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car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq   %rbp
movq    %rsp, %rbp
...
popq    %rbp
ret

Java:C:

Assembly 
language:

Machine 
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer 
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C
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Virtual Memory (VM*)

 Overview and motivation
 Fair warning: it’s pretty complex, but crucial for understanding how processes 

work and for debugging performance.

 VM as tool for caching

 Address translation

 VM as tool for memory management

 VM as tool for memory protection
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*Not to be confused with “Virtual Machine” which is a whole other thing.
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Again: Processes

 Definition: A process is an instance of a running program
 One of the most important ideas in computer science

 Not the same as “program” or “processor”

 Necessary for allowing programs to be developed independently of each other 
(another form of encapsulation)

 Process provides each program with two key abstractions:
 Logical control flow

 Each process seems to have exclusive use of the CPU

 Private virtual address space

 Each process seems to have exclusive use of memory (all 264 bytes of it!)

 How are these illusions maintained?
 Process executions interleaved (multi-tasking) – done…

 Address spaces managed by virtual memory system – now!

3
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Memory as we know it so far… is virtual!

 Programs refer to virtual memory addresses
 movq (%rdi),%rax

 Conceptually memory is just a very large array of bytes

 Each byte has its own address

 System provides private address space to each process

 Allocation: Compiler and run-time system
 Where different program objects should be stored

 All allocation within single virtual address space

 But…
 We probably don’t have 2w bytes of physical memory 

(definitely not if w = 64!)

 We certainly don’t have 2w bytes of physical memory
for every process.

 Processes should not interfere with one another

 Except in certain cases where they want to share code or data

4
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Problem 1: How Does Everything Fit?
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64-bit virtual addresses can address
several exabytes

(18,446,744,073,709,551,616 bytes)

Physical main memory offers
a few gigabytes

(e.g. 8,589,934,592 bytes)

?

1 virtual address space per process, with many processes…

(Not to scale; physical memory would be smaller 
than the period at the end of this sentence 
compared to the virtual address space.)
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Problem 2: Memory Management
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Physical main memory

What goes 
where?

stack
heap
.text
.data

…

Process 1
Process 2
Process 3
…
Process n

x

Each process has…
We have multiple 
processes:
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Problem 3: How To Protect
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Physical main memory

Process i

Process j

Problem 4: How To Share?
Physical main memory

Process i

Process j
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How can we solve these problems?

 Fitting a huge address space into a tiny physical memory

 Managing the address spaces of multiple processes

 Protecting processes from stepping on each other’s memory

 Allowing processes to share common parts of memory

8
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Indirection

 “Any problem in computer science can be solved by adding another level 
of indirection.” –David Wheeler, inventor of the subroutine (a.k.a. procedure)

 Without Indirection

 With Indirection

P2 Thing

P2 Thing

9

What if I want to move Thing?

P1

P3

P3

P1

NewThing

NewThing
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Indirection

 Indirection: the ability to reference something using a name, reference, or 
container instead the value itself. A flexible mapping between a name and a 
thing allows changing the thing without notifying holders of the name.
 Adds some work (“overhead”; now have to look up 2 things instead of 1)

 But don’t have to track everyone that uses the name/address

 Examples of indirection: 
 911: routed to local office

 Call centers: route calls to available operators, etc.

 Phone system: cell phone number portability

 Snail mail: mail forwarding

 Domain Name Service (DNS): translation from name to IP address

 Dynamic Host Configuration Protocol (DHCP): local network address assignment

Name
Thing

Thing
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Indirection in Virtual Memory
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 Each process gets its own private virtual address space

 Solves the previous problems

Physical memory

Virtual memory

Virtual memory

Process 1

Process n

mapping



Spring 2016Virtual Memory

Address Spaces

 Virtual address space: Set of N = 2n virtual addresses
{0, 1, 2, 3, …, N-1}

 Physical address space: Set of M = 2m physical addresses (n >= m)
{0, 1, 2, 3, …, M-1}

 Every byte in main memory has:
 one physical address

 zero, one, or more virtual addresses

12
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Mapping

P2’s Virtual Address Space

Physical 
Memory

Disk

A virtual address can be 
mapped to either physical 
memory or disk

13

P1’s Virtual Address Space



Spring 2016Virtual Memory

A System Using Physical Addressing
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 Used in “simple” systems with (usually) just one process:
 embedded microcontrollers in devices like cars, elevators, and 

digital picture frames

0:
1:

M-1:

Main memory

CPU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

4
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A System Using Virtual Addressing
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 Physical addresses are completely invisible to programs
 Used in all modern desktops, laptops, servers, smartphones…

 One of the great ideas in computer science

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100

Memory Management Unit
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Why Virtual Memory (VM)?

