
Spring 2016Memory Allocation

Roadmap

1

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures &
stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Spring 2016Memory Allocation

Memory Allocation Topics

 Dynamic memory allocation
 Size/number/lifetime of data structures may only be known at run time

 Need to allocate space on the heap

 Need to de-allocate (free) unused memory so it can be re-allocated

 Explicit Allocation Implementation
 Implicit free lists

 Explicit free lists – subject of next programming assignment

 Segregated free lists

 Implicit Deallocation: Garbage collection

 Common memory-related bugs in C programs

2

Spring 2016Memory Allocation

ALL THE DATA!!!
Multiple ways so far of storing data:

 Static global data
 Fixed size at compile-time

 Entire lifetime of the program
(loaded from executable)

 Portion is read-only
(e.g. string literals)

 Stack-allocated data
 Local / temporary variables, can be dynamically sized (in some versions of C)

 Known lifetime (deallocated on return)

 Dynamic (heap) data
 Size known only at runtime (based on user-input, etc)

 Lifetime known only at runtime (long-lived data structures)

3

int array[1024];

void foo(int n) {
int tmp;
int local_array[n];

int* dyn =
(int*)malloc(n * sizeof(int));

}

Spring 2016Memory Allocation

Dynamic Memory Allocation

 Programmers use dynamic memory allocators (such as malloc)
to acquire virtual memory at run time
 For data structures whose size (or lifetime) is known only at runtime

 Types of allocators
 Explicit allocator: application allocates and frees space

 E.g. malloc and free in C

 Implicit allocator: application allocates, but does not free space

 E.g. garbage collection in Java, ML, and Lisp

 Dynamic memory allocators manage an
area of a process’ virtual memory known
as the heap

4

Program text (.text)

Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)

Spring 2016Memory Allocation

Dynamic Memory Allocation

 Allocator organizes the heap as a collection of variable-sized
blocks, which are either allocated or free
 Allocator requests pages in heap region; virtual memory hardware and OS

kernel allocate these pages to the process

 Application objects are typically smaller than pages, so the allocator
manages blocks within pages

 (Larger objects handled too; ignored here)

5

Program text (.text)

Initialized data (.data)

User stack

0

Top of heap
(brk ptr)

Heap (via malloc)

Uninitialized data (.bss)

Spring 2016Memory Allocation

The malloc Package

#include <stdlib.h>

void* malloc(size_t size)

 Successful:

 Returns a pointer to a memory block of at least size bytes
(typically) aligned to an 8-byte (x86) or 16-byte (x86-64) boundary

 If size == 0, returns NULL

 Unsuccessful: returns NULL and sets errno

void free(void* p)

 Gives back the block pointed at by p to pool of available memory

 p must come from a previous call to malloc (or similar, see below)

Other functions

 calloc: Version of malloc that “zeros out” allocated block

 realloc: Changes the size of a previously allocated block (if possible)
(warning: realloc works differently on BSD/OSX than in our version of Linux for this course)

 sbrk: Used internally by allocators to grow or shrink the heap

 historical naming from before virtual memory was common
6

Spring 2016Memory Allocation

Malloc Example

7

void foo(int n, int m) {
int i, *p;

/* allocate a block of n ints */
p = (int *)malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}
for (i=0; i<n; i++)

p[i] = i;

/* add space for m ints to end of p block */
p = (int *)realloc(p, (n+m) * sizeof(int));
if (p == NULL) {

perror("realloc");
exit(0);

}
for (i=n; i < n+m; i++)

p[i] = i;

/* print new array */
for (i=0; i<n+m; i++)

printf("%d\n", p[i]);

free(p); /* return p to available memory pool */
}

Spring 2016Memory Allocation

Assumptions made in: these slides, book, videos

 Memory is drawn divided into words
 Each word can hold an int (32 bits/4 bytes)

 Allocations will be in sizes that are a multiple of words,
i.e. multiples of 4 bytes

 In pictures in slides, book, videos :

