
Memory & data

Integers & floats

Roadmap

Memory Allocation Topics

Dynamic memory allocation

- Size/number/lifetime of data structures may only be known at run time
- Need to allocate space on the heap
- Need to de-allocate (free) unused memory so it can be re-allocated

Explicit Allocation Implementation

- Implicit free lists
- Explicit free lists subject of next programming assignment
- Segregated free lists
- Implicit Deallocation: Garbage collection
- Common memory-related bugs in C programs

ALL THE DATA!!!

Multiple ways so far of storing data:

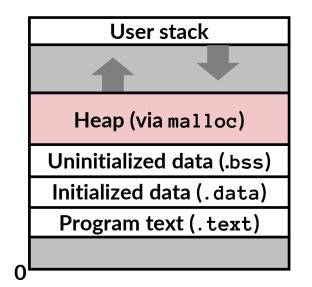
Static global data

- Fixed size at compile-time
- Entire lifetime of the program (loaded from executable)
- Portion is read-only (e.g. string literals)

```
int array[1024];
void foo(int n) {
    int tmp;
    int local_array[n];
```

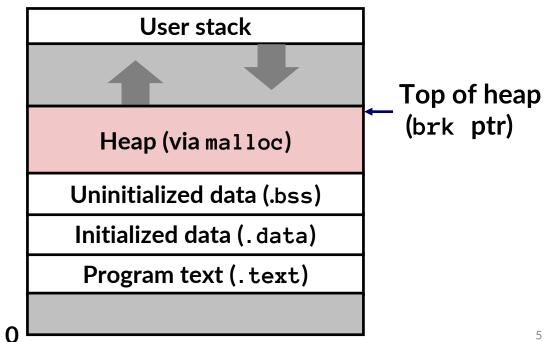
```
int* dyn =
  (int*)malloc(n * sizeof(int));
```

Stack-allocated data


Local / temporary variables, can be dynamically sized (in some versions of C)

}

- Known lifetime (deallocated on return)
- Dynamic (heap) data
 - Size known only at runtime (based on user-input, etc)
 - Lifetime known only at runtime (long-lived data structures)


Dynamic Memory Allocation

- Programmers use dynamic memory allocators (such as malloc) to acquire virtual memory at run time
 - For data structures whose size (or lifetime) is known only at runtime
- Types of allocators
 - Explicit allocator: application allocates and frees space
 - E.g. malloc and free in C
 - Implicit allocator: application allocates, but does not free space
 - E.g. garbage collection in Java, ML, and Lisp
- Dynamic memory allocators manage an area of a process' virtual memory known as the heap

Dynamic Memory Allocation

- Allocator organizes the heap as a collection of variable-sized blocks, which are either allocated or free
 - Allocator requests pages in heap region; virtual memory hardware and OS kernel allocate these pages to the process
 - Application objects are typically smaller than pages, so the allocator manages blocks within pages
 - (Larger objects handled too; ignored here)

The malloc Package

#include <stdlib.h>

void* malloc(size_t size)

- Successful:
 - Returns a pointer to a memory block of at least size bytes (typically) aligned to an 8-byte (x86) or 16-byte (x86-64) boundary
 - If size == 0, returns NULL
- Unsuccessful: returns NULL and sets errno

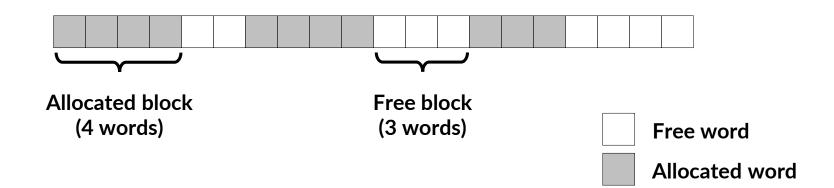
void free(void* p)

- Gives back the block pointed at by **p** to pool of available memory
- p must come from a previous call to malloc (or similar, see below)

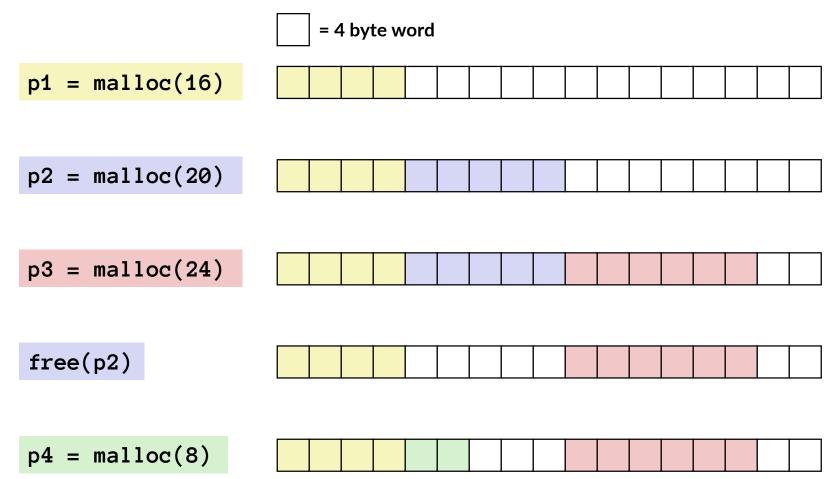
Other functions

- calloc: Version of malloc that "zeros out" allocated block
- realloc: Changes the size of a previously allocated block (if possible) (warning: realloc works differently on BSD/OSX than in our version of Linux for this course)
- sbrk: Used internally by allocators to grow or shrink the heap
 - historical naming from before virtual memory was common

Malloc Example


```
void foo(int n, int m) {
  int i, *p;
 /* allocate a block of n ints */
  p = (int *)malloc(n * sizeof(int));
 if (p == NULL) {
   perror("malloc");
   exit(0);
  }
  for (i=0; i<n; i++)
   p[i] = i;
 /* add space for m ints to end of p block */
  p = (int *)realloc(p, (n+m) * sizeof(int));
 if (p == NULL) {
   perror("realloc");
   exit(0);
  }
  for (i=n; i < n+m; i++)
    p[i] = i;
 /* print new array */
  for (i=0; i<n+m; i++)
   printf("%d n", p[i]);
  free(p); /* return p to available memory pool */
}
```

Assumptions made in: these slides, book, videos


Memory is drawn divided into words

- Each word can hold an int (32 bits/4 bytes)
- Allocations will be in sizes that are a multiple of words, i.e. multiples of 4 bytes
- In pictures in slides, book, videos :

= one word, 4 bytes

Allocation Example

Constraints (interface/contract)

Applications

- Can issue arbitrary sequence of malloc and free requests
- Must never access memory not currently allocated (else "who knows")
- Must never free memory not currently allocated (else "who knows")
 - Also must only use free with previously malloc'ed (or calloc'ed etc.) blocks (not, e.g., stack data) (else "who knows")

Allocators

- Can't control number or size of allocated blocks
- Must respond immediately to malloc requests
 - *i.e.*, can't reorder or buffer requests
- Must allocate blocks from free memory
 - *i.e.*, blocks can't overlap, why not?
- Must align blocks so they satisfy all alignment requirements
- Can't move the allocated blocks
 - *i.e.*, compaction is not allowed. Why not?

