
Spring 2016Course Wrap-up

We made it! 

1

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures &
stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Spring 2016Course Wrap-up

Today

 Imploring you to do your course evaluations, please!

 I’m Just a Program
 End-to-end review

 Victory lap and high-level concepts (major 🔑 points)
 More useful for “5 years from now” than “next week’s final”

 Question time

2

Spring 2016Course Wrap-up

Final Exam

 Wednesday, June 8, 2:30pm-4:20pm
 Right here in Miller 301.

 We’ve covered a lot this quarter!
 I know it’s a lot to review

 But probably less time pressure than midterm

 Will cover material from the entire course
 Focuses primarily on the material from the second half

 But we’ve been building on the earlier stuff, so expect to still see concepts
and material from the first half

 Best way to get a feel for it is to look at past exams (that’s what I’m doing!)

3

Spring 2016Course Wrap-up

Course Evaluations

 Really matters, and 90-100% response rate makes them much
more useful than 60%
 Have to guess what sampling bias is for “missing 40%”

 We really do take them seriously and use them to improve!
 This is my first time teaching, so I especially need your feedback!

 I’ve been sticking to mostly what has been done before, but we need you
all to help us figure out how to make it better and more useful!

 Evaluations close this Sunday, June 5th at 11:59pm
 I don’t know why it’s so early, but please please please do it!

 I still can’t see them until after I submit grades. 

 But you can’t see the final until after… ;)

4

Spring 2016Course Wrap-up

I’m Just a Bill (I mean, Program)

5Schoolhouse Rock!, 1976, “I’m Just a Bill”, written by Dave Frishberg

How Code Becomes A Program.

Spring 2016Course Wrap-up

Hardware

How Code Becomes A Program.

6

Source code
in high-level language

Assembly
(x86-64)

Binary
Executable

Compiler

Assembler

Spring 2016Course Wrap-up

C Language

Instruction Set Architecture

7

x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple A7

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

Spring 2016Course Wrap-up

CPU

Assembly Programmer’s View

 Programmer-Visible State

 %rip: Instruction pointer

 Address of next instruction

 Also called “PC” (“program counter”)

 Named registers

 Heavily used program data

 Together, called “register file”

 Condition codes

 Used for conditional branching

8

%rip
Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

 Memory

 Byte addressable array

 264 virtual addresses (18 exabytes)

 Private, all to you yourself…

Spring 2016Course Wrap-up

CPU

Program’s View

9

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

Spring 2016Course Wrap-up

Program’s View

10

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

 Instructions
 Data movement

 mov, movz, movz

 push, pop

 Arithmetic

 add, sub, imul

 Control flow

 cmp, test

 jmp, je, jgt, ...

 call, ret

 Operand types
 Literal: $8

 Register: %rdi, %al

 Memory: D(Rb,Ri,S) = D+Rb+Ri*S

 lea: not a memory access!

Spring 2016Course Wrap-up

Program’s View

 Procedures
 Essential abstraction

 Recursion…

 Stack discipline
 Stack frame per call

 Local variables

 Calling convention
 How to pass arguments

 Diane’s Silk Dress Costs $89

 How to return data

 Return address

 Caller-saved / callee-saved
registers

11

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

Spring 2016Course Wrap-up

Program’s View

 Heap data
 Variable size

 Variable lifetime

 Allocator
 Balance throughput and

memory utilization

 Data structures to keep track
of free blocks.

 Garbage collection
 Must always free memory

 Garbage collectors help by
finding anything reachable

 Failing to free results in
memory leaks.

12

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

Spring 2016Course Wrap-up

But remember… it’s all an illusion!

13

CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

 Context switches
 Don’t really have CPU to

yourself

 Virtual Memory
 Don’t really have 264 bytes of

memory all to yourself.

 Allows for indirection (remap
physical pages, sharing…)

😮

Spring 2016Course Wrap-up

Process 3
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1

High addresses

Low
addresses

Hardware

Process 2
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1
High addresses

Low
addresses

But remember… it’s all an illusion!

14

Process 1
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1

High addresses

Low
addresses

 Fork
 Creates copy of the process

 Exec
 Replace with new program

 Wait
 Wait for child to die (to reap it,

and prevent zombies)

😮

Spring 2016Course Wrap-up

Virtual Memory

15

 Address Translation
 Every memory access must first be converted from virtual to physical!!

 Indirection: just change the address mapping when switching processes!