8

Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

= one word, 4 bytes

Spring 2016Memory Allocation

Allocation Example

9

p1 = malloc(16)

p2 = malloc(20)

p3 = malloc(24)

free(p2)

p4 = malloc(8)

= 4 byte word

Spring 2016Memory Allocation

Constraints (interface/contract)
 Applications

 Can issue arbitrary sequence of malloc and free requests

 Must never access memory not currently allocated (else “who knows”)

 Must never free memory not currently allocated (else “who knows”)

 Also must only use free with previously malloc’ed (or calloc’ed etc.) blocks
(not, e.g., stack data) (else “who knows”)

 Allocators
 Can’t control number or size of allocated blocks

 Must respond immediately to malloc requests

 i.e., can’t reorder or buffer requests

 Must allocate blocks from free memory

 i.e., blocks can’t overlap, why not?

 Must align blocks so they satisfy all alignment requirements

 Can’t move the allocated blocks

 i.e., compaction is not allowed. Why not?

10

Spring 2016Memory Allocation

Performance Goal #1: Throughput

 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Goals: maximize throughput and peak memory utilization
 These goals are often conflicting

 Throughput:
 Number of completed requests per unit time

 Example:

 5,000 malloc calls and 5,000 free calls in 10 seconds

 Throughput is 1,000 operations/second

11

Spring 2016Memory Allocation

Performance Goal #2: Peak Memory Utilization

 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Def: Aggregate payload Pk

 malloc(p) results in a block with a payload of p bytes

 After request Rk has completed, the aggregate payload Pk is the sum of
currently allocated payloads

 Def: Current heap size = Hk

 Assume Hk is monotonically nondecreasing
 Allocator can increase size of heap using sbrk

 Def: Peak memory utilization after k + 1 requests
 Uk = (maxi≤k Pi) / Hk

 Goal: maximize utilization for a sequence of requests.

 Why is this hard? And what happens to throughput?

12

Spring 2016Memory Allocation

Fragmentation
 Poor memory utilization is caused by fragmentation

 Sections of memory are not used to store anything useful, but
cannot satisfy allocation requests

 internal fragmentation

 external fragmentation

13

Spring 2016Memory Allocation

Internal Fragmentation

 For a given block, internal fragmentation occurs if payload is smaller than
block size

 Caused by

 overhead of maintaining heap data structures (inside block, outside payload)

 padding for alignment purposes

 explicit policy decisions (e.g., to return a big block to satisfy a small request)
why would anyone do that?

14

payload
Internal
fragmentation

block

Internal
fragmentation

Spring 2016Memory Allocation

External Fragmentation

 Occurs when there is enough aggregate heap memory, but no
single free block is large enough

 Don’t know what requests will come in the future…
 Thus, difficult (er, impossible) to know where to best place things

15

p1 = malloc(16)

p2 = malloc(20)

p3 = malloc(24)

free(p2)

p4 = malloc(24) Bummer! (what would happen now?)

= 4 byte word

Spring 2016Memory Allocation

Implementation Issues

 How do we know how much memory to free given just a
pointer?

 How do we keep track of the free blocks?

 How do we pick a block to use for allocation (when many might
fit)?

 What do we do with the extra space when allocating a
structure that is smaller than the free block it is placed in?

 How do we reinsert a freed block into the heap?

16

Spring 2016Memory Allocation

Knowing How Much to Free

 Standard method
 Keep the length of a block in the word preceding the block

 This word is often called the header field or header

 Requires an extra word for every allocated block

17

free(p0)

p0 = malloc(16)

p0

block size data

20

= 4 byte word (free)

= 4 byte word (allocated)

Spring 2016Memory Allocation

Keeping Track of Free Blocks

 Method 1: Implicit free list using length— links all blocks using math

(no actual pointers)

 Method 2: Explicit free list among only the free blocks, using
pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
18

20 16 824

20 16 824

= 4 byte word (free)

= 4 byte word (allocated)

Spring 2016Memory Allocation

Implicit Free Lists

 For each block we need two pieces of info:
 size? is-allocated?