Performance Goal #1: Throughput

• Given some sequence of malloc and free requests:

• $R_0, R_1, ..., R_k, ..., R_{n-1}$

Goals: maximize throughput and peak memory utilization

These goals are often conflicting

Throughput:

- Number of completed requests per unit time
- Example:
 - 5,000 malloc calls and 5,000 free calls in 10 seconds
 - Throughput is 1,000 operations/second

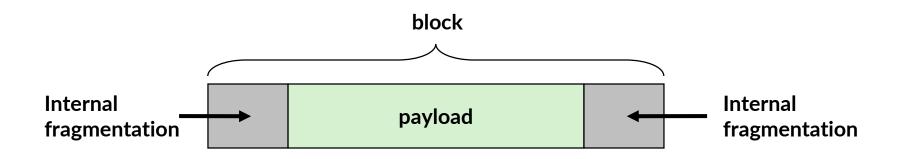
Performance Goal #2: Peak Memory Utilization

- Given some sequence of malloc and free requests:
 - $R_0, R_1, ..., R_k, ..., R_{n-1}$

• **Def:** Aggregate payload P_k

- malloc(p) results in a block with a payload of p bytes
- After request R_k has completed, the aggregate payload P_k is the sum of currently allocated payloads

• **Def:** Current heap size = H_k

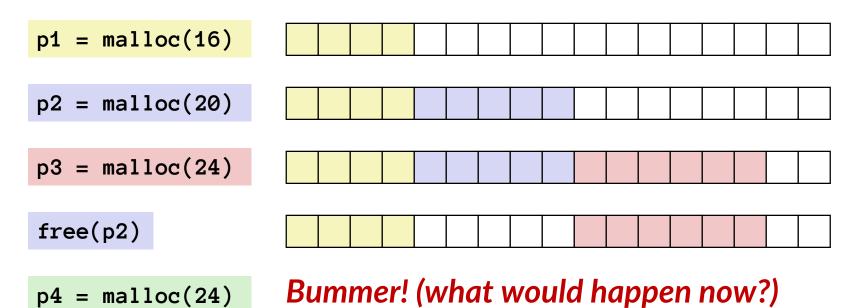

- Assume H_k is monotonically nondecreasing
 - Allocator can increase size of heap using sbrk
- **Def:** Peak memory utilization after k + 1 requests
 - $U_k = (max_{i \le k} P_i) / H_k$
 - Goal: maximize utilization for a sequence of requests.
 - Why is this hard? And what happens to throughput?

Fragmentation

- Poor memory utilization is caused by *fragmentation*
- Sections of memory are not used to store anything useful, but cannot satisfy allocation requests
- internal fragmentation
- external fragmentation

Internal Fragmentation

 For a given block, internal fragmentation occurs if payload is smaller than block size


Caused by

- overhead of maintaining heap data structures (inside block, outside payload)
- padding for alignment purposes
- explicit policy decisions (e.g., to return a big block to satisfy a small request) why would anyone do that?

External Fragmentation

= 4 byte word

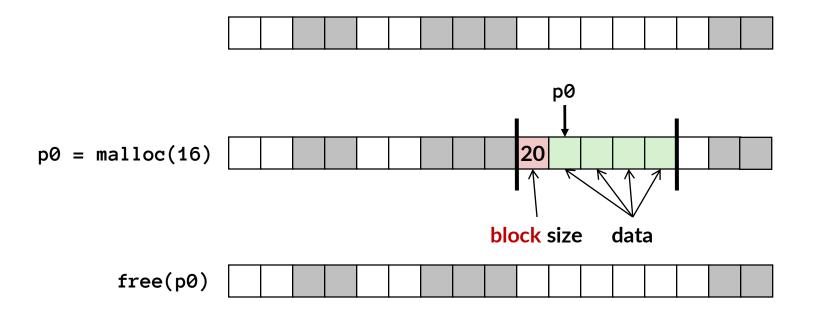
 Occurs when there is enough aggregate heap memory, but no single free block is large enough

Don't know what requests will come in the future...

Thus, difficult (er, impossible) to know where to best place things

Implementation Issues

- How do we know how much memory to free given just a pointer?
- How do we keep track of the free blocks?
- How do we pick a block to use for allocation (when many might fit)?
- What do we do with the extra space when allocating a structure that is smaller than the free block it is placed in?
- How do we reinsert a freed block into the heap?

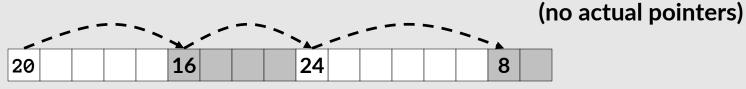

Knowing How Much to Free

= 4 byte word (free)

= 4 byte word (allocated)

Standard method

- Keep the length of a block in the word preceding the block
 - This word is often called the *header field* or *header*
- Requires an extra word for every allocated block



Keeping Track of Free Blocks

= 4 byte word (free)

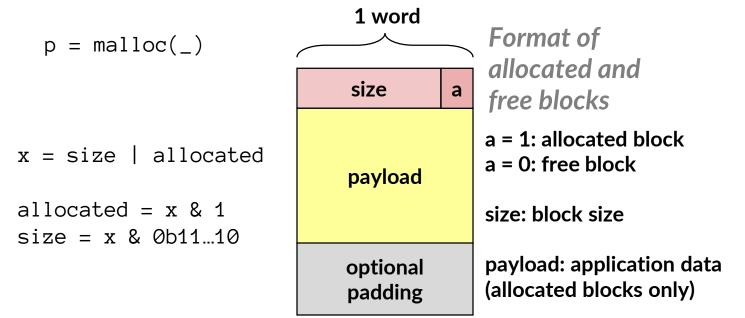
= 4 byte word (allocated)

Method 1: Implicit free list using length— links all blocks using math

Method 2: Explicit free list among only the free blocks, using pointers

- Method 3: Segregated free list
 - Different free lists for different size classes

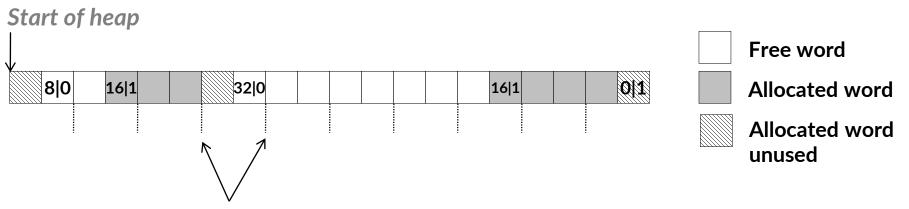
Method 4: Blocks sorted by size


 Can use a balanced binary tree (e.g. red-black tree) with pointers within each free block, and the length used as a key

Implicit Free Lists

- For each block we need two pieces of info:
 - size? is-allocated?
 - Could store this information in two words: wasteful!

Standard trick


- If blocks are aligned some low-order bits are always 0
- Instead of storing a bit that will always be 0, use it as a allocated/free flag
- When reading size, must remember to mask out this bit

e.g. with 8-byte alignment, possible values for size: 00001000 = 8 bytes 00010000 = 16 bytes 00011000 = 24 bytes ...