 Luckily, TLB (and page size) makes it pretty fast.

MMU
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

TLB

VPN 3 Page Table

Spring 2016Course Wrap-up

But memory is also a lie!

16

 Illusion of one flat array of bytes
 But caches invisibly make accesses (to physical addresses) faster!

 Locality: temporal vs spatial

 Caches
 Need to be fast, so direct-mapped/indexed (sets)

 Need to be flexible, so associative (ways)

“Memory”

CPU

%rip
Registers

Condition
Codes

Main Memory
DRAM

L3
Cache

L2
Cache

L1
Cache

😮

Spring 2016Course Wrap-up

C: The Low Level-High Level Language

17

 Along the way, we learned about C data types…

 Primitive types: fixed sizes & alignments
 Endianness: only applies to memory; is the first byte the least significant

(little endian) or most (big)?

 Pointers: addresses with a type
 Always point at the beginning of the

 Arrays
 Contiguous chunks of memory

 2D arrays = still one continuous chunk

 Nested arrays: array of pointers to other arrays

 Buffer Overflow: No array bounds checks in C!!!

 How do we protect against them?

 Structs

Spring 2016Course Wrap-up

Nested Array Example

 “Row-major” ordering of all elements

 Elements in the same row are contiguous

 Guaranteed (in C)
18

76 96 116 136 156

9 8 1 9 5 9 8 1 0 5 9 8 1 0 3 9 8 1 1 5

sea[3][2];

Remember, T A[N] is
an array with elements
of type T, with length N

Row 0 Row 1 Row 2 Row 3

zip_dig sea[4] =
{{ 9, 8, 1, 9, 5 },
{ 9, 8, 1, 0, 5 },
{ 9, 8, 1, 0, 3 },
{ 9, 8, 1, 1, 5 }};

typedef int zip_dig[5];

Spring 2016Course Wrap-up

Multi-Level Array Example

19

 Variable univ denotes
array of 3 elements

 Each element is a pointer

 8 bytes each

 Each pointer points to
array of ints

36160

16

60

168

176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36

9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

Note: this is how Java represents multi-dimensional arrays.

int* univ[3] = {uw, cmu, ucb};

int cmu[5] = { 1, 5, 2, 1, 3 };
int uw[5] = { 9, 8, 1, 9, 5 };
int ucb[5] = { 9, 4, 7, 2, 0 };

Spring 2016Course Wrap-up

Array Element Accesses

20

int get_sea_digit
(int index, int digit)

{
return sea[index][digit];

}

int get_univ_digit
(int index, int digit)

{
return univ[index][digit];

}

Nested array Multi-level array

Access looks the same, but it isn’t:

Mem[sea+20*index+4*digit] Mem[Mem[univ+8*index]+4*digit]

36160

16

60

168

176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36

9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

Spring 2016Course Wrap-up

C: The Low Level-High Level Language

21

 Structs
 Each primitive element must be aligned

 Overall struct must be aligned to alignment of largest primitive member,
size must be multiple of that as well.

 Fragmentation

 Internal fragmentation: space between members

 External fragmentation: space after last member, inside the struct

struct Foo {
int a;
double b;
char c;

};

sizeof(Foo) ==

int a

double b

c

Spring 2016Course Wrap-up

Java: A High Level Language

22

 Java Virtual Machine is an interpreter
 Just need to port the JVM to your machine, then it can run your program

 It has its own “Assembly Program’s View”

variable table

operand stack

constant
pool

0 1 2 3 4 n

Holds pointer ‘this’

Other arguments to method

Other local variables Memory
• Call stack
• Heap

Spring 2016Course Wrap-up

Victory Lap

23

A victory lap is an extra trip

around the track

 By the exhausted victors

(that’s us) 

Review course goals

 Slides from Lecture 1

 What makes CSE351 special

Spring 2016Course Wrap-up

24

Next 7 slides copied without change from Lecture 1

They should make much more sense now!

Spring 2016Course Wrap-up

Welcome!

10 weeks to see the key abstractions “under the hood” to describe
“what really happens” when a program runs

 How is it that “everything is 1s and 0s”?

 Where does all the data get stored and how do you find it?

 How can more than one program run at once?

 What happens to a Java or C program before the hardware can execute it?

 What is The Stack and The Heap?

 And much, much, much more…

An introduction that will:
 Profoundly change/augment your view of computers and programs

 Connect your source code down to the hardware

 Leave you impressed that computers ever work.