 Could store this information in two words: wasteful!

 Standard trick
 If blocks are aligned some low-order bits are always 0

 Instead of storing a bit that will always be 0, use it as a allocated/free flag

 When reading size, must remember to mask out this bit

19

size

1 word
Format of
allocated and
free blocks

payload

a = 1: allocated block
a = 0: free block

size: block size

payload: application data
(allocated blocks only)

a

optional
padding

e.g. with 8-byte
alignment, possible
values for size:

00001000 = 8 bytes
00010000 = 16 bytes
00011000 = 24 bytes
…

p = malloc(_)

x = size | allocated

allocated = x & 1
size = x & 0b11…10

Spring 2016Memory Allocation

Implicit Free List Example (words = 32-bits)

 8-byte alignment
 May require initial unused word

 Causes some internal fragmentation

 Special one-word marker (0|1) marks end of list
 zero size is distinguishable from all real sizes

20

8|0 16|1 32|0 16|1 0|1

Free word

Allocated word

Allocated word
unused

Start of heap

8 bytes = 2 word alignment

Each block begins with a header that contains its size in bytes/allocated bit.
Sequence of blocks in heap (size|allocated): 8|0, 16|1, 32|0, 16|1

Spring 2016Memory Allocation

Implicit List: Finding a Free Block

 First fit:

 Search list from beginning, choose first free block that fits:

 Can take time linear in total number of blocks (allocated and free)

 In practice it can cause “splinters” at beginning of list

21

p = heap_start;
while ((p < end) && // not past end

((*p & 1) || // already allocated
(*p <= len))) { // too small

p = p + (*p & -2); // go to next block (UNSCALED +)
} // p points to selected block or end

*p gets the block header
*p & 1 extracts the

allocated bit
*p & -2 masks the allocated

bit, gets just the size

8|0 16|1 32|0 16|1 0|1

Free word

Allocated word

Allocated word
unused

p = heap_start

Spring 2016Memory Allocation

Implicit List: Finding a Free Block

 First fit:

 Search list from beginning, choose first free block that fits:

 Can take time linear in total number of blocks (allocated and free)

 In practice it can cause “splinters” at beginning of list

 Next fit:

 Like first-fit, but search list starting where previous search finished

 Should often be faster than first-fit: avoids re-scanning unhelpful blocks

 Some research suggests that fragmentation is worse

 Best fit:

 Search the list, choose the best free block: fits, with fewest bytes left over

 Keeps fragments small—usually helps fragmentation

 Usually worse throughput
22

p = heap_start;
while ((p < end) && // not past end

((*p & 1) || // already allocated
(*p <= len))) { // too small

p = p + (*p & -2); // go to next block (UNSCALED +)
} // p points to selected block or end

*p gets the block header
*p & 1 extracts the

allocated bit
*p & -2 masks the allocated

bit, gets just the size

Spring 2016Memory Allocation

Implicit List: Allocating in a Free Block

 Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might

want to split the block

23

void split(ptr b, int bytes) { // bytes = desired block size
int newsize = ((bytes + 7) >> 3) << 3; // round up to multiple of 8
int oldsize = *b; // why not mask out low bit?
*b = newsize; // initially unallocated
if (newsize < oldsize)

*(b+newsize) = oldsize - newsize; // set length in remaining
} // part of block (UNSCALED +)

8 824

b
malloc(n = 12):

ptr b = find(12+4)
split(b, 12+4)

88 816

assume ptr points to word and has unscaled pointer arithmetic

Spring 2016Memory Allocation

Implicit List: Freeing a Block

 Simplest implementation:
 Need only clear the “allocated” flag

void free(ptr p) { ptr b = p – WORD; *b = *b & -2 }

 But can lead to “false fragmentation”

There is enough free space, but the allocator won’t be able to find it

24

8 816 8

p

malloc(20) Oops!

free(p)

8 816 8

Spring 2016Memory Allocation

Implicit List: Coalescing
 Join (coalesce) with next/previous blocks, if they are free

 Coalescing with next block

 But how do we coalesce with the previous block?