Implicit Free List Example (words = 32-bits)

Each block begins with a header that contains its size in bytes/allocated bit. Sequence of blocks in heap (size|allocated): 8|0, 16|1, 32|0, 16|1

8 bytes = 2 word alignment

8-byte alignment

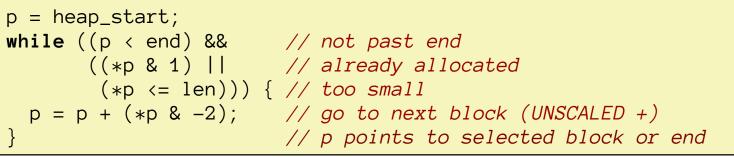
- May require initial unused word
- Causes some internal fragmentation

Special one-word marker (0|1) marks end of list

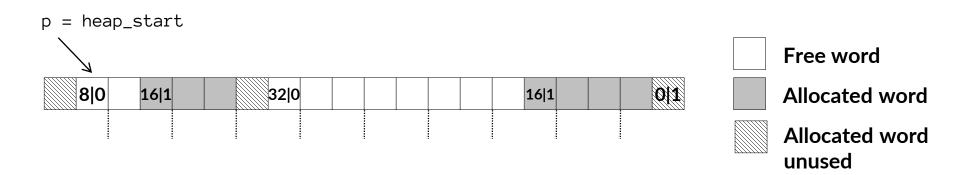
zero size is distinguishable from all real sizes

*p gets the block header

*p & -2 masks the allocated

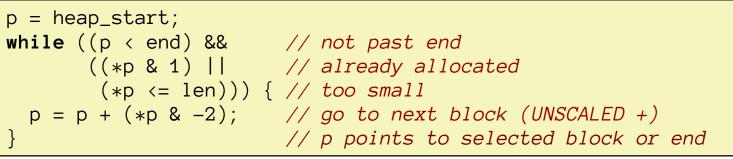

bit, gets just the size

*p & 1 extracts the allocated bit


Implicit List: Finding a Free Block

• First fit:

Search list from beginning, choose first free block that fits:


- Can take time linear in total number of blocks (allocated and free)
- In practice it can cause "splinters" at beginning of list

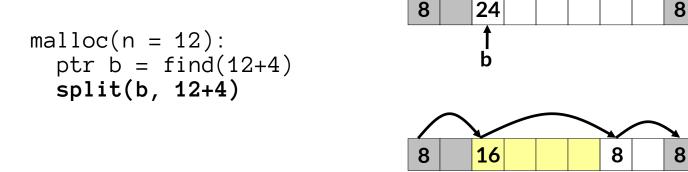
Implicit List: Finding a Free Block

• First fit:

Search list from beginning, choose first free block that fits:

- Can take time linear in total number of blocks (allocated and free)
- In practice it can cause "splinters" at beginning of list

Next fit:

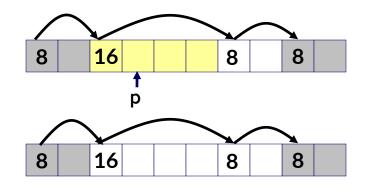

- Like first-fit, but search list starting where previous search finished
- Should often be faster than first-fit: avoids re-scanning unhelpful blocks
- Some research suggests that fragmentation is worse
- Best fit:
 - Search the list, choose the best free block: fits, with fewest bytes left over
 - Keeps fragments small—usually helps fragmentation
 - Usually worse throughput

*p gets the block header
*p & 1 extracts the allocated bit
*p & -2 masks the allocated bit, gets just the size

Implicit List: Allocating in a Free Block

Allocating in a free block: splitting

 Since allocated space might be smaller than free space, we might want to split the block

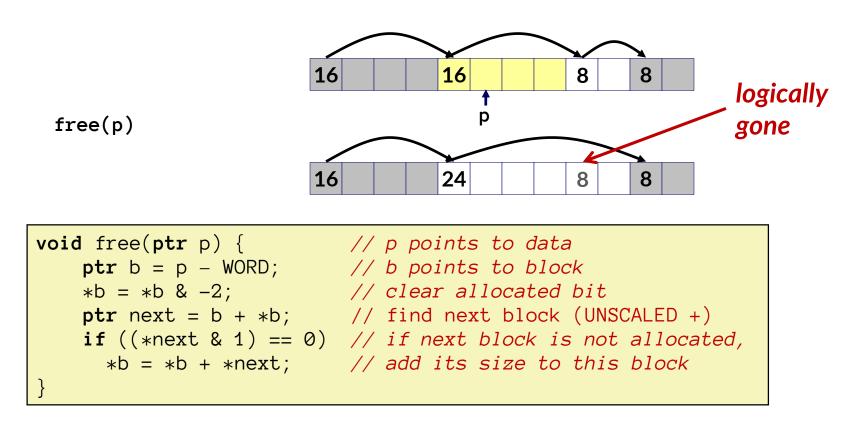


assume ptr points to word and has unscaled pointer arithmetic

```
void split(ptr b, int bytes) {
    int newsize = ((bytes + 7) >> 3) << 3;
    int oldsize = *b;
    *b = newsize;
    if (newsize < oldsize)
    *(b+newsize) = oldsize - newsize;
    // set length in remaining
    // part of block (UNSCALED +)</pre>
```

Implicit List: Freeing a Block

- Simplest implementation:
 - Need only clear the "allocated" flag void free(ptr p) { ptr b = p - WORD; *b = *b & -2 }
 - But can lead to "false fragmentation"

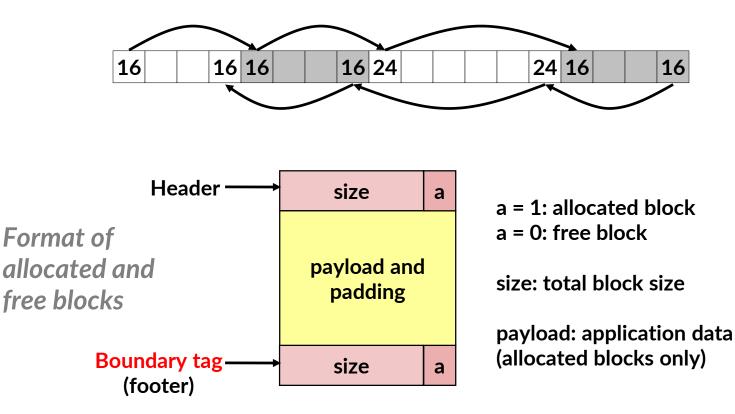

free(p)

malloc(20) Oops!

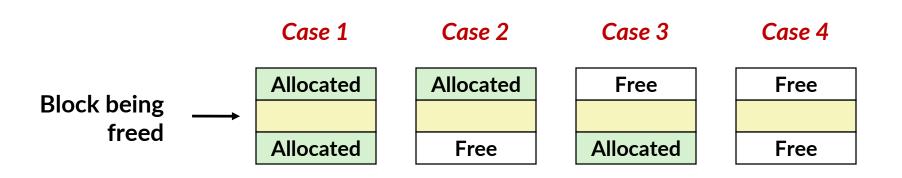
There is enough free space, but the allocator won't be able to find it

Implicit List: Coalescing

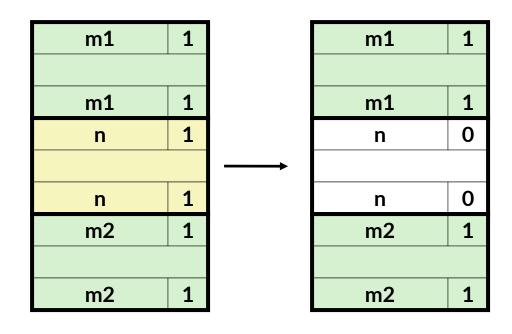
- Join (coalesce) with next/previous blocks, if they are free
 - Coalescing with next block

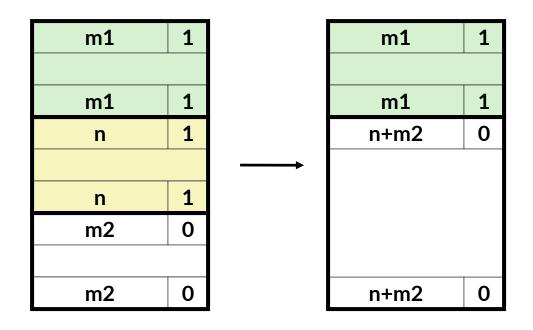


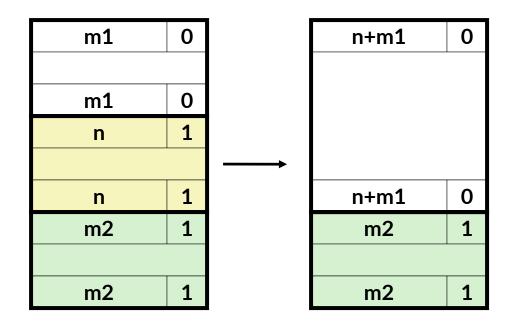
But how do we coalesce with the *previous* block?

