
Spring 2016Course Wrap-up

We made it!

1

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures &
stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Spring 2016Course Wrap-up

Today

 Imploring you to do your course evaluations, please!

 I’m Just a Program
 End-to-end review

 Victory lap and high-level concepts (major 🔑 points)
 More useful for “5 years from now” than “next week’s final”

 Question time

2

Spring 2016Course Wrap-up

Final Exam

 Wednesday, June 8, 2:30pm-4:20pm
 Right here in Miller 301.

 We’ve covered a lot this quarter!
 I know it’s a lot to review

 But probably less time pressure than midterm

 Will cover material from the entire course
 Focuses primarily on the material from the second half

 But we’ve been building on the earlier stuff, so expect to still see concepts
and material from the first half

 Best way to get a feel for it is to look at past exams (that’s what I’m doing!)

3

Spring 2016Course Wrap-up

Course Evaluations

 Really matters, and 90-100% response rate makes them much
more useful than 60%
 Have to guess what sampling bias is for “missing 40%”

 We really do take them seriously and use them to improve!
 This is my first time teaching, so I especially need your feedback!

 I’ve been sticking to mostly what has been done before, but we need you
all to help us figure out how to make it better and more useful!

 Evaluations close this Sunday, June 5th at 11:59pm
 I don’t know why it’s so early, but please please please do it!

 I still can’t see them until after I submit grades.

 But you can’t see the final until after… ;)

4

Spring 2016Course Wrap-up

I’m Just a Bill (I mean, Program)

5Schoolhouse Rock!, 1976, “I’m Just a Bill”, written by Dave Frishberg

How Code Becomes A Program.

Spring 2016Course Wrap-up

Hardware

How Code Becomes A Program.

6

Source code
in high-level language

Assembly
(x86-64)

Binary
Executable

Compiler

Assembler

Spring 2016Course Wrap-up

C Language

Instruction Set Architecture

7

x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple A7

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

Spring 2016Course Wrap-up

CPU

Assembly Programmer’s View

 Programmer-Visible State

 %rip: Instruction pointer

 Address of next instruction

 Also called “PC” (“program counter”)

 Named registers

 Heavily used program data

 Together, called “register file”

 Condition codes

 Used for conditional branching

8

%rip
Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

 Memory

 Byte addressable array

 264 virtual addresses (18 exabytes)

 Private, all to you yourself…

Spring 2016Course Wrap-up

CPU

Program’s View

9

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

Spring 2016Course Wrap-up

Program’s View

10

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

 Instructions
 Data movement

 mov, movz, movz

 push, pop

 Arithmetic

 add, sub, imul

 Control flow

 cmp, test

 jmp, je, jgt, ...

 call, ret

 Operand types
 Literal: $8

 Register: %rdi, %al

 Memory: D(Rb,Ri,S) = D+Rb+Ri*S

 lea: not a memory access!

Spring 2016Course Wrap-up

Program’s View

 Procedures
 Essential abstraction

 Recursion…

 Stack discipline
 Stack frame per call

 Local variables

 Calling convention
 How to pass arguments

 Diane’s Silk Dress Costs $89

 How to return data

 Return address

 Caller-saved / callee-saved
registers

11

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

Spring 2016Course Wrap-up

Program’s View

 Heap data
 Variable size

 Variable lifetime

 Allocator
 Balance throughput and

memory utilization

 Data structures to keep track
of free blocks.

 Garbage collection
 Must always free memory

 Garbage collectors help by
finding anything reachable

 Failing to free results in
memory leaks.

12

Memory

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

Spring 2016Course Wrap-up

But remember… it’s all an illusion!

13

CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

Large constants
(e.g., “example”)

static variables
(global variables in C)

variables allocated
with new or malloc

local variables;
procedure context

0

2N-1

High addresses

Low addresses

 Context switches
 Don’t really have CPU to

yourself

 Virtual Memory
 Don’t really have 264 bytes of

memory all to yourself.

 Allows for indirection (remap
physical pages, sharing…)

😮

Spring 2016Course Wrap-up

Process 3
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1

High addresses

Low
addresses

Hardware

Process 2
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1
High addresses

Low
addresses

But remember… it’s all an illusion!

14

Process 1
CPU

%rip
Registers

Memory

Condition
Codes

Instructions

Literals

Static Data

Dynamic Data
(Heap)

Stack

0

2N-1

High addresses

Low
addresses

 Fork
 Creates copy of the process

 Exec
 Replace with new program

 Wait
 Wait for child to die (to reap it,

and prevent zombies)

😮

Spring 2016Course Wrap-up

Virtual Memory

15

 Address Translation
 Every memory access must first be converted from virtual to physical!!

 Indirection: just change the address mapping when switching processes!

 Luckily, TLB (and page size) makes it pretty fast.