25

void free(ptr p) { // p points to data
ptr b = p – WORD; // b points to block
*b = *b & -2; // clear allocated bit
ptr next = b + *b; // find next block (UNSCALED +)
if ((*next & 1) == 0) // if next block is not allocated,

*b = *b + *next; // add its size to this block
}

16 816 8

free(p)

16 824 8

logically
gonep

Spring 2016Memory Allocation

Implicit List: Bidirectional Coalescing
 Boundary tags [Knuth73]

 Replicate size/allocated word at “bottom” (end) of free blocks

 Allows us to traverse the “list” backwards, but requires extra space

 Important and general technique!

26

size

Format of
allocated and
free blocks

payload and
padding

a = 1: allocated block
a = 0: free block

size: total block size

payload: application data
(allocated blocks only)

a

size aBoundary tag
(footer)

16 16 16 16 24 1624 16

Header

Spring 2016Memory Allocation

Constant Time Coalescing

27

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4

Spring 2016Memory Allocation

m1 1

Constant Time Coalescing (Case 1)

28

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1

Spring 2016Memory Allocation

Constant Time Coalescing (Case 2)

29

m1 1

m1 1

n 1

n 1

m2 0

m2 0

m1 1

m1 1

n+m2 0

n+m2 0

Spring 2016Memory Allocation

m1 0

Constant Time Coalescing (Case 3)

30

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1

Spring 2016Memory Allocation

m1 0

Constant Time Coalescing (Case 4)

31

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0

Spring 2016Memory Allocation

Implicit Free Lists: Summary
 Implementation: very simple
 Allocate cost:

 linear time (in total number of heap blocks) worst case

 Free cost:
 constant time worst case

 even with coalescing

 Memory utilization:
 will depend on placement policy

 First-fit, next-fit, or best-fit

 Not used in practice for malloc/free because of linear-time
allocation
 used in some special purpose applications

 Concepts of splitting and boundary tag coalescing are general to
all (?) allocators

32

Spring 2016Memory Allocation

Keeping Track of Free Blocks

 Method 1: Implicit free list using length— links all blocks using math

(no actual pointers)

 Method 2: Explicit free list among only the free blocks, using
pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
33

20 16 824

20 16 824

= 4 byte word (free)

= 4 byte word (allocated)

Spring 2016Memory Allocation

Explicit Free Lists

 Maintain list(s) of free blocks, rather than implicit list of all
blocks
 The “next” free block could be anywhere in the heap

 So we need to store forward/back pointers, not just sizes

 Luckily we track only free blocks, so we can use payload area for pointers

 Still need boundary tags for coalescing

34

size a

size a

next

prev

Free block:

size

payload and
padding

a

size a

Allocated block:

(same as implicit free list)

Spring 2016Memory Allocation

Explicit Free Lists

 Logically (doubly-linked lists):

 Physically?

35

A B C

Spring 2016Memory Allocation

Explicit Free Lists

 Logically (doubly-linked lists):

 Physically: blocks can be in any order

36

A B C

16 16 16 16 2424 1616 16 16

Forward (next) links

Back (prev) links

A B

C

Spring 2016Memory Allocation

Allocating From Explicit Free Lists

37

Before
conceptual graphic

Spring 2016Memory Allocation

Allocating From Explicit Free Lists

38

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Note: These diagrams are not very specific about where inside a block a pointer points.
In reality we would always point to one place (e.g. start/header of a block).

Spring 2016Memory Allocation

Freeing With Explicit Free Lists

 Insertion policy: Where in the free list do you put a newly freed
block?

