
University of Washington

The Hardware/Software Interface
CSE 351 Winter 2016

Instructor:

Dan Grossman

Teaching Assistants:

Rajas Agashe, Kevin Bi, Dylan Johnson, Sarang Joshi, Anthony McIntosh,
Alfian Rizqi, Yufang Sun

University of Washington

Welcome!

10 weeks to see the key abstractions “under the hood” to
describe “what really happens” when a program runs

 How is it that “everything is 1s and 0s”?

 Where does all the data get stored and how do you find it?

 How can more than one program run at once?

 What happens to a Java or C program before the hardware processor can
execute it?

 Why is recursion not even slightly magical?

 And much, much, much more…

An introduction that will:
 Profoundly change/augment your view of computers and programs

 Connect your source code down to the hardware

2 Winter 2016 Introduction

University of Washington

Concise To-Do List

 Review syllabus, course goals, collaboration policy, etc.:
http://courses.cs.washington.edu/courses/cse351/16wi/

 Email-list settings, if necessary

 Beginning-of-course survey, “due” Wednesday 5PM

 Lab 0, due Monday, January 11 at 5pm
 Make sure you get our virtual machine set up and are able to do work

 Basic exercises to start getting familiar with C

 Credit/no-credit

 Get this done as quickly as possible

 Section Thursday
 Please install the virtual machine BEFORE coming to section

 BRING your computer with you to section

 Includes activities to help you get started with Lab 0

3 Winter 2016 Introduction

University of Washington

Who: Course Staff

 Dan Grossman: Faculty since 2003, veteran of 341, 332, 331,
373, but first time in 351
 Know and love the content, new to the course

 Not planning “changes” but will be “fresh eyes”

 TAs: 7 (!), all have taken the course, 3 TA veterans (2 multi-)

 Office hours will be figured out ASAP

 Get to know us!
 We are here to help you succeed

 And to make the course better

 And to enjoy showing you a new world

4 Winter 2016 Introduction

University of Washington

Acknowledgments

Many thanks to the many people whose course content we are
liberally reusing with at most minor changes

 CMU: Randy Bryant, David O’Halloran, Gregory Kesden, Markus Püschel

 Harvard: Matt Welsh (now at Google-Seattle)

 UW: Gaetano Borriello, Luis Ceze, Peter Hornyack, Hal Perkins, Ben Wood,
John Zahorjan, Katelin Bailey, Ruth Anderson

 Not listed: dozens of TAs

5 Winter 2016 Introduction

University of Washington

Who are you?

 ~90 registered
 My intention: Make it feel like 40; learn all your names

 CSE majors, EE majors, some want-to-be majors
 Most of you will find almost everything in the course “brand new”

 Please get to know each other

6 Winter 2016 Introduction

University of Washington

Staying In Touch

 Course web page
 Schedule, policies, labs, homeworks, and everything else

 Course discussion board
 Keep in touch outside of class – help each other

 Staff will monitor and contribute

 Course mailing list cse351a_wi16@u.washington.edu
 Low traffic – mostly announcements; your @uw.edu is subscribed

 Office hours, appointments, drop-ins
 We will spread our office hours throughout the week

 Staff e-mail (Dan + TAs): cse351-staff@cse.uw.edu
 For things that are not appropriate for the discussion board

 Anonymous feedback
 Comments about anything related to the course where you would feel

better not attaching your name: goes directly to Dan

7 Winter 2016 Introduction

University of Washington

Course Components

 Lectures (27)
 Introduce the concepts; supplemented by textbook

 Sections (10)
 Applied concepts, important tools and skills for labs, clarification of

lectures, exam review and preparation

 Written homework assignments (4)
 Mostly problems from textbook to solidify understanding

 Programming labs/assignments (5, plus “lab 0”)
 Provide in-depth understanding (via practice) of an aspect of system

 Exams (midterm + final)
 Test your understanding of concepts and principles

 Midterm Monday February 8, in class

 Final time set by the university: Wednesday March 16, 2:30-4:20PM

8 Winter 2016 Introduction

University of Washington

Textbooks

 Computer Systems: A Programmer’s Perspective, 3rd Edition
 Randal E. Bryant and David R. O’Hallaron

 Prentice-Hall, 2015

 http://csapp.cs.cmu.edu

 3rd edition includes complete rewrite of Chapter 3

 All code examples in x86-64

 http://csapp.cs.cmu.edu/3e/changes3e.html

 This book really matters for the course!