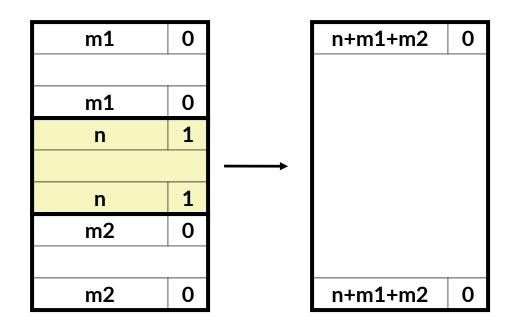

Implicit List: Bidirectional Coalescing

Boundary tags [Knuth73]


- Replicate size/allocated word at "bottom" (end) of free blocks
- Allows us to traverse the "list" backwards, but requires extra space
- Important and general technique!

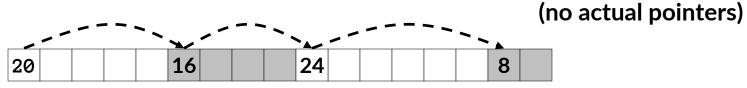

Constant Time Coalescing


Constant Time Coalescing (Case 1)


Constant Time Coalescing (Case 2)

Constant Time Coalescing (Case 3)

Constant Time Coalescing (Case 4)


Implicit Free Lists: Summary

- Implementation: very simple
- Allocate cost:
 - Inear time (in total number of heap blocks) worst case
- Free cost:
 - constant time worst case
 - even with coalescing
- Memory utilization:
 - will depend on placement policy
 - First-fit, next-fit, or best-fit
- Not used in practice for malloc/free because of linear-time allocation
 - used in some special purpose applications
- Concepts of splitting and boundary tag coalescing are general to all (?) allocators

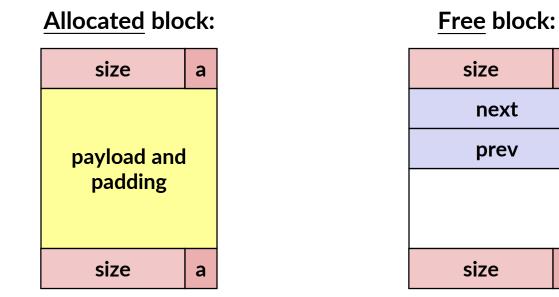
Keeping Track of Free Blocks

= 4 byte word (free)

Method 1: Implicit free list using length— links <u>all</u> blocks using math

- Method 2: Explicit free list among only the free blocks, using pointers

 20
 16
 24
 8
- Method 3: Segregated free list
 - Different free lists for different size classes


Method 4: Blocks sorted by size

 Can use a balanced binary tree (e.g. red-black tree) with pointers within each free block, and the length used as a key

а

а

Explicit Free Lists

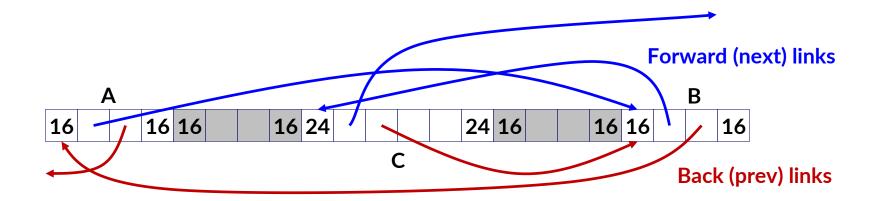
(same as implicit free list)

Maintain list(s) of free blocks, rather than implicit list of all blocks

- The "next" free block could be anywhere in the heap
 - So we need to store forward/back pointers, not just sizes
- Luckily we track only free blocks, so we can use payload area for pointers
- Still need boundary tags for coalescing

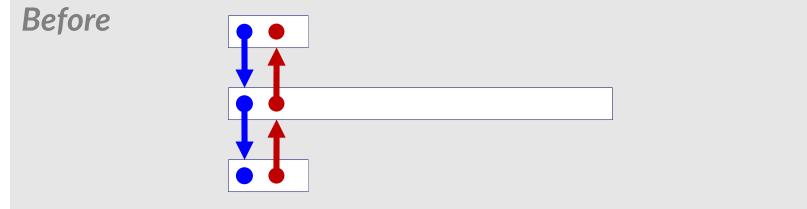
Explicit Free Lists

Logically (doubly-linked lists):


Physically?

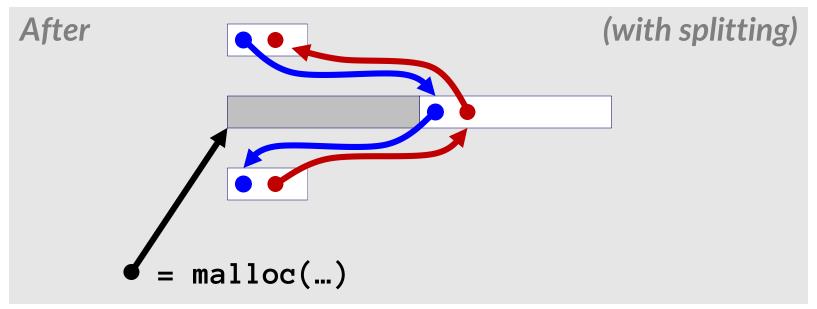
Explicit Free Lists

Logically (doubly-linked lists):



Physically: blocks can be in any order

Allocating From Explicit Free Lists

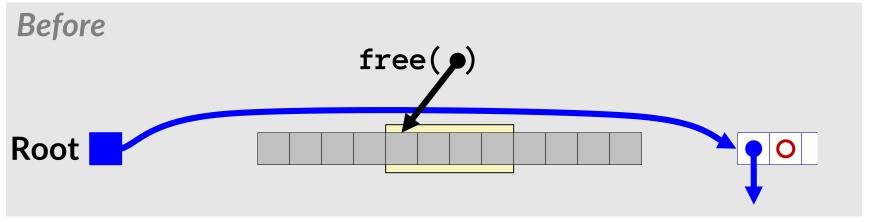

conceptual graphic

Allocating From Explicit Free Lists

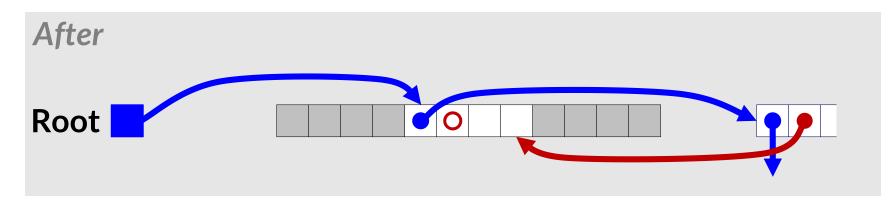
conceptual graphic

Note: These diagrams are not very specific about <u>where inside a block</u> a pointer points. In reality we would always point to one place (e.g. start/header of a block).