39

Spring 2016Memory Allocation

Freeing With Explicit Free Lists

 Insertion policy: Where in the free list do you put a newly freed
block?
 LIFO (last-in-first-out) policy

 Insert freed block at the beginning of the free list

 Pro: simple and constant time

 Con: studies suggest fragmentation is worse than address ordered

 Address-ordered policy

 Insert freed blocks so that free list blocks are always in address order:

addr(prev) < addr(curr) < addr(next)

 Con: requires linear-time search when blocks are freed

 Pro: studies suggest fragmentation is lower than LIFO

40

Spring 2016Memory Allocation

Freeing With a LIFO Policy (Case 1)

41

 Insert the freed block at the root of the list

free()

Root

Root

Before

After

conceptual graphic

Spring 2016Memory Allocation

Freeing With a LIFO Policy (Case 2)

 Splice predecessor block out of list, coalesce both memory
blocks, and insert the new block at the root of the list

42

free()

Root

Root

Before

After

conceptual graphic

Spring 2016Memory Allocation

Freeing With a LIFO Policy (Case 2)

 Splice predecessor block out of list, coalesce both memory
blocks, and insert the new block at the root of the list

43

free()

Root

Root

Before

After

conceptual graphic

Spring 2016Memory Allocation

Freeing With a LIFO Policy (Case 3)

 Splice successor block out of list, coalesce both memory blocks
and insert the new block at the root of the list

44

free()

Root

Root

Before

After

conceptual graphic

Spring 2016Memory Allocation

Freeing With a LIFO Policy (Case 3)

 Splice successor block out of list, coalesce both memory blocks
and insert the new block at the root of the list

45

free()

Root

Root

Before

After

conceptual graphic

Spring 2016Memory Allocation

Freeing With a LIFO Policy (Case 4)

 Splice predecessor and successor blocks out of list, coalesce all 3
memory blocks and insert the new block at the root of the list

46

free()

Root

Root

Before

After

conceptual graphic

Spring 2016Memory Allocation

Freeing With a LIFO Policy (Case 4)

 Splice predecessor and successor blocks out of list, coalesce all 3
memory blocks and insert the new block at the root of the list

47

free()

Root

Root

Before

After

conceptual graphic

Spring 2016Memory Allocation

Do we always need the boundary tag?

 Lab 5 suggests no…

48

size a

size a

next

prev

Free block:

size

payload and
padding

a

size a

Allocated block:

Spring 2016Memory Allocation

Explicit List Summary

 Comparison to implicit list:
 Allocate is linear time in number of free blocks instead of all blocks

 Much faster when most of the memory is full

 Slightly more complicated allocate and free since needs to splice blocks in
and out of the list

 Some extra space for the links (2 extra words needed for each block)

 Possibly increases minimum block size, leading to more internal fragmentation

 Most common use of explicit lists is in conjunction with
segregated free lists
 Keep multiple linked lists of different size classes, or possibly for different

types of objects

49

Spring 2016Memory Allocation

Keeping Track of Free Blocks

 Method 1: Implicit free list using length— links all blocks using math

(no actual pointers)

 Method 2: Explicit free list among only the free blocks, using
pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced binary tree (e.g. red-black tree) with pointers within

each free block, and the length used as a key
50

20 16 824

20 16 824

Spring 2016Memory Allocation

Segregated List (Seglist) Allocators

 Each size class of blocks has its own free list

 Organized as an array of free lists

 Often have separate classes for each small size

 For larger sizes: One class for each two-power size

51

16

24-32

40-inf

8

Size class
(in bytes)

Spring 2016Memory Allocation

Seglist Allocator

 Given an array of free lists, each one for some size class

 To allocate a block of size n:
 Search appropriate free list for block of size m > n

 If an appropriate block is found:

 Split block and place fragment on appropriate list (optional)

 If no block is found, try next larger class

 Repeat until block is found

 If no block is found:
 Request additional heap memory from OS (using sbrk)

 Allocate block of n bytes from this new memory

 Place remainder as a single free block in appropriate size class

52

Spring 2016Memory Allocation

Seglist Allocator

 To free a block:
 Coalesce and place on appropriate list (optional)

 Advantages of seglist allocators
 Higher throughput

 log time for power-of-two size classes

 Better memory utilization

 First-fit search of seglist approximates a best-fit search of entire heap

 Extreme case: Giving each block its own size class is equivalent to best-fit

 Don't need to use space for block size if it's a fixed-size list

53

Spring 2016Memory Allocation

Summary of Key Allocator Policies
 Placement policy:

 First-fit, next-fit, best-fit, etc.