25

Spring 2016Course Wrap-up

C/Java, assembly, and machine code
 The three program fragments

are equivalent

 You'd rather write C!
(more human-friendly)

 Hardware likes bit strings!
 Everything is voltages

 The machine instructions are
actually much shorter than the
number of bits we would need
to represent the characters in
the assembly language

26

1000001101111100001001000001110000000000

0111010000011000

10001011010001000010010000010100

10001011010001100010010100010100

100011010000010000000010

1000100111000010

110000011111101000011111

11110111011111000010010000011100

10001001010001000010010000011000





if (x != 0) y = (y+z)/x;

cmpl $0, -4(%ebp)
je .L2
movl -12(%ebp), %eax
movl -8(%ebp), %edx
leal (%edx, %eax), %eax
movl %eax, %edx
sarl $31, %edx
idivl -4(%ebp)
movl %eax, -8(%ebp)

.L2:

Spring 2016Course Wrap-up

The Big Theme:
Abstractions and Interfaces

 Computing is about abstractions
 (but we can’t forget reality)

 What are the abstractions that we use?

 What do you need to know about them?
 When do they break down and you have to peek under the hood?

 What bugs can they cause and how do you find them?

 How does the hardware (0s and 1s, processor executing
instructions) relate to the software (C/Java programs)?
 Become a better programmer and begin to understand the important

concepts that have evolved in building ever more complex computer
systems

27

Spring 2016Course Wrap-up

Little Theme 1: Representation

 All digital systems represent everything as 0s and 1s

 The 0 and 1 are really two different voltage ranges in the wires

 Or magnetic positions on a disc, or hole depths on a DVD, or even DNA…

 “Everything” includes:

 Numbers – integers and floating point

 Characters – the building blocks of strings

 Instructions – the directives to the CPU that make up a program

 Pointers – addresses of data objects stored away in memory

 These encodings are stored throughout a computer system

 In registers, caches, memories, disks, etc.

 They all need addresses

 A way to find them

 Find a new place to put a new item

 Reclaim the place in memory when data no longer needed
28

Spring 2016Course Wrap-up

Little Theme 2: Translation

 There is a big gap between how we think about programs and
data and the 0s and 1s of computers

 Need languages to describe what we mean

 These languages need to be translated one level at a time

 We know Java as a programming language
 Have to work our way down to the 0s and 1s of computers

 Try not to lose anything in translation!

 We’ll encounter Java byte-codes, C language, assembly language, and
machine code (for the X86 family of CPU architectures)

 Not in that order, but will all connect by the last lecture!!!

29

Spring 2016Course Wrap-up

Little Theme 3: Control Flow

 How do computers orchestrate everything they are doing?

 Within one program:
 How do we implement if/else, loops, switches?

 What do we have to keep track of when we call a procedure, and then
another, and then another, and so on?

 How do we know what to do upon “return”?

 Across programs and operating systems:
 Multiple user programs

 Operating system has to orchestrate them all

 Each gets a share of computing cycles

 They may need to share system resources (memory, I/O, disks)

 Yielding and taking control of the processor

 Voluntary or “by force”?

30

Spring 2016Course Wrap-up

Course Perspective

 CSE351 will make you a better programmer
 Purpose is to show how software really works

 Understanding the underlying system makes you more effective

 Better debugging

 Better basis for evaluating performance

 How multiple activities work in concert (e.g., OS and user programs)

 Not just a course for hardware enthusiasts!

 What every CSE major needs to know (plus many more details)

 See many patterns that come up over and over in computing (like caching)

 Like other 300-level courses,
“stuff everybody learns and uses and forgets not knowing”

 CSE351 presents a world-view that will empower you
 The intellectual tools and software tools to understand the trillions+ of 1s

and 0s that are “flying around” when your program runs

31

Spring 2016Course Wrap-up

HTTP://XKCD.COM/676/

32

Spring 2016Course Wrap-up

And of course don’t forget…

33

Spring 2016Course Wrap-up

Memory Hierarchy

34

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 1.3 years

1 - 15 years

Spring 2016Course Wrap-up

Thanks for a great quarter!

 Thanks to your awesome TAs!
 Everything that went smoothly was probably because of them!

 Anything that didn’t was because I didn’t ask them how to do it. ;)

 Thanks for laughing occasionally at stupid jokes!

 Don’t be a stranger!
 (although fingers crossed, I’ll graduate one of these days and you’ll have to find

me somewhere else)

35