Freeing With Explicit Free Lists

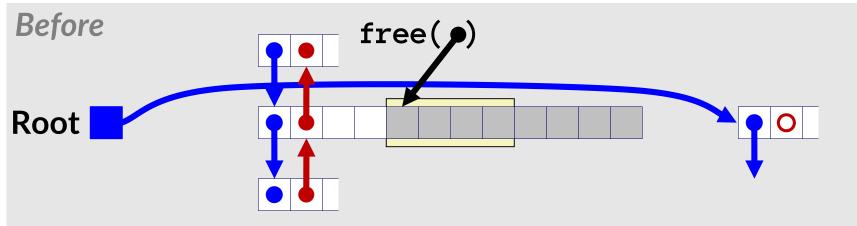

Insertion policy: Where in the free list do you put a newly freed block?

Freeing With Explicit Free Lists

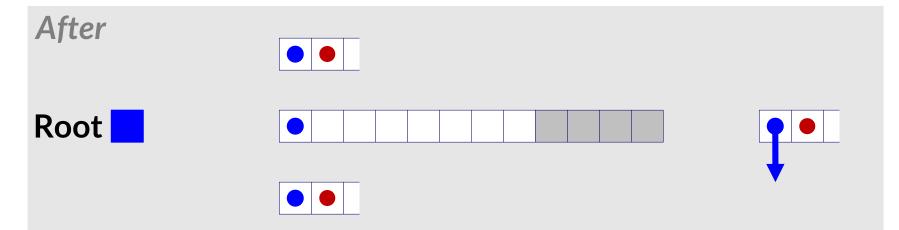

- Insertion policy: Where in the free list do you put a newly freed block?
 - LIFO (last-in-first-out) policy
 - Insert freed block at the beginning of the free list
 - Pro: simple and constant time
 - Con: studies suggest fragmentation is worse than address ordered
 - Address-ordered policy
 - Insert freed blocks so that free list blocks are always in address order: *addr(prev) < addr(curr) < addr(next)*
 - Con: requires linear-time search when blocks are freed
 - **Pro:** studies suggest fragmentation is lower than LIFO

Freeing With a LIFO Policy (Case 1)

conceptual graphic

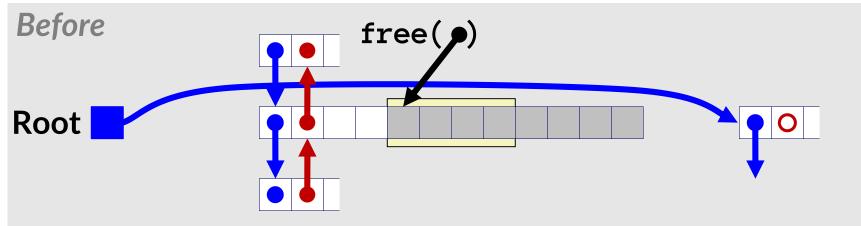


Insert the freed block at the root of the list

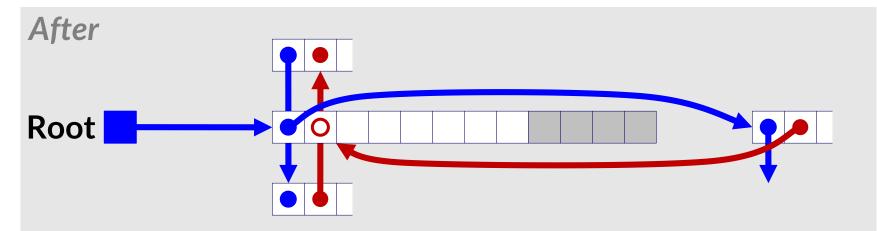


Freeing With a LIFO Policy (Case 2)

conceptual graphic

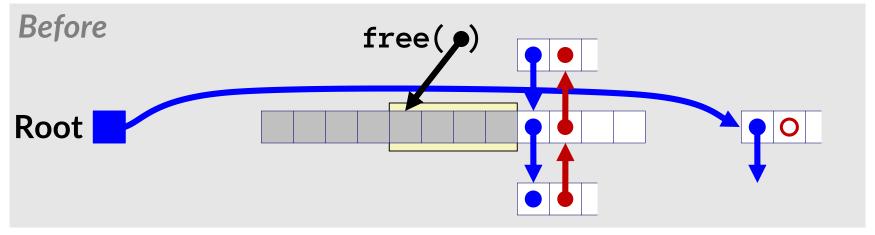


Splice <u>predecessor</u> block out of list, coalesce both memory blocks, and insert the new block at the root of the list

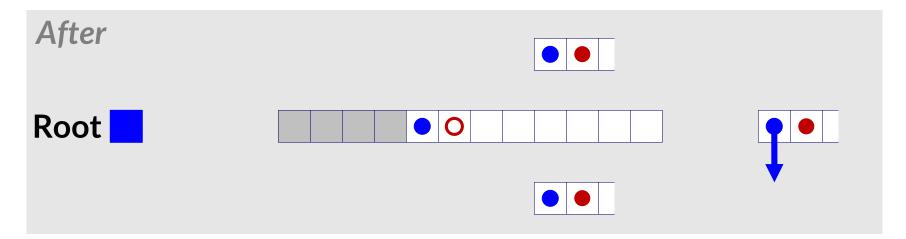


Freeing With a LIFO Policy (Case 2)

conceptual graphic

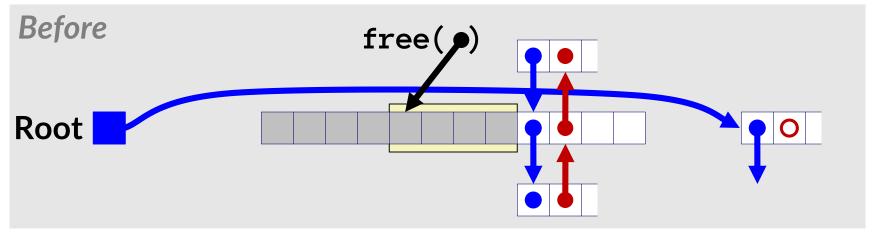


Splice <u>predecessor</u> block out of list, coalesce both memory blocks, and insert the new block at the root of the list

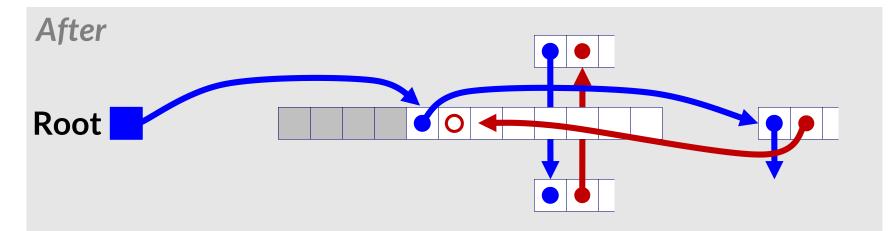


Freeing With a LIFO Policy (Case 3)

conceptual graphic

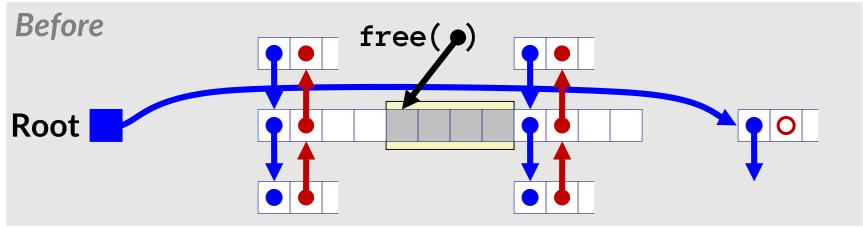


Splice <u>successor</u> block out of list, coalesce both memory blocks and insert the new block at the root of the list

