (personal computer) which holds the rest of the Pokémon he
owns. Essentially, his party acts as a “cache” for accesses to the PC (the “memory”).

i Each slot in Ash’s party can hold any Pokémon. What kind of cache is this analogous to?
(Circle one)

Set-associative Write-back Fully Associative Direct Mapped Write-through

+1 point for circling the correct type.

ii. Ash’s party exploits __temporal locality but not __spatial locality.
+0.5 points for correctly-filled “temporal locality” blank.
+0.5 points for correctly-filled “spatial locality” blank.

Explain in one sentence (the answer below is more than one sentence for clarity):

The party has “one-unit” slots and thus does not exhibit spatial locality; we don’t pull any extra
pokemon into the party when we make a request for a pokemon (effective block size of one). On the
other hand, a fully associative cache will likely use some kind of LRU scheme, which takes advantage of
temporal locality.

+0.5 points for identifying that fully-associative cache often holds recently-used elements.
+0.5 points for stating that the block size of one doesn’t exploit spatial locality.

SID:

Question 4: Caches (11 pts)

We have a 64 KiB address space and two possible data caches. Both are 1 KiB, direct-mapped caches with
random replacement and write-back policies. Cache X uses 64 B blocks and Cache Y uses 256 B blocks.

a) Calculate the TIO address breakdown for Cache X: [1.5 pts]

Tag Index Offset
6 4 6

b) During some part of a running program, Cache Y’s management bits are as shown below. Four options for
the next two memory accesses are given (R = read, W = write). Circle the option that results in data from

the cache being written to memor{._ [2 pts]
|

Slg% Valid | Dirty Tag
00 0 0 1000 01
01 1 1 0101 01
10 1 0 1110 00
11 0 0 0000 11
(1) R 0x4C00, W 0x5C00 (2) W 0x5500, W 0x7A00
(R then W into f#e{ 00) (W into dirty slot 01 — tag matches, W into stet 10)
ne line
(3) W 0x2300, R 0x0F00 (4) R 0x3000, R 0x3000
(W into |s+et 11, then kick dirty block out) (2 reads into non-dirty ﬁJﬁéOO)
Ine

c) The code snippet below loops through a character array. Give the value of LEAP that results in a Hit Rate
of 15/16 for Cache Y. [4 pts]

#define ARRAY_SIZE 8192

char string[ARRAY_SIZE]; // &string = 0x8000
for(i = 0; 1 < ARRAY_SIZE; i += LEAP)
string[1] |= 0x20; // to lower
32

Access pattern is R then W for each address. To get a hit rate of 15/16, need to access exactly 8
addresses per block (compulsory miss on first R, then followed by all hits). Since block size for Cache Y
is 256 B and char size is 1 B (256 array elements per block), we need our LEAP to be 256/8 = 32.

d) For the loop shown in part (c), let LEAP = 64. Circle ONE of the following changes that increases the hit
rate of Cache X: [2 pts]

Increase Block Size Increase Cache Size Add a L2% Increase LEAP
(hit rate 1) (no change to hit rate) (miss penalty |) (hit rate |)

e) For the following cache access parameters, calculate the AMAT. All-miss-and-hitrates-are-local-to-that
cachelevel: Please simplify and include units. [1.5 pts]

L1$ Hit Time L1$ Miss Rate L28 Hit Fime 2% Hit Rate MEM Hit Time
2ns 40% 20-ns 059% 400 ns

AMAT =2 +0.4+(20+0.05:400) AMAT =2 + 0.4 * 400 418-ns 162 ns
6

justi
Cross-Out

justi
Cross-Out

justi
Text Box
Line

justi
Text Box
line

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Text Box
line

justi
Text Box
line

justi
Text Box
line

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Text Box
AMAT = 2 + 0.4 * 400

justi
Cross-Out

justi
Text Box
162 ns

SID:

Question 8: Caches (10 pts)

We are using a 20-bit byte addressed machine. We have two options for caches: Cache A is fully associative
and Cache B is 4-way set associative. Both caches have a capacity of 16 KiB and 16 B blocks.

a) Calculate the TIO address breakdown for Cache A: [1 pt]

Tag Index Offset
16 0 4

b) Below is the initial state of one set (four le'ﬂa%ss) in Cache B. Each slot holds 2 LRU bits, with ObOO being the
most recently used and Ob11 being the least recently used. Circle ONE option below for two memory
accesses that result in the final LRU bits shown and only one block replacement. [2 pf]

Line Initial Final
Slot Tag LRU bits LRU bits
Index 0 0110 1010 00 10
1001 1110 1 0000 0001 10 — 00
2 0101 0101 01 11
3 1010 1100 11 01

(1) 0x019D0, 0xAD9DO

(3) OxAD9DO, 0x019D0

(2) OXAC9EO, 0x129E0

(4) 0x129E0, OXACOEO

c) Forthe code given below, calculate the hit rate for Cache B assuming that it starts cold. [3 pt]
#define ARRAY_SIZE 8192

int int_arr[ARRAY_SIZE]; // &int_arr = 0x80000
for (int 1 = 0; i < ARRAY_SIZE 7/ 2; i1++) {
int_arr[i] *= int_arr[i + ARRAY_SIZE / 2];
}
Access patternis R 1, R iI+ARRAY_SIZE/2, W i. Array index jump is 5/6
4096*4 = 21* B away, so maps into same set same set (1+0=12<14).

N=4, so both blocks can fit in cache at once. Indices are not revisited and each block holds 16 B/4 B =4
indices, so first index is MMH, other 3 are HHH, so HR = 10/12 = 5/6.

d) For each of the proposed changes below, write U for “increase”, N for “no change”, or D for “decrease” to

indicate the effect on the hit rate of Cache B for the loop shown in part (c): [2 pt]
Direct-mapped _ D Increase cache size _ N __

Double ARRAY SIZE = N__ Random block replacement = D

e) Calculate the AMAT for a-multi-level-cache-given the following values. Don'’t forget units! [2 pt]
HT = Hit Time, MR = Miss Rate, GMR=Glebal-Miss-Rate

L1$ HT L1$ MR LS HT GMR MEM HT
4 ns 20% 25-ns 5% 500 ns
HF MR AHTF+ GMR*HFremr—=4—+5-+25 AMAT =4 + 0.2*500 104 ns 34-ns

10

justi
Cross-Out

justi
Text Box
lines

justi
Cross-Out

justi
Text Box
Line

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Text Box
AMAT = 4 + 0.2*500

justi
Text Box
104 ns

	Pages from midterm_rubric_su12.pdf
	Pages from 2013Sp CS61C Midterm Rubric.pdf
	Pages from 2013SpCS61CFinalRubric.pdf
	Pages from cs61c_su13_midterm_rubric.pdf
	Pages from CS61C-Su16-MT2_SOLN.pdf
	Pages from CS61C-Su16-Final_SOLN.pdf

