
Spring 2016Caches

May	4:	Caches

1



Spring 2016Caches

Roadmap

2

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq   %rbp
movq    %rsp, %rbp
...
popq    %rbp
ret

Java:C:

Assembly	
language:

Machine	
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer	
system:

OS:

Memory	&	data
Integers	&	floats
Machine	code	&	C
x86	assembly
Procedures	&	stacks
Arrays	&	structs
Memory	&	caches
Processes
Virtual	memory
Memory	allocation
Java	vs.	C



Spring 2016Caches

How	does	execution	time	grow	with	SIZE?

3

int array[SIZE];  

int sum = 0;  

for (int i = 0; i < 200000; i++) {

for (int j = 0; j < SIZE; j++) {

sum += array[j];

}

}

SIZE

TIME

Plot



Spring 2016Caches

Actual	Data

4
SIZE

Ti
m
e



Spring 2016Caches

Making	memory	accesses	fast!
¢ Cache	basics
¢ Principle	of	locality
¢ Memory	hierarchies
¢ Cache	organization
¢ Program	optimizations	that	consider	caches

5



Spring 2016Caches

Problem:	Processor-Memory	Bottleneck

Main	
Memory

CPU Reg

Processor	performance
doubled	about	
every	18	months Bus	latency	/	bandwidth

evolved	much	slower

Core	2	Duo:
Can	process	at	least
256	Bytes/cycle

Core	2	Duo:
Bandwidth
2	Bytes/cycle
Latency
100-200	cycles	(30-60ns)

Problem:	lots	of	waiting	on	memory
6cycle:	singlemachine	step	(fixed-time)



Spring 2016Caches

Problem:	Processor-Memory	Bottleneck

Main	
Memory

CPU Reg

Processor	performance
doubled	about	
every	18	months Bus	latency	/	bandwidth

evolved	much	slower

Core	2	Duo:
Can	process	at	least
256	Bytes/cycle

Core	2	Duo:
Bandwidth
2	Bytes/cycle
Latency
100-200	cycles	(30-60ns)

Solution:	caches
7

Cache

cycle:	singlemachine	step	(fixed-time)



Spring 2016Caches

Cache	💰
¢ A	hidden	storage	space	

for	provisions,	weapons,	and/or	treasures

¢ Computer	memory	with	short	access	time	used	for	the	storage	of	
frequently	or	recently	used	instructions	or	data	(i-cache	and	d-
cache)
§ More	generally:

used	to	optimize	data	transfers	between	any	system	elements	with	
different	characteristics	(network	interface	cache,	I/O	cache,	etc.)

8



Spring 2016Caches

General	Cache	Mechanics

9

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory • Larger,	slower,	cheaper	memory.
• Viewed	as	partitioned	into	“blocks”	

or	“lines”

Data	is	copied	in	block-sized	
transfer	units

• Smaller,	faster,	more	expensive	
memory.	

• Caches	a	subset	of	the	blocks	
(a.k.a.	lines)



Spring 2016Caches

General	Cache	Concepts:	Hit

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data	in	block	b	is	neededRequest:	14

14
Block	b	is	in	cache:
Hit!

10



Spring 2016Caches

General	Cache	Concepts:	Miss

0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

7 9 14 3Cache

Memory

Data	in	block	b	is	neededRequest:	12

Block	b	is	not	in	cache:
Miss!

Block	b	is	fetched	from
memoryRequest:	12

12

12

12

Block	b	is	stored	in	cache
•Placement	policy:
determines	where	b	goes
•Replacement	policy:
determines	which	block
gets	evicted	(victim)

11



Spring 2016Caches

Why	Caches	Work
¢ Locality: Programs	tend	to	use	data	and	instructions	with	

addresses	near	or	equal	to	those	they	have	used	recently

12



Spring 2016Caches

Why	Caches	Work
¢ Locality: Programs	tend	to	use	data	and	instructions	with	

addresses	near	or	equal	to	those	they	have	used	recently

¢ Temporal	locality:		
§ Recently	referenced	items	are	likely	

to	be	referenced	again	in	the	near	future

§ Why	is	this	important?

block

13



Spring 2016Caches

Why	Caches	Work
¢ Locality: Programs	tend	to	use	data	and	instructions	with	

addresses	near	or	equal	to	those	they	have	used	recently

¢ Temporal	locality:		
§ Recently	referenced	items	are	likely	

to	be	referenced	again	in	the	near	future

¢ Spatial	locality?		

block

14



Spring 2016Caches

Why	Caches	Work
¢ Locality: Programs	tend	to	use	data	and	instructions	with	

addresses	near	or	equal	to	those	they	have	used	recently

¢ Temporal	locality:		
§ Recently	referenced	items	are	likely	

to	be	referenced	again	in	the	near	future

¢ Spatial	locality:		
§ Items	with	nearby	addresses	tend	

to	be	referenced	close	together	in	time

§ How	do	caches	take	advantage	of	this?

block

block

15



Spring 2016Caches

Example:	Any	Locality?
sum = 0;
for (i = 0; i < n; i++) {

sum += a[i];
}
return sum;

16



Spring 2016Caches

Example:	Any	Locality?

