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Roadmap
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car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq   %rbp
movq    %rsp, %rbp
...
popq    %rbp
ret

Java:C:

Assembly 
language:

Machine 
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer 
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & 
stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C
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Memory Allocation Topics

 Dynamic memory allocation
 Size/number/lifetime of data structures may only be known at run time

 Need to allocate space on the heap

 Need to de-allocate (free) unused memory so it can be re-allocated

 Explicit Allocation Implementation 
 Implicit free lists

 Explicit free lists – subject of next programming assignment

 Segregated free lists

 Implicit Deallocation: Garbage collection

 Common memory-related bugs in C programs

2
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ALL THE DATA!!!
Multiple ways so far of storing data:

 Static global data
 Fixed size at compile-time

 Entire lifetime of the program 
(loaded from executable)

 Portion is read-only 
(e.g. string literals)

 Stack-allocated data
 Local / temporary variables, can be dynamically sized (in some versions of C)

 Known lifetime (deallocated on return)

 Dynamic (heap) data
 Size known only at runtime (based on user-input, etc)

 Lifetime known only at runtime (long-lived data structures)
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int array[1024];

void foo(int n) {
int tmp;
int local_array[n];

int* dyn = 
(int*)malloc(n * sizeof(int));

}
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Dynamic Memory Allocation

 Programmers use dynamic memory allocators (such as malloc) 
to acquire virtual memory at run time 
 For data structures whose size (or lifetime) is known only at runtime

 Types of allocators
 Explicit allocator: application allocates and frees space 

 E.g.  malloc and free in C

 Implicit allocator: application allocates, but does not free space

 E.g. garbage collection in Java, ML, and Lisp

 Dynamic memory allocators manage an 
area of a process’ virtual memory known
as the heap
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Program text (.text)

Initialized data (.data)

User stack

0

Heap (via malloc)

Uninitialized data (.bss)
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Dynamic Memory Allocation

 Allocator organizes the heap as a collection of variable-sized 
blocks, which are either allocated or free
 Allocator requests pages in heap region; virtual memory hardware and OS 

kernel allocate these pages to the process

 Application objects are typically smaller than pages, so the allocator 
manages blocks within pages  

 (Larger objects handled too; ignored here)
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Program text (.text)

Initialized data (.data)

User stack

0

Top of heap
(brk ptr)

Heap (via malloc)

Uninitialized data (.bss)
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The malloc Package

#include <stdlib.h>

void* malloc(size_t size)

 Successful:

 Returns a pointer to a memory block of at least size bytes
(typically) aligned to an 8-byte (x86) or  16-byte (x86-64) boundary

 If size == 0, returns NULL

 Unsuccessful: returns NULL and sets errno

void free(void* p)

 Gives back the block pointed at by p to pool of available memory

 p must come from a previous call to malloc (or similar, see below)

Other functions

 calloc: Version of malloc that “zeros out” allocated block

 realloc: Changes the size of a previously allocated block (if possible) 
(warning: realloc works differently on BSD/OSX than in our version of Linux for this course)

 sbrk: Used internally by allocators to grow or shrink the heap

 historical naming from before virtual memory was common
6
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Malloc Example

7

void foo(int n, int m) {
int i, *p;

/* allocate a block of n ints */
p = (int *)malloc(n * sizeof(int));
if (p == NULL) {

perror("malloc");
exit(0);

}
for (i=0; i<n; i++) 

p[i] = i;

/* add space for m ints to end of p block */
p = (int *)realloc(p, (n+m) * sizeof(int));
if (p == NULL) {

perror("realloc");
exit(0);

}
for (i=n; i < n+m; i++) 

p[i] = i;

/* print new array */  
for (i=0; i<n+m; i++)

printf("%d\n", p[i]);

free(p); /* return p to available memory pool */
}
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Assumptions made in: these slides, book, videos

 Memory is drawn divided into words
 Each word can hold an int (32 bits/4 bytes)

 Allocations will be in sizes that are a multiple of words, 
i.e. multiples of 4 bytes