 Trades off lower throughput for less fragmentation

 Observation: segregated free lists approximate a best fit placement policy
without having to search entire free list

 Splitting policy:
 When do we go ahead and split free blocks?

 How much internal fragmentation are we willing to tolerate?

 Coalescing policy:
 Immediate coalescing: coalesce each time free is called

 Deferred coalescing: try to improve performance of free by deferring
coalescing until needed. Examples:

 Coalesce as you scan the free list for malloc

 Coalesce when the amount of external fragmentation reaches some threshold

54

Spring 2016Memory Allocation

More Info on Allocators

 D. Knuth, “The Art of Computer Programming”, 2nd edition,
Addison Wesley, 1973
 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and Critical
Review”, Proc. 1995 Int’l Workshop on Memory Management,
Kinross, Scotland, Sept, 1995.
 Comprehensive survey

 Available from CS:APP student site (csapp.cs.cmu.edu)

55

Spring 2016Memory Allocation

Wouldn’t it be nice…

 If we never had to free memory?

 Do you free objects in Java?

56

Spring 2016Memory Allocation

Garbage Collection (GC)
(Automatic Memory Management)

 Garbage collection: automatic reclamation of heap-allocated
storage—application never explicitly frees memory

 Common in implementations of functional languages, scripting
languages, and modern object oriented languages:
 Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua,

JavaScript, Dart, Mathematica, MATLAB, many more…

 Variants (“conservative” garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage

57

void foo() {
int* p = (int *)malloc(128);
return; /* p block is now garbage */

}

Spring 2016Memory Allocation

Garbage Collection

 How does the memory allocator know when memory can be
freed?
 In general, we cannot know what is going to be used in the future since it

depends on conditionals

58

Spring 2016Memory Allocation

Garbage Collection

 How does the memory allocator know when memory can be
freed?
 In general, we cannot know what is going to be used in the future since it

depends on conditionals

 But, we can tell that certain blocks cannot be used if they are unreachable
(via pointers starting at registers/stack/globals)

 So the memory allocator needs to know what is a pointer and
what is not – how can it do this?

 We’ll make some assumptions about pointers:
 Memory allocator can distinguish pointers from non-pointers

 All pointers point to the start of a block in the heap

 Application cannot hide pointers
(e.g., by coercing them to an int, and then back again)

59

Spring 2016Memory Allocation

Memory as a Graph

 We view memory as a directed graph
 Each allocated heap block is a node in the graph

 Each pointer is an edge in the graph

 Locations not in the heap that contain pointers into the heap are called
root nodes (e.g. registers, locations on the stack, global variables)

60

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node

Non-reachable nodes are garbage (cannot be needed by the application)

Spring 2016Memory Allocation

Classical GC Algorithms

 Mark-and-sweep collection (McCarthy, 1960)
 Does not move blocks (unless you also “compact”)

 Reference counting (Collins, 1960)
 Does not move blocks (not discussed)

 Copying collection (Minsky, 1963)
 Moves blocks (not discussed)

 Generational Collectors (Lieberman and Hewitt, 1983)
 Most allocations become garbage very soon, so

focus reclamation work on zones of memory recently allocated.

 For more information:
 Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of

Automatic Memory Management, CRC Press, 2012.

 Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic
Memory, John Wiley & Sons, 1996.