 Efficient use of limited main memory (RAM)
 Use RAM as a cache for the parts of a virtual address space

 some non-cached parts stored on disk

 some (unallocated) non-cached parts stored nowhere

 Keep only active areas of virtual address space in memory

 transfer data back and forth as needed

 Simplifies memory management for programmers
 Each process gets the same full, private linear address space

 Isolates address spaces
 One process can’t interfere with another’s memory

 because they operate in different address spaces

 User process cannot access privileged information

 different sections of address spaces have different permissions

16
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VM and the Memory Hierarchy

 Think of virtual memory as array of N = 2n contiguous bytes.

 Pages of virtual memory are usually stored in physical 
memory, but sometimes spill to disk.
 Pages are another unit of aligned memory (size is P = 2p bytes)

 Each virtual page can be stored in any physical page

17

PP 2m-p-1

Physical memory

Empty

Empty

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Unallocated

PP 0

PP 1

Empty

0

2n-1

2m-1

0

Virtual pages (VP's)

Disk
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or: Virtual Memory as DRAM Cache for Disk

 Think of virtual memory as an array of N = 2n contiguous 
bytes stored on a disk.

 Then physical main memory is used as a cache for the 
virtual memory array
 These “cache blocks” are called pages (size is P = 2p bytes)

PP 2m-p-1

Physical memory

Empty

Empty

Uncached

VP 0

VP 1

VP 2n-p-1

Virtual memory

Unallocated

Cached

Uncached

Unallocated

Cached

Uncached

PP 0

PP 1

Empty

Cached

0

N-1

M-1

0

Virtual pages (VPs) 
“stored on disk”

Physical pages (PPs) 
cached in DRAM
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Memory Hierarchy: Core 2 Duo
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Disk

Main 
Memory

L2 
unified 
cache

L1 
I-cache

L1 
D-cache

CPU Reg

2 B/cycle8 B/cycle16 B/cycle 1 B/30 cyclesThroughput:

Latency: 100 cycles14 cycles3 cycles millions

~4 MB

32 KB

~8 GB ~500 GB

Not drawn to scale 

Miss penalty (latency): 33x

Miss penalty (latency): 10,000x

SRAM
Static Random Access Memory

DRAM
Dynamic Random Access Memory
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Virtual Memory Design Consequences

 Large page size: typically 4-8 KB or 2-4 MB
 Can be up to 1 GB (for “Big Data” apps on big computers)

 Compared with 64-byte cache blocks

 Fully associative
 Any virtual page can be placed in any physical page

 Requires a “large” mapping function – different from CPU caches

 Highly sophisticated, expensive replacement algorithms in OS
 Too complicated and open-ended to be implemented in hardware

 Write-back rather than write-through
 Really don’t want to write to disk every time we modify something in memory

 Some things may never end up on disk (e.g. stack for short-lived process)

20
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Address Translation
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How do we perform the  virtual → physical address 
translation?

0:
1:

M-1:

Main memory

MMU

2:
3:
4:
5:
6:
7:

Physical address
(PA)

Data word

8: ...

CPU

Virtual address
(VA)

CPU Chip

44100
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Address Translation: Page Tables
 A page table is an array that maps virtual pages to physical pages 

(one page table entry (PTE) per virtual page)
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null

null

Memory resident
page table

(DRAM)

Physical memory (DRAM)

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0:    0

PTE 7:    7

PP 0

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

How many page tables are in the system?
One per process

stored in 
physical memory
managed by HW 
(MMU), OS

VP 1

VP 2

VP 7

VP 4

PTE 1:    1

PTE 2:    2

PTE 3:    3

PTE 4:    4

PTE 5:    5

PTE 6:    6

PP 2

PP 1

......

Virtual page #
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CPU

Address Translation With a Page Table
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Virtual page number (VPN) Virtual page offset (VPO)

Physical page number (PPN) Physical page offset (PPO)

Virtual address (VA)

Physical address (PA)

Valid Physical page number (PPN)

Page table 
base register

(PTBR)

Page table Page table address 
for process

Valid bit = 0:
page not in memory

(page fault)

In most cases, the 
hardware (the MMU) can 
perform this translation on 
its own, without software 
assistance
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Page Hit

 Page hit: reference to VM byte that is in physical memory
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null

null

Page table
(in DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

......