 How to solve labs

 Practice problems typical of exam problems

 A good C book – any will do
 C: A Reference Manual (Harbison and Steele) [instructor preference]

 The C Programming Language (Kernighan and Ritchie)

9 Winter 2016 Introduction

http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/
http://csapp.cs.cmu.edu/3e/changes3e.html
http://csapp.cs.cmu.edu/3e/changes3e.html

University of Washington

Videos / Online course

 Gaetano Borriello and Luis Ceze made videos in 2013 covering
the course content [for an online version of the course]
 And self-check quiz questions

 These are a great resource – encourage you to watch them
 Generally optional unless class is cancelled or something

 Occasionally may “require before class” so you don’t get lost in an
example

 But the course is now “all 64-bit” so some parts of the course
no longer have [relevant] videos available
 New videos not yet made – may get some progress on that

10 Winter 2016 Introduction

University of Washington

Policies: Grading

 Exams (45%): 15% midterm, 30% final
 Many old exams on course website (but now 64-bit and new instructor)

 Written assignments (20%): weighted according to effort
 We’ll try to make these about the same

 Lab assignments (35%): weighted according to effort
 These will likely increase in weight as the quarter progresses

 Late days:
 3 late days to use as you wish throughout the quarter – see website

 Collaboration:
 http://www.cse.uw.edu/education/courses/cse351/16wi/policies.html

 http://www.cse.uw.edu/students/policies/misconduct

 Do not cheat!!! It’s an affront to the course staff, your fellow students,
and yourself. CSE courses are special and valuable – keep it that way!

11 Winter 2016 Introduction

http://www.cse.uw.edu/education/courses/cse351/16wi/policies.html
http://www.cse.uw.edu/education/courses/cse351/16wi/policies.html
http://www.cs.washington.edu/students/policies/misconduct
http://www.cs.washington.edu/students/policies/misconduct
http://www.cs.washington.edu/students/policies/misconduct

University of Washington

Other details

 Consider taking CSE 390A Unix Tools, 1 credit, useful skills
 Available to all CSE majors and everyone registered in CSE351

 Office hours will be held this week, check web page for times

 Remember Lab 0 asap and bring laptop to section

12 Winter 2016 Introduction

University of Washington

Anything I forgot about course mechanics before we discuss, you
know, hardware and software?

13 Winter 2016 Introduction

University of Washington

The Hardware/Software Interface

 What is hardware? software?

 What is an interface?

 Why do we need a hardware/software interface?

 Why do we need to understand both sides of this interface?

14 Winter 2016 Introduction

University of Washington

C/Java, assembly, and machine code

Winter 2016 Introduction 15

if (x != 0) y = (y+z)/x;

 cmpl $0, -4(%ebp)

 je .L2

 movl -12(%ebp), %eax

 movl -8(%ebp), %edx

 leal (%edx, %eax), %eax

 movl %eax, %edx

 sarl $31, %edx

 idivl -4(%ebp)

 movl %eax, -8(%ebp)

.L2:

1000001101111100001001000001110000000000

0111010000011000

10001011010001000010010000010100

10001011010001100010010100010100

100011010000010000000010

1000100111000010

110000011111101000011111

11110111011111000010010000011100

10001001010001000010010000011000

Assembly Language

High Level Language
(e.g. C, Java)

Machine Code

University of Washington

C/Java, assembly, and machine code

Winter 2016 Introduction 16

if (x != 0) y = (y+z)/x;

 cmpl $0, -4(%ebp)

 je .L2

 movl -12(%ebp), %eax

 movl -8(%ebp), %edx

 leal (%edx, %eax), %eax

 movl %eax, %edx

 sarl $31, %edx

 idivl -4(%ebp)

 movl %eax, -8(%ebp)

