
CSE 351
GDB Introduction



Lab 2

• Out either tonight or tomorrow
• Due April 27th (you have ~12 days)

• Reading and understanding x86_64 assembly
• Debugging and disassembling programs

• Today:
• General debugging for C with GDB

2



scanf and sscanf()

• Lab 2 uses sscanf (string scan format), which parses a 
string into values

Example:
char *mystring = “123, 456”

int a, b;

sscanf(mystring, “%d, %d”, &a, &b);

• The first argument is parsed according to the format string.

• After this code is run, a = 123 and b = 456.

printf(“Variable a=%d and b=%d\n”, a, b);

• This will print to the console “Variable a=123 and b=456”

• Notice the similarities to printf()! 



Format Specifier

• Notice the string formatter “%d”

– “%d”, signed int
– “%u”, unsigned int
– “%c”, char 
– “%f”, float
– “%s”, string (match until it finds white-space)
– “%x”, hexadecimal int
– “%p”, pointer

• Subtle differences between printf and scanf
• http://www.cplusplus.com/reference/cstdio/printf/
• http://www.cplusplus.com/reference/cstdio/scanf/

http://www.cplusplus.com/reference/cstdio/printf/
http://www.cplusplus.com/reference/cstdio/scanf/


GDB Background

• GNU Debugger
• GDB can help you debug your program in four ways:

• It can run your program
• It can stop your program on specified conditions
• It allows you to examine what has happened once the program has 

stopped
• It allows you to modify your program’s execution at runtime

• Today we will be going over many of the features that will 
make GDB a great resource for you this quarter

• Useful in future classes! CSE 333, CSE 451, CSE 484 etc.

5



Interactive Demonstration

• I encourage you to either follow along on your own 
machine or find someone next to you who is doing 
so.

• Download calculator.c from the class calendar 
page.

• We want to compile this file with debugging 
symbols included. To do this, we must use the -g
flag in GCC:
gcc -Wall -std=gnu99 -g calculator.c -o calculator

• Without debugging symbols, GDB is not nearly as 
useful.

6



Loading the Program

• In order to load a binary into GDB, you simply pass 
the name of the executable to the gdb program.

• Try this on your machine:
• gdb calculator

• You should see a bunch of version and license 
information.

• The last line before the (gdb) prompt is always the 
symbol loading status.
• If you ever see (no debugging symbols found)

you may have a problem.
• In this case, you should see no such message.

7



Exiting GDB

• Before we go any further, it might be helpful to 
understand how to exit GDB.

• There are multiple ways to exit:
• Ctrl-D
• Typing quit
• Typing q

• Many GDB commands can simply be abbreviated to 
their first letter.

• If you ever want to stop the current GDB command, 
just use Ctrl-C.

8



Running the Executable

• There are multiple ways you can begin execution of a 
program in GDB.

• The run command will start your program and keep running 
until it hits a critical error or the program finishes.
• Try entering run, or just r.

• The start command will load your program into memory 
and break at the beginning of main()
• You will see that most times run is all you need, but there are cases 

when you want to just start stepping through main().
• If you want to specify command-line arguments, you just 

pass those to run or start.
• To run calculator, we need to pass three arguments.
• Try entering: run 2 3 +

9



Viewing Program Source Code

• To examine source code while debugging use the list
(l for short) command.
• Useful when trying to find line numbers.

• For example, let’s look at the code for main().
• Type list main.

• This will display 10 lines of code around the beginning of the 

main() function.

• If you want to display 10 lines around line 45, enter 
list 45

• If you want to display a range of line numbers, such as 
lines 30-70, enter list 30,70

10



Setting Breakpoints

• In order to step through code, we need to be able to pause execution.
• GDB allows you to set breakpoints, just like when you debugged Java 

programs in Eclipse or jGRASP.
• The break (b for short) command creates breakpoints.
• Let’s set a breakpoint at the entry to main().

• Enter: break main
• Now enter run and see the program break at main().
• Each breakpoint is given a number.

• Our breakpoint is given the number 1.

• To disable our breakpoint temporarily, enter: disable 1
• To enable our breakpoint again, enter: enable 1
• To delete our breakpoint, enter: delete 1

• To see a summary of all your breakpoints, enter: info break

11



Stepping Through Code
• The next (n for short) command allows you to step through one line of C code 

at a time, stepping over function calls.
• The step (s for short) command is the same, except it steps into function calls.
• The finish (fin for short) command, steps out of the function.
• It works exactly like you would hope, most of the time…

• Caveat: if you loaded some external library that was not compiled with debugging symbols, 
then calls to that library will look confusing when you step into them.

• Break your program at the beginning of main(), enter next until you arrive at 
a call to printf(), and then enter step to step into the call to printf().

• Note that it doesn’t step into that function call, because it wasn’t compiled with debugging 
symbols

• If you have halted execution and wish to continue running the program, use the 
continue (c for short) command.

• Use that now to run the program to completion.

12



Printing Variables

• GDB has its own print function that is extremely useful.
• Let’s print out our command-line arguments in various 

formats.
• Set a breakpoint on line 47 by entering: b 47
• Restart running the calculator program with some custom 

command line arguments.
• Continue until the breakpoint on line 47 is hit.
• Once there, print out the values of the three variables 

holding your arguments (a, b, operator) by typing the 
following:
• print a
• print b
• print operator

13



Printing Variables (cont.)

• Now let’s try printing out the values of the variables 
in different formats.

• Try the following:
• print /x operator
• print /t a
• print print_operation
• print *argv
• print *argv[1]
• print *argv[3]

• What do each of these do?

14



Debugging

• Let’s look at how GDB enables us to easily identify 
runtime errors.

• Try making the program divide by zero:
• run 1 0 /

• If you keep continuing, eventually the program will 
throw an arithmetic exception, and GDB will tell you 
exactly that.

• If you want to see a backtrace, just type backtrace (bt
for short) and it will show you the chain of function 
calls that led to the error.
• Viewing a backtrace can be very helpful in debugging.

15



Future Topics

• Next week we will be going over some more 
advanced topics to get you through Lab 2

• These include, but are not limited to:
• Disassembling programs
• Stepping through assembly code
• Printing register values
• Examining memory

• If time permits, we can start getting into some of 
those now, but if not feel free to start messing with 
those on your own.

16