61

Spring 2016Memory Allocation

Mark and Sweep Collecting

 Can build on top of malloc/free package
 Allocate using malloc until you “run out of space”

 When out of space:
 Use extra mark bit in the head of each block

 Mark: Start at roots and set mark bit on each reachable block

 Sweep: Scan all blocks and free blocks that are not marked

62

Before mark

root

After mark Mark bit set

After sweep freefree

Spring 2016Memory Allocation

Assumptions For a Simple Implementation

 Application can use functions to allocate memory:
 b = new(n) : returns pointer, b, to new block with all locations cleared

 b[i] : read location i of block b into register

 b[i] = v : write v into location i of block b

 Each block will have a header word
 b[-1]

 Functions used by the garbage collector:
 is_ptr(p): determines whether p is a pointer to a block

 length(p): returns length of block pointed to by p, not including header

 get_roots(): returns all the roots

63

Extra Material

Spring 2016Memory Allocation

Mark

64

ptr mark(ptr p) { // p: some word in a heap block
if (!is_ptr(p)) return; // do nothing if not pointer
if (markBitSet(p)) return; // check if already marked
setMarkBit(p); // set the mark bit
for (i=0; i < length(p); i++) // recursively call mark on

mark(p[i]); // all words in the block
return;

}

Mark using depth-first traversal of the memory graph

After mark Mark bit set

Before mark

root

Extra Material

Spring 2016Memory Allocation

Sweep

65

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) { // ptrs to start & end of heap
while (p < end) { // while not at end of heap

if markBitSet(p) // check if block is marked
clearMarkBit(p); // if so, reset mark bit

else if (allocateBitSet(p)) // if not marked, but allocated
free(p); // free the block

p += length(p); // adjust pointer to next block
}

After mark Mark bit set

After sweep freefree

Extra Material

Spring 2016Memory Allocation

Conservative Mark & Sweep in C

 Would mark & sweep work in C?
 is_ptr (previous slide) determines if a word is a pointer by checking if it

points to an allocated block of memory

 But in C, pointers can point into the middle of allocated blocks (not so in
Java)

 Makes it tricky to find all allocated blocks in mark phase

 There are ways to solve/avoid this problem in C, but the resulting garbage
collector is conservative:

 Every reachable node correctly identified as reachable, but some unreachable
nodes might be incorrectly marked as reachable

 In Java, all pointers (i.e., references) point to the starting address of an
object structure – the start of an allocated block

66

header

ptr

Extra Material

Spring 2016Memory Allocation

Memory-Related Perils and Pitfalls in C

67

!!!
A. Failing to Free Blocks

B. Misunderstanding pointer arithmetic

C. Off by one error

D. Freeing blocks multiple times

E. Referencing a pointer instead of the object it points to

F. Not checking the max string size

G. Interpreting something that is not a ptr as a ptr

H. Accessing Freed Blocks

I. Referencing nonexistent variables

J. Allocating the (possibly) wrong sized object

K. Reading uninitialized memory

Spring 2016Memory Allocation

Dereferencing Bad Pointers

 The classic scanf bug

 Will cause scanf to interpret contents of val as an address!
 Best case: program terminates immediately due to segmentation fault

 Worst case: contents of val correspond to some valid read/write area of
virtual memory, causing scanf to overwrite that memory, with disastrous
and baffling consequences much later in program execution

68

int val;

...

scanf("%d", val);

Spring 2016Memory Allocation

Reading Uninitialized Memory

 Wrongly assuming that heap data is initialized to zero

69

/* return y = Ax */
int *matvec(int **A, int *x) {

int *y = (int *)malloc(N * sizeof(int));
int i, j;

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

y[i] += A[i][j] * x[j];
}

}
return y;

}

Spring 2016Memory Allocation

Overwriting Memory

 Allocating the (possibly) wrong sized object

70

int **p;

p = (int **)malloc(N * sizeof(int));

for (i=0; i<N; i++) {
p[i] = (int *)malloc(M * sizeof(int));

}

Spring 2016Memory Allocation

Overwriting Memory

 Off-by-one error

71

int **p;

p = (int **)malloc(N * sizeof(int*));

for (i=0; i<=N; i++) {
p[i] = (int *)malloc(M * sizeof(int));

}

Spring 2016Memory Allocation

Overwriting Memory

 Not checking the max string size

 Basis for classic buffer overflow attacks
 Lab 3

72

char s[8];
int i;

gets(s); /* reads “123456789” from stdin */

Spring 2016Memory Allocation

Overwriting Memory

 Misunderstanding pointer arithmetic

73

int *search(int *p, int val) {

while (p && *p != val)
p += sizeof(int);

return p;
}

Spring 2016Memory Allocation

Overwriting Memory

 Referencing a pointer instead of the object it points to

 ‘--’ and ‘*’ operators have same precedence and associate from
right-to-left, so -- happens first!