.L2:

1000001101111100001001000001110000000000

0111010000011000

10001011010001000010010000010100

10001011010001100010010100010100

100011010000010000000010

1000100111000010

110000011111101000011111

11110111011111000010010000011100

10001001010001000010010000011000

Assembly Language

High Level Language
(e.g. C, Java)

Machine Code

Compiler

Assembler

University of Washington

C/Java, assembly, and machine code

 The three program
fragments are equivalent

 You'd rather write C! - a
more human-friendly
language

 The hardware likes bit
strings! - everything is
voltages
 The machine instructions

are actually much shorter
than the number of bits
we would need to
represent the characters
in the assembly language

 Winter 2016 Introduction 17

if (x != 0) y = (y+z)/x;

 cmpl $0, -4(%ebp)

 je .L2

 movl -12(%ebp), %eax

 movl -8(%ebp), %edx

 leal (%edx, %eax), %eax

 movl %eax, %edx

 sarl $31, %edx

 idivl -4(%ebp)

 movl %eax, -8(%ebp)

.L2:

1000001101111100001001000001110000000000

0111010000011000

10001011010001000010010000010100

10001011010001100010010100010100

100011010000010000000010

1000100111000010

110000011111101000011111

11110111011111000010010000011100

10001001010001000010010000011000

University of Washington

HW/SW Interface: The Historical Perspective

 Hardware started out quite primitive
 Hardware designs were expensive -> instructions had to be very simple

– e.g., a single instruction for adding two integers

 Software was also very basic
 Software primitives reflected the hardware pretty closely

18

Hardware

Architecture Specification (Interface)

Winter 2016 Introduction

University of Washington

HW/SW Interface: Assemblers

 Life was made a lot better by assemblers
 1 assembly instruction = 1 machine instruction, but...

 different syntax: assembly instructions are character strings, not bit
strings, a lot easier to read/write by humans

 can use symbolic names

19

Hardware

Assembler specification

Assembler

Winter 2016 Introduction

User

program in

assembly

language

University of Washington

HW/SW Interface: Higher-Level Languages

 Higher level of abstraction:
 1 line of a high-level language is compiled into many

(sometimes very many) lines of assembly language

20

Hardware

C language specification

Assembler C

compiler

Winter 2016 Introduction

User

program

in C

University of Washington

HW/SW Interface: Code / Compile / Run Times

Hardware Assembler C

compiler

Code Time Compile Time Run Time

Note: The compiler and assembler are just programs, developed using

 this same process.

21

.exe file .c file

Winter 2016 Introduction

User

program

in C

University of Washington

The Big Theme: Abstractions and Interfaces

 Computing is about abstractions
 (but we can’t forget reality)

 What are the abstractions that we use?

 What do YOU need to know about them?
 When do they break down and you have to peek under the hood?

 What bugs can they cause and how do you find them?

 How does the hardware (0s and 1s, processor executing
instructions) relate to the software (C/Java programs)?
 Become a better programmer and begin to understand the important

concepts that have evolved in building ever more complex computer
systems

22 Winter 2016 Introduction

University of Washington

HTTP://XKCD.COM/676/

23 Winter 2016 Introduction

University of Washington

Roadmap

car *c = malloc(sizeof(car));

c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

free(c);

Car c = new Car();

c.setMiles(100);

c.setGals(17);

float mpg =

 c.getMPG();

get_mpg:

 pushq %rbp

 movq %rsp, %rbp

 ...

 popq %rbp

 ret

Java: C:

Assembly
language:

Machine
code:

0111010000011000

100011010000010000000010

1000100111000010

110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Introduction Winter 2016 24

University of Washington

Little Theme 1: Representation

 All digital systems represent everything as 0s and 1s
 The 0 and 1 are really two different voltage ranges in the wires

 Or magnetic positions on a disc, or hole depths on a dvd, or…

 “Everything” includes:
 Numbers – integers and floating point

 Characters – the building blocks of strings

 Instructions – the directives to the CPU that make up a program

 Pointers – addresses of data objects stored away in memory

 These encodings are stored throughout a computer system
 In registers, caches, memories, disks, etc.