Example: Page size: 4 kB

0x00740bVirtual address:

Virtual page # 
(VPN):

Physical page # 
(PPN): 

Physical 
address:

0x007 0x002

0x00240b



Spring 2016Virtual Memory

Page Fault

 Page fault: reference to VM byte that is NOT in physical 
memory 
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null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address

What happens when a 
page fault occurs?

......
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 User writes to memory location

 That portion (page) of user’s memory 
is currently on disk

 Page fault handler must load page into physical memory

 Returns to faulting instruction: mov is executed again!

 Successful on second try

int a[1000];

int main()
{

a[500] = 13;
}

80483b7: c7 05 10 9d 04 08 0d movl $0xd,0x8049d10

User Process OS

exception: page fault

Create page and 
load into memoryreturns

movl

26

Fault Example: Page Fault
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Handling Page Fault

 Page miss causes page fault (an exception)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
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Handling Page Fault

 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 4

Virtual memory
(disk)

Valid
0

1

0
1

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
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Handling Page Fault

 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
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Handling Page Fault

 Page miss causes page fault (an exception)

 Page fault handler selects a victim to be evicted (here VP 4)

 Offending instruction is restarted: page hit!

null

null

Memory resident
page table

(DRAM)

Physical memory
(DRAM)

VP 7
VP 3

Virtual memory
(disk)

Valid
0

1

1
0

0

1

0

1

Physical page
number or 

disk address
PTE 0

PTE 7

PP 0
VP 2

VP 1

PP 3

VP 1

VP 2

VP 4

VP 6

VP 7

VP 3

Virtual address
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Why does it work?  

31
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Why does Virtual Memory work on RAM/disk?
 Works well for avoiding disk accesses because of locality.

 Same reason that L1 / L2 / L3 caches work

 The set of virtual pages that a program is “actively” accessing at any 
point in time is called its working set

 if (working set size of one process < main memory size):
 Good performance for one process (after compulsory misses)

 But…

if sum(working set sizes of all processes) > main memory size:
 Thrashing: Performance meltdown where pages are swapped (copied) between 

memory and disk continuously.  CPU always waiting or paging.

 This is why your computer can feel faster when you add RAM.

32
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Simplifying Linking and Loading

 Linking 
 Each program has similar virtual 

address space

 Code, data, and heap always start at 
the same addresses.

 Loading 
 execve allocates virtual pages for 

.text and .data sections & creates 
PTEs marked as invalid

 The .text and .data sections are 
copied, page by page, on demand by 
the virtual memory system

33

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack 
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded 
from 
the 
executable 
file
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Simplifying Linking and Loading

34

Kernel virtual memory

Memory-mapped region for
shared libraries

Run-time heap
(created by malloc)

User stack
(created at runtime)

Unused
0

%rsp
(stack 
pointer)

Memory
invisible to
user code

brk

0x400000

Read/write segment
(.data, .bss)

Read-only segment
(.init, .text, .rodata)

Loaded 
from 
the 
executable 
file

Physical memory

Disk
execv

[Proc1] User stack

[Slack] .text

PP 0

PP 1

PP M-1
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VM for Managing Multiple Processes
 Key abstraction: each process has its own virtual address space

 It can view memory as a simple linear array

 With virtual memory, this simple linear virtual address space 
need not be contiguous in physical memory
 Process needs to store data in another VP? Just map it to any PP!

35

Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

0

N-1

(e.g., read-only 
library code)

Virtual 
Address 
Space for 
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address 
translation
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VM for Protection and Sharing
 The mapping of VPs to PPs provides a simple mechanism to 

protect memory and to share memory between processes
 Sharing: just map virtual pages in separate address spaces to the same 

physical page (here: PP 6)

 Protection: process simply can’t access physical pages to which none of its 
virtual pages are mapped (here: Process 2 can’t access PP 2)

36

Virtual 
Address 
Space for 
Process 1:

Physical 
Address 
Space 
(DRAM)

0

N-1

(e.g., read-only 
library code)

Virtual 
Address 
Space for 
Process 2:

VP 1
VP 2
...

0

N-1

VP 1
VP 2
...

PP 2

PP 6

PP 8

...

0

M-1

Address 
translation
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Memory Protection Within a Single Process

 Can we use virtual memory to control read/write/execute 
permissions? How?