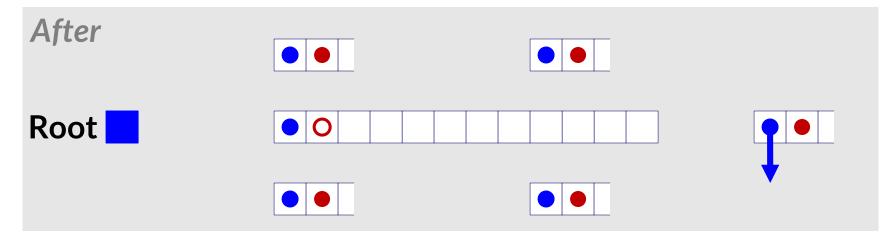


Freeing With a LIFO Policy (Case 3)

conceptual graphic

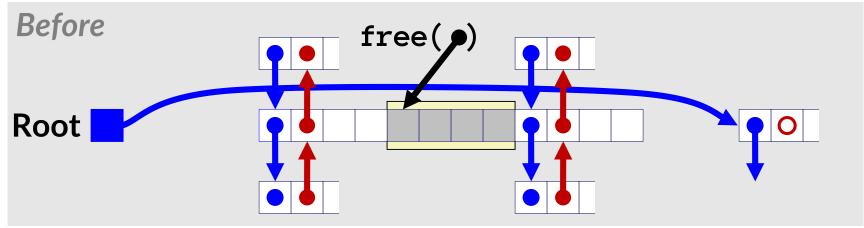


Splice <u>successor</u> block out of list, coalesce both memory blocks and insert the new block at the root of the list

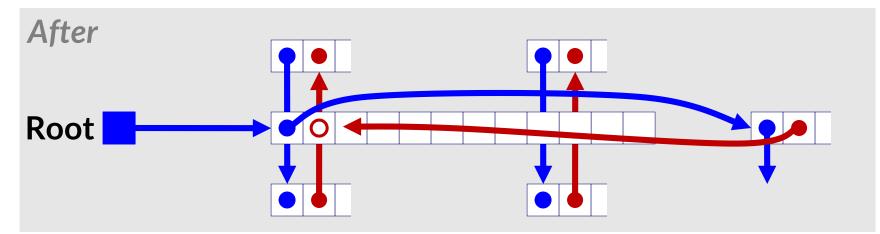


Freeing With a LIFO Policy (Case 4)

conceptual graphic

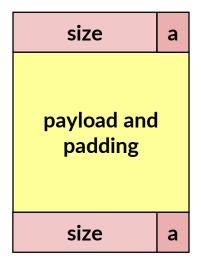


Splice <u>predecessor</u> and <u>successor</u> blocks out of list, coalesce all 3 memory blocks and insert the new block at the root of the list

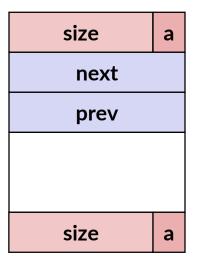


Freeing With a LIFO Policy (Case 4)

conceptual graphic



Splice <u>predecessor</u> and <u>successor</u> blocks out of list, coalesce all 3 memory blocks and insert the new block at the root of the list



Do we always need the boundary tag?

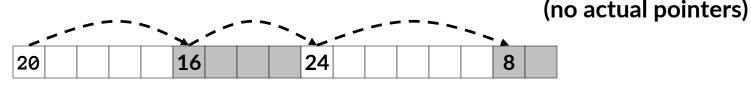
Allocated block:

Free block:

Lab 5 suggests no...

Explicit List Summary

Comparison to implicit list:


- Allocate is linear time in number of *free* blocks instead of *all* blocks
 - *Much faster* when most of the memory is full
- Slightly more complicated allocate and free since needs to splice blocks in and out of the list
- Some extra space for the links (2 extra words needed for each block)
 - Possibly increases minimum block size, leading to more internal fragmentation

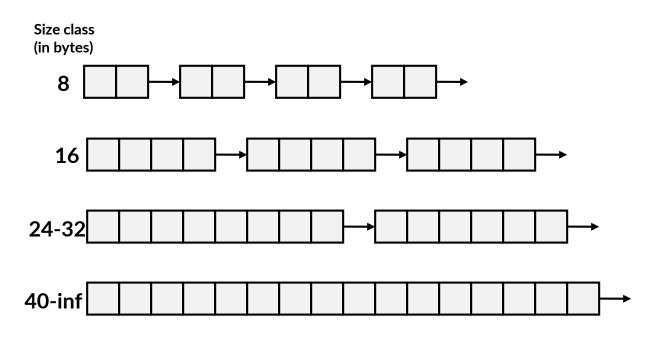
Most common use of explicit lists is in conjunction with segregated free lists

 Keep multiple linked lists of different size classes, or possibly for different types of objects

Keeping Track of Free Blocks

Method 1: Implicit free list using length— links <u>all</u> blocks using math

Method 2: Explicit free list among only the free blocks, using pointers


- Method 3: Segregated free list
 - Different free lists for different size classes

Method 4: Blocks sorted by size

 Can use a balanced binary tree (e.g. red-black tree) with pointers within each free block, and the length used as a key

Segregated List (Seglist) Allocators

- Each *size class* of blocks has its own free list
- Organized as an <u>array of free lists</u>

- Often have separate classes for each small size
- For larger sizes: One class for each two-power size

Seglist Allocator

• Given an <u>array of free lists</u>, each one for some size class

• To <u>allocate</u> a block of size *n*:

- Search appropriate free list for block of size m > n
- If an appropriate block is found:
 - Split block and place fragment on appropriate list (optional)
- If no block is found, try next larger class
- Repeat until block is found

If no block is found:

- Request additional heap memory from OS (using sbrk)
- Allocate block of n bytes from this new memory
- Place remainder as a single free block in appropriate size class

Seglist Allocator

To <u>free</u> a block:

Coalesce and place on appropriate list (optional)

Advantages of seglist allocators

- Higher throughput
 - log time for power-of-two size classes
- Better memory utilization
 - First-fit search of seglist approximates a best-fit search of entire heap
 - Extreme case: Giving each block its own size class is equivalent to best-fit
 - Don't need to use space for block size if it's a fixed-size list

Summary of Key Allocator Policies

Placement policy:

- First-fit, next-fit, best-fit, etc.
- Trades off lower throughput for less fragmentation
- Observation: segregated free lists approximate a best fit placement policy without having to search entire free list

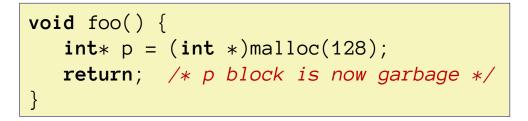
Splitting policy:

- When do we go ahead and split free blocks?
- How much internal fragmentation are we willing to tolerate?