 They all need addresses
 A way to find them

 Find a new place to put a new item

 Reclaim the place in memory when data no longer needed
25 Winter 2016 Introduction

University of Washington

Little Theme 2: Translation

 There is a big gap between how we think about programs and
data and the 0s and 1s of computers

 Need languages to describe what we mean

 Languages need to be translated one step at a time

 We know Java as a programming language
 Have to work our way down to the 0s and 1s of computers

 Try not to lose anything in translation!

 We’ll encounter Java byte-codes, C language, assembly language, and
machine code (for the X86 family of CPU architectures)

 Not in that order, but will all connect by the last lecture!!!

26 Winter 2016 Introduction

University of Washington

Little Theme 3: Control Flow

 How do computers orchestrate the many things they are
doing?

 In one program:
 How do we implement if/else, loops, switches?

 What do we have to keep track of when we call a procedure, and then
another, and then another, and so on?

 How do we know what to do upon “return”?

 Across programs and operating systems:
 Multiple user programs

 Operating system has to orchestrate them all

 Each gets a share of computing cycles

 They may need to share system resources (memory, I/O, disks)

 Yielding and taking control of the processor

 Voluntary or “by force”?

27 Winter 2016 Introduction

University of Washington

Writing Assembly Code??? In 2016???

 Chances are, you’ll never write a program in assembly code
 Compilers are much better and more patient than you are

 But: understanding assembly is the key to the machine-level
execution model
 Behavior of programs in presence of bugs

 High-level language model breaks down

 Tuning program performance

 Understand optimizations done/not done by the compiler

 Understanding sources of program inefficiency

 Implementing system software

 Operating systems must manage process state

 Fighting malicious software

 Using special units (timers, I/O co-processors, etc.) inside processor!

28 Winter 2016 Introduction

University of Washington

Course Outcomes

 Understanding of some of the abstractions that exist
between programs and the hardware they run on, why they
exist, and how they build upon each other

 Knowledge of some of the details of underlying
implementations
 Less important later, but cannot “get it” without “doing it” and “doing

it” requires details

 Become more effective programmers
 Understand some of the many factors that influence program

performance

 More efficient at finding and eliminating bugs

 Facility with a couple more of the many languages that we use to
describe programs and data

 Prepare for later classes in CSE

29 Winter 2016 Introduction

University of Washington

CSE351’s role in the CSE Curriculum

 Pre-requisites
 142 and 143: Intro Programming I and II

 Also recommended: 390A: System and Software Tools

 Complementary to:
 CSE311->CSE369->EE371 / EE271->EE371: hardware design “below us”

 “arranging wires to do addition and stuff”

 EE/CSE474 embedded systems: CSE351 invaluable but not a pre-req [EE]

 CSE331/332/341: high-level software design and structures

 Essential pre-req for:
 CSE401: compilers – write a program to do CSE351 translations

 CSE333: building well-structured systems in C/C++

 Courses after CSE333: OS, networks, distributed systems, graphics, …

30 Winter 2016 Introduction

University of Washington

Course Perspective

 CSE351 will make you a better programmer
 Purpose is to show how software really works

 Understanding the underlying system makes you more effective

 Better debugging

 Better basis for evaluating performance

 How multiple activities work in concert (e.g., OS and user programs)

 Not just a course for hardware enthusiasts!

 What every CSE major needs to know (plus many more details)

 Job interviewers love to ask questions from 351!

 Like other 300-level courses, “stuff everybody learns and uses and
forgets not knowing”

 CSE351 presents a world-view that will empower you
 The intellectual tools and software tools to understand the trillions+ of

1s and 0s that are “flying around” when your program runs
31 Winter 2016 Introduction