MMU
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

TLB

VPN 3 Page Table

Spring 2016Course Wrap-up

But memory is also a lie!

16

 Illusion of one flat array of bytes
 But caches invisibly make accesses (to physical addresses) faster!

 Locality: temporal vs spatial

 Caches
 Need to be fast, so direct-mapped/indexed (sets)

 Need to be flexible, so associative (ways)

“Memory”

CPU

%rip
Registers

Condition
Codes

Main Memory
DRAM

L3
Cache

L2
Cache

L1
Cache

😮

Spring 2016Course Wrap-up

C: The Low Level-High Level Language

17

 Along the way, we learned about C data types…

 Primitive types: fixed sizes & alignments
 Endianness: only applies to memory; is the first byte the least significant

(little endian) or most (big)?

 Pointers: addresses with a type
 Always point at the beginning of the

 Arrays
 Contiguous chunks of memory

 2D arrays = still one continuous chunk

 Nested arrays: array of pointers to other arrays

 Buffer Overflow: No array bounds checks in C!!!

 How do we protect against them?

 Structs

Spring 2016Course Wrap-up

Nested Array Example

 “Row-major” ordering of all elements

 Elements in the same row are contiguous

 Guaranteed (in C)
18

76 96 116 136 156

9 8 1 9 5 9 8 1 0 5 9 8 1 0 3 9 8 1 1 5

sea[3][2];

Remember, T A[N] is
an array with elements
of type T, with length N

Row 0 Row 1 Row 2 Row 3

zip_dig sea[4] =
{{ 9, 8, 1, 9, 5 },
{ 9, 8, 1, 0, 5 },
{ 9, 8, 1, 0, 3 },
{ 9, 8, 1, 1, 5 }};

typedef int zip_dig[5];

Spring 2016Course Wrap-up

Multi-Level Array Example

19

 Variable univ denotes
array of 3 elements

 Each element is a pointer

 8 bytes each

 Each pointer points to
array of ints

36160

16

60

168

176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36

9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

Note: this is how Java represents multi-dimensional arrays.

int* univ[3] = {uw, cmu, ucb};

int cmu[5] = { 1, 5, 2, 1, 3 };
int uw[5] = { 9, 8, 1, 9, 5 };
int ucb[5] = { 9, 4, 7, 2, 0 };

Spring 2016Course Wrap-up

Array Element Accesses

20

int get_sea_digit
(int index, int digit)

{
return sea[index][digit];

}

int get_univ_digit
(int index, int digit)

{
return univ[index][digit];

}

Nested array Multi-level array

Access looks the same, but it isn’t:

Mem[sea+20*index+4*digit] Mem[Mem[univ+8*index]+4*digit]

36160

16

60

168

176

univ

cmu

uw

ucb

1 5 2 1 3

16 20 24 28 32 36

9 8 1 9 5

36 40 44 48 52 56

9 4 7 2 0

60 64 68 72 76 80

Spring 2016Course Wrap-up

C: The Low Level-High Level Language

21

 Structs
 Each primitive element must be aligned

 Overall struct must be aligned to alignment of largest primitive member,
size must be multiple of that as well.

 Fragmentation

 Internal fragmentation: space between members

 External fragmentation: space after last member, inside the struct

struct Foo {
int a;
double b;
char c;

};

sizeof(Foo) ==

int a

double b

c

Spring 2016Course Wrap-up

Java: A High Level Language

22

 Java Virtual Machine is an interpreter
 Just need to port the JVM to your machine, then it can run your program

 It has its own “Assembly Program’s View”

variable table

operand stack

constant
pool

0 1 2 3 4 n

Holds pointer ‘this’

Other arguments to method

Other local variables Memory
• Call stack
• Heap

Spring 2016Course Wrap-up

Victory Lap

23

A victory lap is an extra trip

around the track

 By the exhausted victors

(that’s us)

Review course goals

 Slides from Lecture 1

 What makes CSE351 special

Spring 2016Course Wrap-up

24

Next 7 slides copied without change from Lecture 1

They should make much more sense now!

Spring 2016Course Wrap-up

Welcome!

10 weeks to see the key abstractions “under the hood” to describe
“what really happens” when a program runs

 How is it that “everything is 1s and 0s”?

 Where does all the data get stored and how do you find it?

 How can more than one program run at once?

 What happens to a Java or C program before the hardware can execute it?

 What is The Stack and The Heap?

 And much, much, much more…

An introduction that will:
 Profoundly change/augment your view of computers and programs

 Connect your source code down to the hardware

 Leave you impressed that computers ever work.