 In pictures in slides, book, videos : 
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Allocated block
(4 words)

Free block
(3 words) Free word

Allocated word

= one word,  4 bytes



Spring 2016Memory Allocation

Allocation Example

9

p1 = malloc(16)

p2 = malloc(20)

p3 = malloc(24)

free(p2)

p4 = malloc(8)

= 4 byte word
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Constraints (interface/contract)
 Applications

 Can issue arbitrary sequence of malloc and free requests

 Must never access memory not currently allocated (else “who knows”)

 Must never free memory not currently allocated (else “who knows”)

 Also must only use free with previously malloc’ed (or calloc’ed etc.) blocks 
(not, e.g., stack data) (else “who knows”)

 Allocators
 Can’t control number or size of allocated blocks

 Must respond immediately to malloc requests

 i.e., can’t reorder or buffer requests

 Must allocate blocks from free memory

 i.e., blocks can’t overlap, why not?

 Must align blocks so they satisfy all alignment requirements

 Can’t move the allocated blocks 

 i.e., compaction is not allowed. Why not?

10
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Performance Goal #1: Throughput

 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Goals: maximize throughput and peak memory utilization
 These goals are often conflicting

 Throughput:
 Number of completed requests per unit time

 Example:

 5,000  malloc calls and 5,000 free calls in 10 seconds 

 Throughput is 1,000 operations/second

11
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Performance Goal #2: Peak Memory Utilization

 Given some sequence of malloc and free requests:
 R0, R1, ..., Rk, ... , Rn-1

 Def: Aggregate payload Pk

 malloc(p) results in a block with a payload of p bytes

 After request Rk has completed, the aggregate payload Pk is the sum of 
currently allocated payloads

 Def: Current heap size = Hk

 Assume Hk is monotonically nondecreasing
 Allocator can increase size of heap using sbrk

 Def: Peak memory utilization after k + 1 requests 
 Uk = ( maxi≤k Pi )  /  Hk

 Goal: maximize utilization for a sequence of requests.

 Why is this hard? And what happens to throughput?

12
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Fragmentation
 Poor memory utilization is caused by fragmentation

 Sections of memory are not used to store anything useful, but 
cannot satisfy allocation requests

 internal fragmentation

 external fragmentation

13
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Internal Fragmentation

 For a given block, internal fragmentation occurs if payload is smaller than 
block size

 Caused by 

 overhead of maintaining heap data structures (inside block, outside payload)

 padding for alignment purposes

 explicit policy decisions (e.g., to return a big block to satisfy a small request) 
why would anyone do that?

14

payload
Internal 
fragmentation

block

Internal 
fragmentation
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External Fragmentation

 Occurs when there is enough aggregate heap memory, but no 
single free block is large enough

 Don’t know what requests will come in the future…
 Thus, difficult (er, impossible) to know where to best place things

15

p1 = malloc(16)

p2 = malloc(20)

p3 = malloc(24)

free(p2)

p4 = malloc(24) Bummer! (what would happen now?)

= 4 byte word
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Implementation Issues

 How do we know how much memory to free given just a 
pointer?

 How do we keep track of the free blocks?

 How do we pick a block to use for allocation (when many might 
fit)?

 What do we do with the extra space when allocating a 
structure that is smaller than the free block it is placed in?

 How do we reinsert a freed block into the heap?

16
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Knowing How Much to Free

 Standard method
 Keep the length of a block in the word preceding the block

 This word is often called the header field or header

 Requires an extra word for every allocated block

17

free(p0)

p0 = malloc(16)

p0

block size data

20

= 4 byte word (free)

= 4 byte word (allocated)
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Keeping Track of Free Blocks

 Method 1: Implicit free list using length— links all blocks using math

(no actual pointers)

 Method 2: Explicit free list among only the free blocks, using 
pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced binary tree (e.g. red-black tree) with pointers within 

each free block, and the length used as a key
18

20 16 824

20 16 824

= 4 byte word (free)

= 4 byte word (allocated)
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Implicit Free Lists

 For each block we need two pieces of info: 
 size?   is-allocated?