74

int* getPacket(int** packets, int* size) {
int* packet;
packet = packets[0];
packets[0] = packets[*size - 1];
*size--; // what is happening here?
reorderPackets(packets, *size);
return packet;

}

Spring 2016Memory Allocation

Referencing Stack Variables Too Late

 Forgetting that local variables disappear when a function
returns (call-stack space reused by subsequent calls)

75

int* foo() {
int val;

return &val;
}

Spring 2016Memory Allocation

Freeing Blocks Multiple Times

 Nasty!

76

x = (int*)malloc(N * sizeof(int));
<manipulate x>

free(x);
...

y = (int*)malloc(M * sizeof(int));
free(x);

<manipulate y>

Spring 2016Memory Allocation

Freeing Blocks Multiple Times

 Nasty!

 What does the free list look like?

77

x = (int*)malloc(N * sizeof(int));
<manipulate x>

free(x);
free(x);

x = (int*)malloc(N * sizeof(int));
<manipulate x>

free(x);
...

y = (int*)malloc(M * sizeof(int));
free(x);

<manipulate y>

Spring 2016Memory Allocation

Referencing Freed Blocks

 Evil!

78

x = (int*)malloc(N * sizeof(int));
<manipulate x>

free(x);

...

y = (int*)malloc(M * sizeof(int));
for (i=0; i<M; i++)

y[i] = x[i]++;

Spring 2016Memory Allocation

Failing to Free Blocks (Memory Leaks)

 Slow, silent, long-term killer!

79

void foo() {
int* x = (int*)malloc(N*sizeof(int));
...
return;

}

Spring 2016Memory Allocation

Failing to Free Blocks (Memory Leaks)

 Freeing only part of a data structure

80

struct list {
int val;
struct list *next;

};

void foo() {
struct list *head =

(struct list *)malloc(sizeof(struct list));
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
...
free(head);
return;

}

Spring 2016Memory Allocation

Dealing With Memory Bugs
 Conventional debugger (gdb)

 Good for finding bad pointer dereferences

 Hard to detect the other memory bugs

 Debugging malloc (UToronto CSRI malloc)
 Wrapper around conventional malloc

 Detects memory bugs at malloc and free boundaries

 Memory overwrites that corrupt heap structures

 Some instances of freeing blocks multiple times

 Memory leaks

 Cannot detect all memory bugs

 Overwrites into the middle of allocated blocks

 Freeing block twice that has been reallocated in the interim

 Referencing freed blocks

81

Spring 2016Memory Allocation

Dealing With Memory Bugs (cont.)

 Some malloc implementations contain checking code
 Linux glibc malloc: setenv MALLOC_CHECK_ 2

 FreeBSD: setenv MALLOC_OPTIONS AJR

 Binary translator: valgrind (Linux), Purify
 Powerful debugging and analysis technique

 Rewrites text section of executable object file

 Can detect all errors as debugging malloc

 Can also check each individual reference at runtime

 Bad pointers

 Overwriting

 Referencing outside of allocated block

82

Spring 2016Memory Allocation

What about Java or ML or Python or …?

 In memory-safe languages, most of these bugs are impossible
 Cannot perform arbitrary pointer manipulation

 Cannot get around the type system

 Array bounds checking, null pointer checking

 Automatic memory management

 But one of the bugs we saw earlier is possible. Which one?

83

Spring 2016Memory Allocation

Memory Leaks with GC

 Not because of forgotten free — we have GC!

 Unneeded “leftover” roots keep objects reachable

 Sometimes nullifying a variable is not needed for correctness
but is for performance

 Example: Don’t leave big data structures you’re done with in a
static field

84

Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