25

Spring 2016Course Wrap-up

C/Java, assembly, and machine code
 The three program fragments

are equivalent

 You'd rather write C!
(more human-friendly)

 Hardware likes bit strings!
 Everything is voltages

 The machine instructions are
actually much shorter than the
number of bits we would need
to represent the characters in
the assembly language

26

1000001101111100001001000001110000000000

0111010000011000

10001011010001000010010000010100

10001011010001100010010100010100

100011010000010000000010

1000100111000010

110000011111101000011111

11110111011111000010010000011100

10001001010001000010010000011000

if (x != 0) y = (y+z)/x;

cmpl $0, -4(%ebp)
je .L2
movl -12(%ebp), %eax
movl -8(%ebp), %edx
leal (%edx, %eax), %eax
movl %eax, %edx
sarl $31, %edx
idivl -4(%ebp)
movl %eax, -8(%ebp)

.L2:

Spring 2016Course Wrap-up

The Big Theme:
Abstractions and Interfaces

 Computing is about abstractions
 (but we can’t forget reality)

 What are the abstractions that we use?

 What do you need to know about them?
 When do they break down and you have to peek under the hood?

 What bugs can they cause and how do you find them?

 How does the hardware (0s and 1s, processor executing
instructions) relate to the software (C/Java programs)?
 Become a better programmer and begin to understand the important

concepts that have evolved in building ever more complex computer
systems

27

Spring 2016Course Wrap-up

Little Theme 1: Representation

 All digital systems represent everything as 0s and 1s

 The 0 and 1 are really two different voltage ranges in the wires

 Or magnetic positions on a disc, or hole depths on a DVD, or even DNA…

 “Everything” includes:

 Numbers – integers and floating point

 Characters – the building blocks of strings

 Instructions – the directives to the CPU that make up a program

 Pointers – addresses of data objects stored away in memory

 These encodings are stored throughout a computer system

 In registers, caches, memories, disks, etc.

 They all need addresses

 A way to find them

 Find a new place to put a new item

 Reclaim the place in memory when data no longer needed
28

Spring 2016Course Wrap-up

Little Theme 2: Translation

 There is a big gap between how we think about programs and
data and the 0s and 1s of computers

 Need languages to describe what we mean

 These languages need to be translated one level at a time

 We know Java as a programming language
 Have to work our way down to the 0s and 1s of computers

 Try not to lose anything in translation!

 We’ll encounter Java byte-codes, C language, assembly language, and
machine code (for the X86 family of CPU architectures)

 Not in that order, but will all connect by the last lecture!!!

29

Spring 2016Course Wrap-up

Little Theme 3: Control Flow

 How do computers orchestrate everything they are doing?

 Within one program:
 How do we implement if/else, loops, switches?

 What do we have to keep track of when we call a procedure, and then
another, and then another, and so on?

 How do we know what to do upon “return”?

 Across programs and operating systems:
 Multiple user programs

 Operating system has to orchestrate them all

 Each gets a share of computing cycles

 They may need to share system resources (memory, I/O, disks)

 Yielding and taking control of the processor

 Voluntary or “by force”?

30

Spring 2016Course Wrap-up

Course Perspective

 CSE351 will make you a better programmer
 Purpose is to show how software really works

 Understanding the underlying system makes you more effective

 Better debugging

 Better basis for evaluating performance

 How multiple activities work in concert (e.g., OS and user programs)

 Not just a course for hardware enthusiasts!

 What every CSE major needs to know (plus many more details)

 See many patterns that come up over and over in computing (like caching)

 Like other 300-level courses,
“stuff everybody learns and uses and forgets not knowing”

 CSE351 presents a world-view that will empower you
 The intellectual tools and software tools to understand the trillions+ of 1s

and 0s that are “flying around” when your program runs

31

Spring 2016Course Wrap-up

HTTP://XKCD.COM/676/

32

Spring 2016Course Wrap-up

And of course don’t forget…

33

Spring 2016Course Wrap-up

Memory Hierarchy

34

registers

on-chip L1
cache (SRAM)

main memory
(DRAM)

local secondary storage
(local disks)

Larger,
slower,
cheaper
per byte

remote secondary storage
(distributed file systems, web servers)

off-chip L2
cache (SRAM)

Smaller,
faster,
costlier
per byte

<1 ns

1 ns

5-10 ns

100 ns

150,000 ns

10,000,000 ns
(10 ms)

1-150 ms

SSD

Disk

5-10 s

1-2 min

15-30 min

31 days

66 months = 1.3 years

1 - 15 years

Spring 2016Course Wrap-up

Thanks for a great quarter!

 Thanks to your awesome TAs!
 Everything that went smoothly was probably because of them!

 Anything that didn’t was because I didn’t ask them how to do it. ;)

 Thanks for laughing occasionally at stupid jokes!

 Don’t be a stranger!
 (although fingers crossed, I’ll graduate one of these days and you’ll have to find

me somewhere else)

35