 Could store this information in two words: wasteful!

 Standard trick
 If blocks are aligned some low-order bits are always 0

 Instead of storing a bit that will always be 0, use it as a allocated/free flag

 When reading size, must remember to mask out this bit

19

size

1 word
Format of
allocated and
free blocks

payload

a = 1: allocated block  
a = 0: free block

size: block size

payload: application data
(allocated blocks only)

a

optional
padding

e.g. with 8-byte 
alignment, possible 
values for size:

00001000 = 8 bytes
00010000 = 16 bytes
00011000 = 24 bytes
…

p = malloc(_)

x = size | allocated

allocated = x & 1
size = x & 0b11…10
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Implicit Free List Example (words = 32-bits)

 8-byte alignment
 May require initial unused word

 Causes some internal fragmentation

 Special one-word marker (0|1) marks end of list
 zero size is distinguishable from all real sizes

20

8|0 16|1 32|0 16|1 0|1

Free word

Allocated word

Allocated word
unused

Start of heap

8 bytes = 2 word alignment

Each block begins with a header that contains its size in bytes/allocated bit.
Sequence of blocks in heap (size|allocated): 8|0, 16|1, 32|0, 16|1
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Implicit List: Finding a Free Block

 First fit:

 Search list from beginning, choose first free block that fits:

 Can take time linear in total number of blocks (allocated and free)

 In practice it can cause “splinters” at beginning of list

21

p = heap_start; 
while ((p < end) &&     // not past end

((*p & 1) ||     // already allocated
(*p <= len))) { // too small 

p = p + (*p & -2);    // go to next block (UNSCALED +)
} // p points to selected block or end

*p gets the block header
*p & 1 extracts the 

allocated bit
*p & -2 masks the allocated 

bit, gets just the size

8|0 16|1 32|0 16|1 0|1

Free word

Allocated word

Allocated word
unused

p = heap_start
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Implicit List: Finding a Free Block

 First fit:

 Search list from beginning, choose first free block that fits:

 Can take time linear in total number of blocks (allocated and free)

 In practice it can cause “splinters” at beginning of list

 Next fit:

 Like first-fit, but search list starting where previous search finished

 Should often be faster than first-fit: avoids re-scanning unhelpful blocks

 Some research suggests that fragmentation is worse

 Best fit:

 Search the list, choose the best free block: fits, with fewest bytes left over

 Keeps fragments small—usually helps fragmentation

 Usually worse throughput
22

p = heap_start; 
while ((p < end) &&     // not past end

((*p & 1) ||     // already allocated
(*p <= len))) { // too small 

p = p + (*p & -2);    // go to next block (UNSCALED +)
} // p points to selected block or end

*p gets the block header
*p & 1 extracts the 

allocated bit
*p & -2 masks the allocated 

bit, gets just the size
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Implicit List: Allocating in a Free Block

 Allocating in a free block: splitting
 Since allocated space might be smaller than free space, we might 

want to split the block

23

void split(ptr b, int bytes) {         // bytes = desired block size
int newsize = ((bytes + 7) >> 3) << 3; // round up to multiple of 8
int oldsize = *b;                     // why not mask out low bit?
*b = newsize;                         // initially unallocated
if (newsize < oldsize)

*(b+newsize) = oldsize - newsize; // set length in remaining
}                                       // part of block (UNSCALED +)

8 824

b
malloc(n = 12):

ptr b = find(12+4)
split(b, 12+4)

88 816

assume ptr points to word and has unscaled pointer arithmetic
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Implicit List: Freeing a Block

 Simplest implementation:
 Need only clear the “allocated” flag

void free(ptr p) { ptr b = p – WORD; *b = *b & -2 }

 But can lead to “false fragmentation” 

There is enough free space, but the allocator won’t be able to find it

24

8 816 8

p

malloc(20) Oops!

free(p)

8 816 8
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Implicit List: Coalescing
 Join (coalesce) with next/previous blocks, if they are free

 Coalescing with next block

 But how do we coalesce with the previous block?