37
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Memory Protection Within a Single Process

 Extend page table entries with permission bits

 MMU checks these permission bits on every memory access
 If violated, raises exception and OS sends SIGSEGV signal to process

(segmentation fault)

38

Process i: Physical Page NumWRITE EXEC

PP 6No No

PP 4No Yes

PP 2Yes

•
•
•

Process j:

No

READ

Yes

Yes

Yes

WRITE EXEC

PP 9Yes No

PP 6No No

PP 11Yes No

READ

Yes

Yes

Yes

VP 0:

VP 1:

VP 2:

VP 0:

VP 1:

VP 2:

Physical 
Address Space

PP 2

PP 4

PP 6

PP 8

PP 9

PP 11

Yes

Yes

Yes

Yes

Yes

Yes

Valid

Valid Physical Page Num
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Terminology

 context switch
 Switch between processes on the same CPU

 page in
 Move pages of virtual memory from disk to physical memory

 page out
 Move pages of virtual memory from physical memory to disk

 thrash
 Total working set size of processes is larger than physical memory

 Most time is spent paging in and out instead of doing useful computation

39
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Address Translation: Page Hit

40

1) Processor sends virtual address to MMU (memory management unit)

2-3) MMU fetches PTE from page table in cache/memory
(Uses PTBR to find beginning of page table for current process)

4) MMU sends physical address to cache/memory requesting data

5) Cache/memory sends data (~1 word) to processor

MMU Cache/
MemoryPA

Data

CPU
VA

CPU Chip PTEA

PTE
1

2

3

4

5

VA = Virtual Address PTEA = Page Table Entry Address                                        PTE= Page Table Entry 
PA = Physical Address               Data = Contents of memory stored at VA originally requested by CPU 
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Address Translation: Page Fault

41

1) Processor sends virtual address to MMU 

2-3) MMU fetches PTE from page table in cache/memory

4) Valid bit is zero, so MMU triggers page fault exception

5) Handler identifies victim (and, if dirty, pages it out to disk)

6) Handler pages in new page and updates PTE in memory

7) Handler returns to original process, restarting faulting instruction

MMU Cache/
Memory

CPU
VA

CPU Chip
PTEA

PTE

1

2

3

4

5

Disk

Page fault handler

Victim page

New page

Exception

6

7



Spring 2016Virtual Memory

Hmm… Translation Sounds Slow!

 The MMU accesses memory twice: once to get the PTE for 
translation, and then again for the actual memory request

 The PTEs may be cached in L1 like any other memory word

 But they may be evicted by other data references

 And a hit in the L1 cache still requires 1-3 cycles

 What can we do to make this faster?

42
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Speeding up Translation with a TLB

 Solution: add another cache! 🎉

 Translation Lookaside Buffer (TLB):
 Small hardware cache in MMU

 Maps virtual page numbers to physical page numbers

 Contains complete page table entries for small number of pages

 Modern Intel processors: 128 or 256 entries in TLB

 Much faster than a page table lookup in cache/memory

43

TLB

PPNVPN →

PPNVPN →

PPNVPN →
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TLB Hit

MMU
Cache/
Memory

PA

Data

CPU
VA

CPU Chip

PTE

1

2

4

5

TLB

VPN 3

TLB

PPNVPN →

PPNVPN →

PPNVPN →

44

A TLB hit eliminates a memory access
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TLB Miss

45

MMU
Cache/
MemoryPA

Data

CPU
VA

CPU Chip

PTE

1

2

5

6

TLB

VPN

4

PTEA

3

A TLB miss incurs an additional memory access (the PTE)
Fortunately, TLB misses are rare.  

TLB

PPNVPN →

PPNVPN →

PPNVPN →

Question: Why not just rely 
on the normal memory cache?
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Summary of Address Translation Symbols

 Basic Parameters
 N = 2n : Number of addresses in virtual address space

 M = 2m : Number of addresses in physical address space

 P = 2p : Page size (bytes)

 Components of the virtual address (VA)
 VPO: Virtual page offset 

 VPN: Virtual page number

 TLBI: TLB index

 TLBT: TLB tag

 Components of the physical address (PA)
 PPO: Physical page offset (same as VPO)

 PPN: Physical page number

46
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Simple Memory System Example (small)

 Addressing
 14-bit virtual addresses

 12-bit physical address

 Page size = 64 bytes

47

13 12 11 10 9 8 7 6 5 4 3 2 1 0

11 10 9 8 7 6 5 4 3 2 1 0

VPO

PPOPPN

VPN

Virtual Page Number Virtual Page Offset

Physical Page Number Physical Page Offset
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Simple Memory System Page Table