Coalescing policy:

- Immediate coalescing: coalesce each time free is called
- Deferred coalescing: try to improve performance of free by deferring coalescing until needed. Examples:
 - Coalesce as you scan the free list for malloc
 - Coalesce when the amount of external fragmentation reaches some threshold

More Info on Allocators


- D. Knuth, "The Art of Computer Programming", 2nd edition, Addison Wesley, 1973
 - The classic reference on dynamic storage allocation
- Wilson et al, "Dynamic Storage Allocation: A Survey and Critical Review", Proc. 1995 Int'l Workshop on Memory Management, Kinross, Scotland, Sept, 1995.
 - Comprehensive survey
 - Available from CS:APP student site (csapp.cs.cmu.edu)

Wouldn't it be nice...

- If we never had to free memory?
- Do you free objects in Java?

Garbage Collection (GC) (Automatic Memory Management)

 Garbage collection: automatic reclamation of heap-allocated storage—application never explicitly frees memory

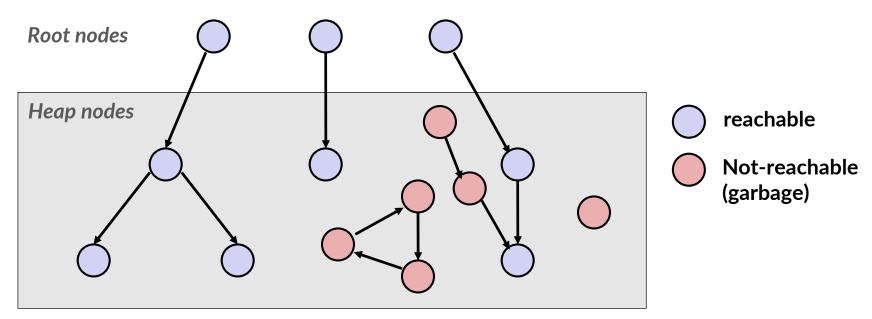
- Common in implementations of functional languages, scripting languages, and modern object oriented languages:
 - Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua, JavaScript, Dart, Mathematica, MATLAB, many more...
- Variants ("conservative" garbage collectors) exist for C and C++
 - However, cannot necessarily collect all garbage

Garbage Collection

- How does the memory allocator know when memory can be freed?
 - In general, we cannot know what is going to be used in the future since it depends on conditionals

Garbage Collection

- How does the memory allocator know when memory can be freed?
 - In general, we cannot know what is going to be used in the future since it depends on conditionals
 - But, we can tell that certain blocks cannot be used if they are unreachable (via pointers starting at registers/stack/globals)
- So the memory allocator needs to know what is a pointer and what is not – how can it do this?


We'll make some assumptions about pointers:

- Memory allocator can distinguish pointers from non-pointers
- All pointers point to the start of a block in the heap
- Application cannot hide pointers (e.g., by coercing them to an int, and then back again)

Memory as a Graph

We view memory as a directed graph

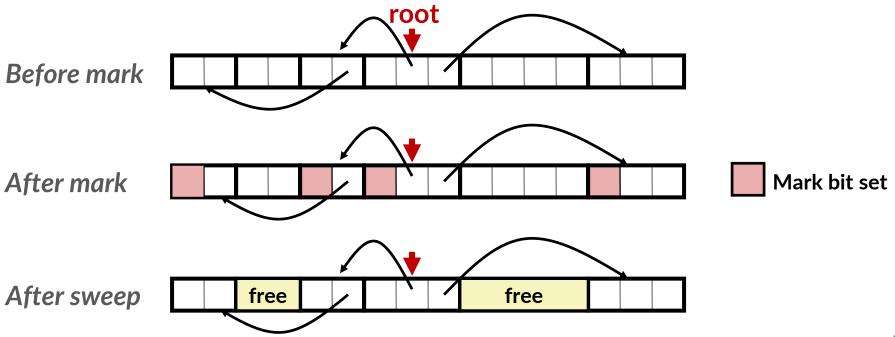
- Each allocated heap block is a node in the graph
- Each pointer is an edge in the graph
- Locations not in the heap that contain pointers into the heap are called root nodes (e.g. registers, locations on the stack, global variables)

A node (block) is *reachable* if there is a path from any root to that node Non-reachable nodes are *garbage* (cannot be needed by the application)

Classical GC Algorithms

- Mark-and-sweep collection (McCarthy, 1960)
 - Does not move blocks (unless you also "compact")
- Reference counting (Collins, 1960)
 - Does not move blocks (not discussed)
- Copying collection (Minsky, 1963)
 - Moves blocks (not discussed)
- Generational Collectors (Lieberman and Hewitt, 1983)
 - Most allocations become garbage very soon, so focus reclamation work on zones of memory recently allocated.

For more information:


- Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of Automatic Memory Management, CRC Press, 2012.
- Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic Memory, John Wiley & Sons, 1996.

Mark and Sweep Collecting

- Can build on top of malloc/free package
 - Allocate using malloc until you "run out of space"

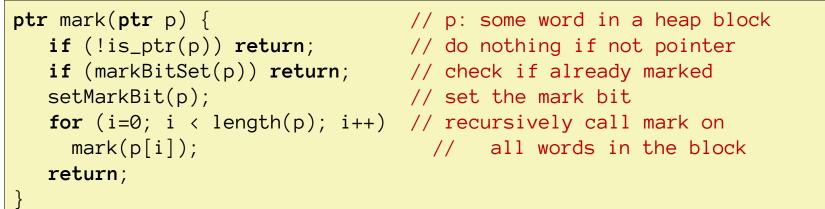
When out of space:

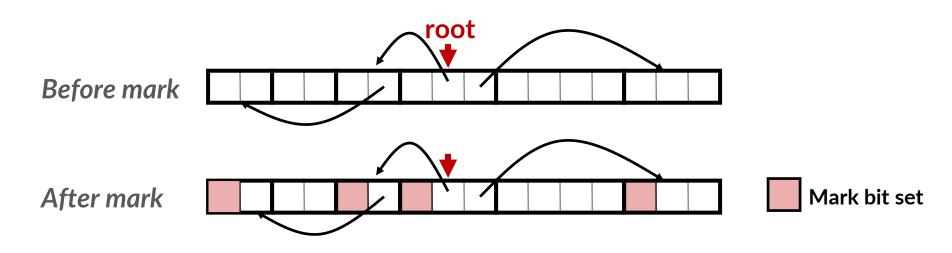
- Use extra mark bit in the head of each block
- *Mark*: Start at roots and set mark bit on each reachable block
- Sweep: Scan all blocks and free blocks that are not marked

Assumptions For a Simple Implementation

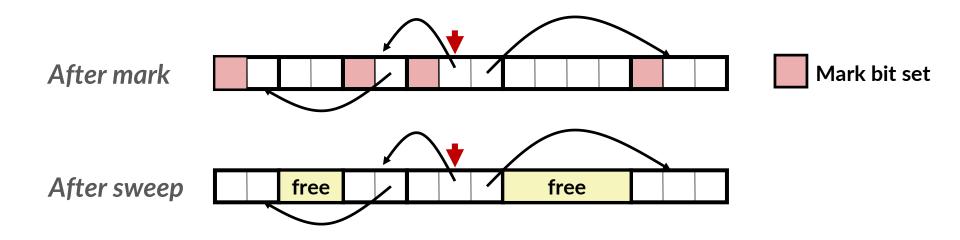
Application can use functions to allocate memory:

- b = new(n) : returns pointer, b, to new block with all locations cleared
- b[i] : read location i of block b into register
- b[i] = v : write v into location i of block b
- Each block will have a header word
 - b[-1]


Functions used by the garbage collector:


- is_ptr(p): determines whether p is a pointer to a block
- length(p): returns length of block pointed to by p, not including header
- get_roots(): returns all the roots

Mark


Extra Material

Mark using depth-first traversal of the memory graph

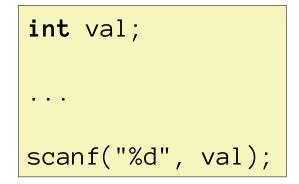
Sweep using lengths to find next block

```
ptr sweep(ptr p, ptr end) { // ptrs to start & end of heap
while (p < end) { // while not at end of heap
if markBitSet(p) // check if block is marked
clearMarkBit(p); // if so, reset mark bit
else if (allocateBitSet(p)) // if not marked, but allocated
free(p); // free the block
p += length(p); // adjust pointer to next block
}
```

Conservative Mark & Sweep in C

Would mark & sweep work in C?

- is_ptr (previous slide) determines if a word is a pointer by checking if it points to an allocated block of memory
- But in C, pointers can point into the middle of allocated blocks (not so in Java)
 - Makes it tricky to find all allocated blocks in mark phase


- There are ways to solve/avoid this problem in C, but the resulting garbage collector is conservative:
 - Every reachable node correctly identified as reachable, but some unreachable nodes might be incorrectly marked as reachable
- In Java, all pointers (i.e., references) point to the starting address of an object structure – the start of an allocated block

Memory-Related Perils and Pitfalls in C

- A. Failing to Free Blocks
- B. Misunderstanding pointer arithmetic
- c. Off by one error
- D. Freeing blocks multiple times
- E. Referencing a pointer instead of the object it points to
- F. Not checking the max string size
- G. Interpreting something that is not a ptr as a ptr
- н. Accessing Freed Blocks
- Referencing nonexistent variables
- J. Allocating the (possibly) wrong sized object
- к. Reading uninitialized memory

Dereferencing Bad Pointers

The classic scanf bug

Will cause scanf to interpret contents of val as an address!

- Best case: program terminates immediately due to segmentation fault
- Worst case: contents of val correspond to some valid read/write area of virtual memory, causing scanf to overwrite that memory, with disastrous and baffling consequences much later in program execution

Reading Uninitialized Memory

Wrongly assuming that heap data is initialized to zero

```
/* return y = Ax */
int *matvec(int **A, int *x) {
   int *y = (int *)malloc( N * sizeof(int) );
   int i, j;
   for (i=0; i<N; i++) {
      for (j=0; j<N; j++) {
         v[i] += A[i][j] * x[j];
      }
   return y;
}
```

Overwriting Memory

Allocating the (possibly) wrong sized object

```
int **p;
p = (int **)malloc( N * sizeof(int) );
for (i=0; i<N; i++) {
    p[i] = (int *)malloc( M * sizeof(int) );
}
```

Overwriting Memory

Off-by-one error

```
int **p;
p = (int **)malloc( N * sizeof(int*) );
for (i=0; i<=N; i++) {
    p[i] = (int *)malloc( M * sizeof(int) );
}
```

Overwriting Memory

Not checking the max string size

Basis for classic buffer overflow attacks

Lab 3

Overwriting Memory

Misunderstanding pointer arithmetic

```
int *search(int *p, int val) {
  while (p && *p != val)
    p += sizeof(int);
  return p;
}
```

Overwriting Memory

Referencing a pointer instead of the object it points to

```
int* getPacket(int** packets, int* size) {
    int* packet;
    packet = packets[0];
    packets[0] = packets[*size - 1];
    *size--; // what is happening here?
    reorderPackets(packets, *size);
    return packet;
}
```

 '--' and '*' operators have same precedence and associate from right-to-left, so -- happens first!

Referencing Stack Variables Too Late

 Forgetting that local variables disappear when a function returns (call-stack space reused by subsequent calls)

```
int* foo() {
    int val;
    return &val;
}
```

Freeing Blocks Multiple Times

Nasty!

Freeing Blocks Multiple Times

Nasty!

What does the free list look like?

Referencing Freed Blocks

Evil!

Failing to Free Blocks (Memory Leaks)

Slow, silent, long-term killer!

```
void foo() {
    int* x = (int*)malloc(N*sizeof(int));
    ...
    return;
}
```

Failing to Free Blocks (Memory Leaks)

Freeing only part of a data structure

```
struct list {
   int val;
   struct list *next;
};
void foo() {
   struct list *head =
      (struct list *)malloc( sizeof(struct list) );
   head->val = 0;
   head \rightarrow next = NULL;
   <create and manipulate the rest of the list>
    . . .
   free(head);
   return;
```

Dealing With Memory Bugs

- Conventional debugger (gdb)
 - Good for finding bad pointer dereferences
 - Hard to detect the other memory bugs

Debugging malloc (UToronto CSRI malloc)

- Wrapper around conventional malloc
- Detects memory bugs at malloc and free boundaries
 - Memory overwrites that corrupt heap structures
 - Some instances of freeing blocks multiple times
 - Memory leaks
- Cannot detect all memory bugs
 - Overwrites into the middle of allocated blocks
 - Freeing block twice that has been reallocated in the interim
 - Referencing freed blocks

Dealing With Memory Bugs (cont.)

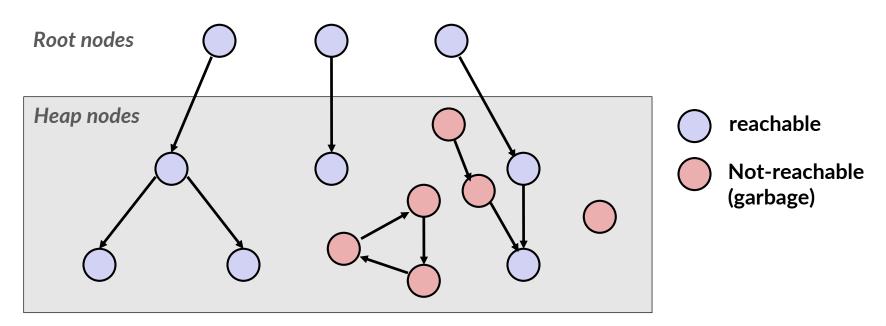
Some malloc implementations contain checking code

- Linux glibc malloc: setenv MALLOC_CHECK_ 2
- FreeBSD: setenv MALLOC_OPTIONS AJR

Binary translator: valgrind (Linux), Purify

- Powerful debugging and analysis technique
- Rewrites text section of executable object file
- Can detect all errors as debugging malloc
- Can also check each individual reference at runtime
 - Bad pointers
 - Overwriting
 - Referencing outside of allocated block

What about Java or ML or Python or ...?


In *memory-safe languages*, most of these bugs are impossible

- Cannot perform arbitrary pointer manipulation
- Cannot get around the type system
- Array bounds checking, null pointer checking
- Automatic memory management

But one of the bugs we saw earlier is possible. Which one?

Memory Leaks with GC

- Not because of forgotten free we have GC!
- Unneeded "leftover" roots keep objects reachable
- Sometimes nullifying a variable is not needed for correctness but is for performance
- Example: Don't leave big data structures you're done with in a static field