25

void free(ptr p) {         // p points to data
ptr b = p – WORD;      // b points to block
*b = *b & -2;          // clear allocated bit
ptr next = b + *b;     // find next block (UNSCALED +)
if ((*next & 1) == 0)  // if next block is not allocated,

*b = *b + *next;    // add its size to this block 
}                         

16 816 8

free(p)

16 824 8

logically
gonep
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Implicit List: Bidirectional Coalescing 
 Boundary tags [Knuth73]

 Replicate size/allocated word at “bottom” (end) of free blocks

 Allows us to traverse the “list” backwards, but requires extra space

 Important and general technique!

26

size

Format of
allocated and
free blocks

payload and
padding

a = 1: allocated block  
a = 0: free block

size: total block size

payload: application data
(allocated blocks only)

a

size aBoundary tag
(footer)

16 16 16 16 24 1624 16

Header
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Constant Time Coalescing

27

Allocated

Allocated

Allocated

Free

Free

Allocated

Free

Free

Block being
freed

Case 1 Case 2 Case 3 Case 4
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m1 1

Constant Time Coalescing (Case 1)

28

m1 1

n 1

n 1

m2 1

m2 1

m1 1

m1 1

n 0

n 0

m2 1

m2 1
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Constant Time Coalescing (Case 2)

29

m1 1

m1 1

n 1

n 1

m2 0

m2 0

m1 1

m1 1

n+m2 0

n+m2 0
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m1 0

Constant Time Coalescing (Case 3)

30

m1 0

n 1

n 1

m2 1

m2 1

n+m1 0

n+m1 0

m2 1

m2 1
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m1 0

Constant Time Coalescing (Case 4)

31

m1 0

n 1

n 1

m2 0

m2 0

n+m1+m2 0

n+m1+m2 0
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Implicit Free Lists: Summary
 Implementation: very simple
 Allocate cost: 

 linear time (in total number of heap blocks) worst case

 Free cost: 
 constant time worst case

 even with coalescing

 Memory utilization: 
 will depend on placement policy

 First-fit, next-fit, or best-fit

 Not used in practice for malloc/free because of linear-time 
allocation
 used in some special purpose applications

 Concepts of splitting and boundary tag coalescing are general to 
all (?) allocators

32
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Keeping Track of Free Blocks

 Method 1: Implicit free list using length— links all blocks using math

(no actual pointers)

 Method 2: Explicit free list among only the free blocks, using 
pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced binary tree (e.g. red-black tree) with pointers within 

each free block, and the length used as a key
33

20 16 824

20 16 824

= 4 byte word (free)

= 4 byte word (allocated)
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Explicit Free Lists

 Maintain list(s) of free blocks, rather than implicit list of all
blocks
 The “next” free block could be anywhere in the heap

 So we need to store forward/back pointers, not just sizes

 Luckily we track only free blocks, so we can use payload area for pointers

 Still need boundary tags for coalescing

34

size a

size a

next

prev

Free block:

size

payload and
padding

a

size a

Allocated block:

(same as implicit free list)
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Explicit Free Lists

 Logically (doubly-linked lists):

 Physically?

35

A B C
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Explicit Free Lists

 Logically (doubly-linked lists):

 Physically: blocks can be in any order

36

A B C

16 16 16 16 2424 1616 16 16

Forward (next) links

Back (prev) links

A B

C
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Allocating From Explicit Free Lists

37

Before
conceptual graphic
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Allocating From Explicit Free Lists

38

Before

After

= malloc(…)

(with splitting)

conceptual graphic

Note: These diagrams are not very specific about where inside a block a pointer points. 
In reality we would always point to one place (e.g. start/header of a block). 
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Freeing With Explicit Free Lists

 Insertion policy: Where in the free list do you put a newly freed 
block?