 Only showing first 16 entries (out of 256 = 28)

 What about a real address space?  Read more in the book…

48

10D0F

1110E

12D0D

0–0C

0–0B

1090A

11709

11308

ValidPPNVPN

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN
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Simple Memory System TLB

 16 entries total

 4 sets

 4-way associative

49

13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual page offsetvirtual page number

TLB indexTLB tag

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

TLB ignores page offset. Why?
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Simple Memory System Cache

 16 lines, 4-byte block size

 Physically addressed

 Direct mapped

50

11 10 9 8 7 6 5 4 3 2 1 0

physical page offsetphysical page number

cache offsetcache indexcache tag

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIndex

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIndex

Note: It is a 
coincidence that the 
physical page 
number is the same 
bits as the cache tag
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So…

 This seems complicated, but also elegant and effective
 Level of indirection to provide isolated memory, caching, etc.

 TLB as a cache-of-a-page-table to avoid “two trips to memory for one load”

 Just one issue… Numbers don’t work out for the story so far!

 The problem is the page-table itself for each process…
 Suppose 64-bit addresses and 8KB pages

 How many page-table-entries is that? (Also: Each PTE is > 1byte)

 Moral: Cannot use this naïve implementation of the virtual→physical-page
mapping: It’s way too big.
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A solution: Multi-level page tables

52

Page table 
base register

(PTBR)

VPN 1

0p-1n-1

VPOVPN 2 ... VPN k

PPN

0p-1m-1

PPOPPN

Virtual Address

Physical Address

... ...

Level 1
page table

Level 2
page table

Level k
page table

TLB

PPNVPN →

PPNVPN →

PPNVPN →

This is called a page walk.
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This works!

 Just a tree of depth k (e.g., 4) where each node at depth i has up to 
2^k children if part i of the VPN has k bits

 Hardware for multi-level page tables inherently more complicated
 But it’s a necessary complexity: 1-level does not fit

 Why it works: Most subtrees are not used at all, so they are never 
created and definitely aren’t in physical memory
 Even parts created can be evicted from cache/memory when not being used

 Each node can have a size of ~1-100KB

 But now for a k-level page table, a TLB miss requires k+1 
cache/memory accesses
 Fine so long as TLB misses are rare: motivates larger TLBs
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Summary

 Programmer’s view of virtual memory
 Each process has its own private linear address space

 Cannot be corrupted by other processes

 System view of virtual memory
 Uses memory efficiently by caching virtual memory pages

 Efficient only because of locality

 Simplifies memory management and sharing

 Simplifies protection by providing a convenient interpositioning point to check 
permissions
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Memory System Summary

 L1/L2 Memory Cache
 Purely a speed-up technique

 Behavior invisible to application programmer and (mostly) OS

 Implemented totally in hardware

 Virtual Memory
 Supports many OS-related functions

 Process creation, task switching, protection

 Operating System (software)

 Allocates/shares physical memory among processes

 Maintains high-level tables tracking memory type, source, sharing

 Handles exceptions, fills in hardware-defined mapping tables

 Hardware

 Translates virtual addresses via mapping tables, enforcing permissions

 Accelerates mapping via translation cache (TLB)
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Memory System – Who controls what?

 L1/L2 Memory Cache
 Controlled by hardware

 Programmer cannot control it

 Programmer can write code in a way that takes advantage of it

 Virtual Memory
 Controlled by OS and hardware

 Programmer cannot control mapping to physical memory

 Programmer can control sharing and some protection

 via OS functions (not in CSE 351)
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Quick Review

 What do Page Tables map?

 Where are Page Tables?

 How many Page Tables are there?

 Can your program tell if a page fault has occurred?

 What is thrashing?

 T/F: Virtual Addresses that are contiguous will always be 
contiguous in physical memory.

 TLB stands for ________________ and stores _____________
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Quick Review Answers
 What do Page Tables map?

 Virtual pages to physical pages or location on disk

 Where are Page Tables?
 In physical memory

 How many Page Tables are there?
 One per process

 Can your program tell if a page fault has occurred?
 Nope. But it has to wait a long time.

 What is thrashing?
 Constantly paging out and paging in.  The working set of all applications 

you are trying to run is bigger than physical memory.