39
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Freeing With Explicit Free Lists

 Insertion policy: Where in the free list do you put a newly freed 
block?
 LIFO (last-in-first-out) policy

 Insert freed block at the beginning of the free list

 Pro: simple and constant time

 Con: studies suggest fragmentation is worse than address ordered

 Address-ordered policy

 Insert freed blocks so that free list blocks are always in address order: 

addr(prev) < addr(curr) < addr(next)

 Con: requires linear-time search when blocks are freed

 Pro: studies suggest fragmentation is lower than LIFO

40
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Freeing With a LIFO Policy (Case 1)

41

 Insert the freed block at the root of the list

free( )

Root

Root

Before

After

conceptual graphic
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Freeing With a LIFO Policy (Case 2)

 Splice predecessor block out of list, coalesce both memory 
blocks, and insert the new block at the root of the list

42

free( )

Root

Root

Before

After

conceptual graphic
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Freeing With a LIFO Policy (Case 2)

 Splice predecessor block out of list, coalesce both memory 
blocks, and insert the new block at the root of the list

43

free( )

Root

Root

Before

After

conceptual graphic
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Freeing With a LIFO Policy (Case 3)

 Splice successor block out of list, coalesce both memory blocks 
and insert the new block at the root of the list

44

free( )

Root

Root

Before

After

conceptual graphic
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Freeing With a LIFO Policy (Case 3)

 Splice successor block out of list, coalesce both memory blocks 
and insert the new block at the root of the list

45

free( )

Root

Root

Before

After

conceptual graphic
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Freeing With a LIFO Policy (Case 4)

 Splice predecessor and successor blocks out of list, coalesce all 3 
memory blocks and insert the new block at the root of the list

46

free( )

Root

Root

Before

After

conceptual graphic
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Freeing With a LIFO Policy (Case 4)

 Splice predecessor and successor blocks out of list, coalesce all 3 
memory blocks and insert the new block at the root of the list

47

free( )

Root

Root

Before

After

conceptual graphic
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Do we always need the boundary tag?

 Lab 5 suggests no…

48

size a

size a

next

prev

Free block:

size

payload and
padding

a

size a

Allocated block:



Spring 2016Memory Allocation

Explicit List Summary

 Comparison to implicit list:
 Allocate is linear time in number of free blocks instead of all blocks

 Much faster when most of the memory is full 

 Slightly more complicated allocate and free since needs to splice blocks in 
and out of the list

 Some extra space for the links (2 extra words needed for each block)

 Possibly increases minimum block size, leading to more internal fragmentation

 Most common use of explicit lists is in conjunction with 
segregated free lists
 Keep multiple linked lists of different size classes, or possibly for different 

types of objects

49
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Keeping Track of Free Blocks

 Method 1: Implicit free list using length— links all blocks using math

(no actual pointers)

 Method 2: Explicit free list among only the free blocks, using 
pointers

 Method 3: Segregated free list
 Different free lists for different size classes

 Method 4: Blocks sorted by size
 Can use a balanced binary tree (e.g. red-black tree) with pointers within 

each free block, and the length used as a key
50

20 16 824

20 16 824
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Segregated List (Seglist) Allocators

 Each size class of blocks has its own free list

 Organized as an array of free lists

 Often have separate classes for each small size

 For larger sizes: One class for each two-power size

51

16

24-32

40-inf

8

Size class
(in bytes)



Spring 2016Memory Allocation

Seglist Allocator

 Given an array of free lists, each one for some size class

 To allocate a block of size n:
 Search appropriate free list for block of size m > n

 If an appropriate block is found:

 Split block and place fragment on appropriate list (optional)

 If no block is found, try next larger class

 Repeat until block is found

 If no block is found:
 Request additional heap memory from OS (using sbrk)

 Allocate block of n bytes from this new memory

 Place remainder as a single free block in appropriate size class

52
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Seglist Allocator

 To free a block:
 Coalesce and place on appropriate list (optional)

 Advantages of seglist allocators
 Higher throughput

 log time for power-of-two size classes

 Better memory utilization

 First-fit search of seglist approximates a best-fit search of entire heap

 Extreme case: Giving each block its own size class is equivalent to best-fit

 Don't need to use space for block size if it's a fixed-size list

53
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Summary of Key Allocator Policies
 Placement policy:

 First-fit, next-fit, best-fit, etc.

 Trades off lower throughput for less fragmentation

 Observation: segregated free lists approximate a best fit placement policy 
without having to search entire free list

 Splitting policy:
 When do we go ahead and split free blocks?

 How much internal fragmentation are we willing to tolerate?

 Coalescing policy:
 Immediate coalescing: coalesce each time free is called 

 Deferred coalescing: try to improve performance of free by deferring 
coalescing until needed. Examples:

 Coalesce as you scan the free list for malloc

 Coalesce when the amount of external fragmentation reaches some threshold

54
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More Info on Allocators

 D. Knuth, “The Art of Computer Programming”, 2nd edition, 
Addison Wesley, 1973
 The classic reference on dynamic storage allocation

 Wilson et al, “Dynamic Storage Allocation: A Survey and Critical 
Review”, Proc. 1995 Int’l Workshop on Memory Management, 
Kinross, Scotland, Sept, 1995.
 Comprehensive survey

 Available from CS:APP student site (csapp.cs.cmu.edu)

55
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Wouldn’t it be nice…

 If we never had to free memory?

 Do you free objects in Java?

56
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Garbage Collection (GC)
(Automatic Memory Management)

 Garbage collection: automatic reclamation of heap-allocated 
storage—application never explicitly frees memory

 Common in implementations of functional languages, scripting 
languages, and modern object oriented languages:
 Lisp, Racket, Erlang, ML, Haskell, Scala, Java, C#, Perl, Ruby, Python, Lua, 

JavaScript, Dart, Mathematica, MATLAB, many more…

 Variants (“conservative” garbage collectors) exist for C and C++
 However, cannot necessarily collect all garbage

57

void foo() {
int* p = (int *)malloc(128);
return;  /* p block is now garbage */

}
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Garbage Collection

 How does the memory allocator know when memory can be 
freed?
 In general, we cannot know what is going to be used in the future since it 

depends on conditionals 

58
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Garbage Collection

 How does the memory allocator know when memory can be 
freed?
 In general, we cannot know what is going to be used in the future since it 

depends on conditionals 

 But, we can tell that certain blocks cannot be used if they are unreachable
(via pointers starting at registers/stack/globals)

 So the memory allocator needs to know what is a pointer and 
what is not – how can it do this?

 We’ll make some assumptions about pointers:
 Memory allocator can distinguish pointers from non-pointers

 All pointers point to the start of a block in the heap

 Application cannot hide pointers 
(e.g., by coercing them to an int, and then back again)
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Memory as a Graph

 We view memory as a directed graph
 Each allocated heap block is a node in the graph 

 Each pointer is an edge in the graph

 Locations not in the heap that contain pointers into the heap are called 
root nodes (e.g. registers, locations on the stack, global variables)
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Root nodes

Heap nodes

Not-reachable
(garbage)

reachable

A node (block) is reachable if there is a path from any root to that node

Non-reachable nodes are garbage (cannot be needed by the application)
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Classical GC Algorithms

 Mark-and-sweep collection (McCarthy, 1960)
 Does not move blocks (unless you also “compact”)

 Reference counting (Collins, 1960)
 Does not move blocks (not discussed)

 Copying collection (Minsky, 1963)
 Moves blocks (not discussed)

 Generational Collectors (Lieberman and Hewitt, 1983)
 Most allocations become garbage very soon, so

focus reclamation work on zones of memory recently allocated.

 For more information:
 Jones, Hosking, and Moss, The Garbage Collection Handbook: The Art of 

Automatic Memory Management, CRC Press, 2012.