 T/F: Virtual Addresses that are contiguous will always be 
contiguous in physical memory. (could be on different physical pages)

 False; pages can be mapped anywhere (within a page they are contiguous)

 TLB stands for , 
and stores .
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TLB

Cache/
Memory

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

MMUCPU

CPU Chip
TLB

Virtual page # (VPN)

Virtual Memory
Handout

Virtual address (VA)

On TLB hit…
Page table entry (PTE)

10D0F

1110E

12D0D

0–0C

0–0B

1090A

11709

11308

ValidPPNVPN

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN

Page Table

CacheData finally returned to CPU

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIndex

On TLB miss… fetch PTE

Physical address (PA)

13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual page offsetvirtual page number

TLB 
indexTLB tag

11 10 9 8 7 6 5 4 3 2 1 0

physical page offsetphysical page number

cache 
offsetcache indexcache tag

movw 0x3D4, %rax
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TLB

Cache/
Memory

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

MMUCPU

CPU Chip
TLB

Virtual page # (VPN)

Virtual Memory
Handout

Virtual address (VA)

On TLB hit…
Page table entry (PTE)

10D0F

1110E

12D0D

0–0C

0–0B

1090A

11709

11308

ValidPPNVPN

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN

Page Table

CacheData finally returned to CPU

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIndex

On TLB miss… fetch PTE

Physical address (PA)

13 12 11 10 9 8 7 6 5 4 3 2 1 0

virtual page offsetvirtual page number

TLB 
indexTLB tag

11 10 9 8 7 6 5 4 3 2 1 0

physical page offsetphysical page number

cache 
offsetcache indexcache tag

0    0    0    0   1    1    1    1    0    1    0   1    0    0

0    0    1    1    0    1    0    1    0   1    0    0

movw 0x3D4, %rax

%rax = 0x7236
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Memory Overview

61

Disk

Main memory
(DRAM)

CacheCPU

Page

Page
Line

Line

Word (e.g. int)

movl 0x8043ab, %rdi

TLB

MMU
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Detailed Examples…

62
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Current state of caches/tables

03DFC2111167

––––0316

1DF0723610D5

098F6D431324

––––0363

0804020011B2

––––0151

112311991190

B3B2B1B0ValidTagIndex

––––014F

D31B7783113E

15349604116D

––––012C

––––00BB

3BDA159312DA

––––02D9

8951003A1248

B3B2B1B0ValidTagIndex

Cache

10D0F

1110E

12D0D

0–0C

0–0B

1090A

11709

11308

ValidPPNVPN

0–07

0–06

11605

0–04

10203

13302

0–01

12800

ValidPPNVPN

0–021340A10D030–073

0–030–060–080–022

0–0A0–040–0212D031

102070–0010D090–030

ValidPPNTagValidPPNTagValidPPNTagValidPPNTagSet

TLB

Page table (partial)
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Address Translation Example #1
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

CO ___ CI___ CT ____ Hit? __              Byte: ____

64

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00101011110000
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Address Translation Example #1
Virtual Address: 0x03D4

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

CO ___ CI___ CT ____ Hit? __              Byte: ____

65

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00101011110000

0x0F 3 0x03 Y N 0x0D

0001010 11010

0 0x5 0x0D Y 0x36
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Address Translation Example #2
Virtual Address: 0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

CO ___ CI___ CT ____ Hit? __              Byte: ____

66

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

11110001110100
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Address Translation Example #2
Virtual Address: 0x0B8F

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

CO ___ CI___ CT ____ Hit? __              Byte: ____

67

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

11110001110100

0x2E 2 0x0B N ? TBD
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Address Translation Example #3
Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

CO___ CI___ CT ____ Hit? __              Byte: ____

68

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000
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Address Translation Example #3
Virtual Address: 0x0020

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

CO___ CI ___ CT ____ Hit? __              Byte: ____

69

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

00000100000000

0x00 0 0x00 N N 0x28

0000000 00111

0 0x8 0x28 N Mem
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Address Translation Example #4
Virtual Address: 0x036B

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

CO ___ CI___ CT ____ Hit? __              Byte: ____

70

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

11010110110000
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Address Translation Example #4
Virtual Address: 0x036B

VPN ___ TLBI ___ TLBT ____ TLB Hit? __ Page Fault? __        PPN: ____

Physical Address

CO ___ CI ___ CT ____ Hit? __              Byte: ____

71

13 12 11 10 9 8 7 6 5 4 3 2 1 0

VPOVPN

TLBITLBT

11 10 9 8 7 6 5 4 3 2 1 0

PPOPPN

COCICT

11010110110000

0x0D 1 0x03 Y N 0x2D

1111010 00111

3 0xA 0x2D Y 0x3B