 Jones and Lin, Garbage Collection: Algorithms for Automatic Dynamic 
Memory, John Wiley & Sons, 1996.
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Mark and Sweep Collecting

 Can build on top of malloc/free package
 Allocate using malloc until you “run out of space”

 When out of space:
 Use extra mark bit in the head of each block

 Mark: Start at roots and set mark bit on each reachable block

 Sweep: Scan all blocks and free blocks that are not marked

62

Before mark

root

After mark Mark bit set

After sweep freefree
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Assumptions For a Simple Implementation

 Application can use functions to allocate memory:
 b = new(n) :  returns pointer, b, to new block with all locations cleared

 b[i] : read location i of block b into register

 b[i] = v : write v into location i of block b

 Each block will have a header word
 b[-1]

 Functions used by the garbage collector:
 is_ptr(p): determines whether p is a pointer to a block

 length(p):  returns length of block pointed to by p, not including header

 get_roots():  returns all the roots
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Extra Material
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Mark

64

ptr mark(ptr p) {                 // p: some word in a heap block
if (!is_ptr(p)) return;        // do nothing if not pointer
if (markBitSet(p)) return;     // check if already marked
setMarkBit(p);                 // set the mark bit
for (i=0; i < length(p); i++)  // recursively call mark on

mark(p[i]); //   all words in the block
return;

}      

Mark using depth-first traversal of the memory graph 

After mark Mark bit set

Before mark

root

Extra Material
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Sweep

65

Sweep using lengths to find next block

ptr sweep(ptr p, ptr end) {       // ptrs to start & end of heap
while (p < end) { // while not at end of heap

if markBitSet(p)            // check if block is marked
clearMarkBit(p);         // if so, reset mark bit

else if (allocateBitSet(p)) // if not marked, but allocated
free(p);                 // free the block

p += length(p);             // adjust pointer to next block
}     

After mark Mark bit set

After sweep freefree

Extra Material
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Conservative Mark & Sweep in C

 Would mark & sweep work in C?
 is_ptr (previous slide) determines if a word is a pointer by checking if it 

points to an allocated block of memory

 But in C, pointers can point into the middle of allocated blocks (not so in 
Java)

 Makes it tricky to find all allocated blocks in mark phase

 There are ways to solve/avoid this problem in C, but the resulting garbage 
collector is conservative:

 Every reachable node correctly identified as reachable, but some unreachable 
nodes might be incorrectly marked as reachable

 In Java, all pointers (i.e., references) point to the starting address of an 
object structure – the start of an allocated block
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header

ptr

Extra Material
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Memory-Related Perils and Pitfalls in C

67

!!!
A. Failing to Free Blocks

B. Misunderstanding pointer arithmetic

C. Off by one error

D. Freeing blocks multiple times

E. Referencing a pointer instead of the object it points to

F. Not checking the max string size

G. Interpreting something that is not a ptr as a ptr

H. Accessing Freed Blocks

I. Referencing nonexistent variables

J. Allocating the (possibly) wrong sized object

K. Reading uninitialized memory
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Dereferencing Bad Pointers

 The classic scanf bug

 Will cause scanf to interpret contents of val as an address!
 Best case: program terminates immediately due to segmentation fault

 Worst case: contents of val correspond to some valid read/write area of 
virtual memory, causing scanf to overwrite that memory, with disastrous 
and baffling consequences much later in program execution
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int val;

...

scanf("%d", val);



Spring 2016Memory Allocation

Reading Uninitialized Memory

 Wrongly assuming that heap data is initialized to zero

69

/* return y = Ax */
int *matvec(int **A, int *x) { 

int *y = (int *)malloc( N * sizeof(int) );
int i, j;

for (i=0; i<N; i++) {
for (j=0; j<N; j++) {

y[i] += A[i][j] * x[j];
}

}
return y;

}
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Overwriting Memory

 Allocating the (possibly) wrong sized object
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int **p;

p = (int **)malloc( N * sizeof(int) );

for (i=0; i<N; i++) {
p[i] = (int *)malloc( M * sizeof(int) );

}
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Overwriting Memory

 Off-by-one error

71

int **p;

p = (int **)malloc( N * sizeof(int*) );

for (i=0; i<=N; i++) {
p[i] = (int *)malloc( M * sizeof(int) );

}
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Overwriting Memory

 Not checking the max string size

 Basis for classic buffer overflow attacks
 Lab 3

72

char s[8];
int i;

gets(s);  /* reads “123456789” from stdin */ 
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Overwriting Memory

 Misunderstanding pointer arithmetic
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int *search(int *p, int val) {

while (p && *p != val)
p += sizeof(int);

return p;
}
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Overwriting Memory

 Referencing a pointer instead of the object it points to

 ‘--’ and ‘*’ operators have same precedence and associate from 
right-to-left, so -- happens first!

74

int* getPacket(int** packets, int* size) {
int* packet;
packet = packets[0];
packets[0] = packets[*size - 1];
*size--; // what is happening here?
reorderPackets(packets, *size);
return packet;

}
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Referencing Stack Variables Too Late

 Forgetting that local variables disappear when a function 
returns (call-stack space reused by subsequent calls)

75

int* foo() {
int val;

return &val;
}  
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Freeing Blocks Multiple Times

 Nasty!

76

x = (int*)malloc( N * sizeof(int) );
<manipulate x>

free(x);
...

y = (int*)malloc( M * sizeof(int) );
free(x);

<manipulate y>
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Freeing Blocks Multiple Times

 Nasty!

 What does the free list look like?
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x = (int*)malloc( N * sizeof(int) );
<manipulate x>

free(x);
free(x);

x = (int*)malloc( N * sizeof(int) );
<manipulate x>

free(x);
...

y = (int*)malloc( M * sizeof(int) );
free(x);

<manipulate y>
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Referencing Freed Blocks

 Evil! 
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x = (int*)malloc( N * sizeof(int) );
<manipulate x>

free(x);

...

y = (int*)malloc( M * sizeof(int) );
for (i=0; i<M; i++)

y[i] = x[i]++;
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Failing to Free Blocks (Memory Leaks)

 Slow, silent, long-term killer! 
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void foo() {
int* x = (int*)malloc(N*sizeof(int));
...
return;

}
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Failing to Free Blocks (Memory Leaks)

 Freeing only part of a data structure
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struct list {
int val;
struct list *next;

};

void foo() {
struct list *head =

(struct list *)malloc( sizeof(struct list) );
head->val = 0;
head->next = NULL;
<create and manipulate the rest of the list>
...
free(head);
return;

}
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Dealing With Memory Bugs
 Conventional debugger (gdb)

 Good for finding bad pointer dereferences

 Hard to detect the other memory bugs

 Debugging malloc (UToronto CSRI malloc)
 Wrapper around conventional malloc

 Detects memory bugs at malloc and free boundaries

 Memory overwrites that corrupt heap structures

 Some instances of freeing blocks multiple times

 Memory leaks

 Cannot detect all memory bugs

 Overwrites into the middle of allocated blocks

 Freeing block twice that has been reallocated in the interim

 Referencing freed blocks

81
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Dealing With Memory Bugs (cont.)

 Some malloc implementations contain checking code
 Linux glibc malloc: setenv MALLOC_CHECK_ 2

 FreeBSD: setenv MALLOC_OPTIONS AJR

 Binary translator: valgrind (Linux), Purify
 Powerful debugging and analysis technique

 Rewrites text section of executable object file

 Can detect all errors as debugging malloc

 Can also check each individual reference at runtime

 Bad pointers

 Overwriting

 Referencing outside of allocated block

82



Spring 2016Memory Allocation

What about Java or ML or Python or …?

 In memory-safe languages, most of these bugs are impossible
 Cannot perform arbitrary pointer manipulation

 Cannot get around the type system

 Array bounds checking, null pointer checking

 Automatic memory management

 But one of the bugs we saw earlier is possible.  Which one?
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Memory Leaks with GC

 Not because of forgotten free — we have GC!

 Unneeded “leftover” roots keep objects reachable

 Sometimes nullifying a variable is not needed for correctness 
but is for performance

 Example: Don’t leave big data structures you’re done with in a 
static field
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Root nodes

Heap nodes

Not-reachable
(garbage)

reachable