¢ Data:
§ Temporal:	sum referenced	in	each	iteration
§ Spatial:	array	a[] accessed	in	stride-1	pattern

¢ Instructions:
§ Temporal:	cycle	through	loop	repeatedly
§ Spatial:	reference	instructions	in	sequence

¢ Being	able	to	assess	the	locality	of	code	is	a	crucial	skill	
for	a	programmer

17

sum = 0;
for (i = 0; i < n; i++) {

sum += a[i];
}
return sum;



Spring 2016Caches

Locality	Example	#1
int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];

return sum;
}

18

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]



Spring 2016Caches

Locality	Example	#1

19

1:	a[0][0]
2:	a[0][1]
3:	a[0][2]
4:	a[0][3]
5:	a[1][0]
6:	a[1][1]
7:	a[1][2]
8:	a[1][3]
9:	a[2][0]
10:	a[2][1]
11:	a[2][2]
12:	a[2][3]

stride-1

Order	
Accessed

76 92 108

a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

5
a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

0 5
a
[2]
[2]

a
[2]
[3]

a
[2]
[1]

a
[2]
[0]

a
[1]
[0]

Layout	in	Memory

M	=	3,	N=4

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]

76	is	just	one	possible	 starting	address	of	array	a

int sum_array_rows(int a[M][N])
{

int i, j, sum = 0;

for (i = 0; i < M; i++)
for (j = 0; j < N; j++)

sum += a[i][j];

return sum;
}



Spring 2016Caches

Locality	Example	#2
int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];

return sum;
}

20

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]



Spring 2016Caches

1:	a[0][0]
2:	a[1][0]
3:	a[2][0]
4:	a[0][1]

Locality	Example	#2

21

a[0][0] a[0][1] a[0][2] a[0][3]
a[1][0] a[1][1] a[1][2] a[1][3]
a[2][0] a[2][1] a[2][2] a[2][3]

5:	a[1][1]
6:	a[2][1]
7:	a[0][2]
8:	a[1][2]
9:	a[2][2]
10:	a[0][3]
11:	a[1][3]
12:	a[2][3]

stride-N

76 92 108

a
[0]
[0]

a
[0]
[1]

a
[0]
[2]

a
[0]
[3]

5
a
[1]
[1]

a
[1]
[2]

a
[1]
[3]

0 5
a
[2]
[2]

a
[2]
[3]

a
[2]
[1]

a
[2]
[0]

a
[1]
[0]

Layout	in	Memory
Order	
Accessed

M	=	3,	N=4
int sum_array_cols(int a[M][N])
{

int i, j, sum = 0;

for (j = 0; j < N; j++)
for (i = 0; i < M; i++)

sum += a[i][j];

return sum;
}



Spring 2016Caches

Locality	Example	#3
int sum_array_3d(int a[M][N][L])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < L; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}

¢ What	is	wrong	with	this	code?
¢ How	can	it	be	fixed?

22



Spring 2016Caches

Locality	Example	#3

¢ What	is	wrong	with	this	code?
¢ How	can	it	be	fixed?

2376 92 108

a
[0]
[0]
[0]

a
[0]
[0]
[1]

a
[0]
[0]
[2]

a
[0]
[0]
[3]

5

a
[0]
[1]
[1]

a
[0]
[1]
[2]

a
[0]
[1]
[3]

0 5

a
[0]
[2]
[2]

a
[0]
[2]
[3]

a
[0]
[2]
[1]

a
[0]
[2]
[0]

a
[0]
[1]
[0]

Layout	in	Memory	(for	M	=	?,	N	=	3,	L=4)

a
[1]
[0]
[0]

a
[1]
[0]
[1]

a
[1]
[0]
[2]

a
[1]
[0]
[3]

5

a
[1]
[1]
[1]

a
[1]
[1]
[2]

a
[1]
[1]
[3]

0 5

a
[1]
[2]
[2]

a
[1]
[2]
[3]

a
[1]
[2]
[1]

a
[1]
[2]
[0]

a
[1]
[1]
[0]

a
[2]
[0]
[0]

a
[2]
[0]
[1]

a
[2]
[0]
[2]

a
[2]
[0]
[3]

5

a
[2]
[1]
[1]

a
[2]
[1]
[2]

a
[2]
[1]
[3]

0 5

a
[2]
[2]
[2]

a
[2]
[2]
[3]

a
[2]
[2]
[1]

a
[2]
[2]
[0]

a
[2]
[1]
[0] …

int sum_array_3d(int a[M][N][L])
{

int i, j, k, sum = 0;

for (i = 0; i < N; i++)
for (j = 0; j < L; j++)

for (k = 0; k < M; k++)
sum += a[k][i][j];

return sum;
}



Spring 2016Caches

Make	memory	fast	again.
¢ Cache	basics
¢ Principle	of	locality
¢ Memory	hierarchies
¢ Cache	organization
¢ Program	optimizations	that	consider	caches

24



Spring 2016Caches

Cost	of	Cache	Misses
¢ Huge	difference	between	a	hit	and	a	miss

§ Could	be	100x,	if	just	L1	and	main	memory

¢ Would	you	believe	99%	hits	is	twice	as	good	as	97%?
§ Consider:	

Cache	hit	time	of	1	cycle
Miss	penalty	of	100	cycles

25

cycle	=	single	fixed-time
machine	step



Spring 2016Caches

Cost	of	Cache	Misses
¢ Huge	difference	between	a	hit	and	a	miss

§ Could	be	100x,	if	just	L1	and	main	memory

¢ Would	you	believe	99%	hits	is	twice	as	good	as	97%?
§ Consider:	

Cache	hit	time	of	1	cycle
Miss	penalty	of	100	cycles

§ Average	access	time:
§ 97%	hits:		1	cycle	+	0.03	*	100	cycles	=	4	cycles
§ 99%	hits:		1	cycle	+	0.01	*	100	cycles	=	2	cycles

¢ This	is	why	“miss	rate”	is	used	instead	of	“hit	rate”

26

cycle	=	single	fixed-time
machine	step

check	the	cache	every	time



Spring 2016Caches

Cache	Performance	Metrics

¢ Miss	Rate
§ Fraction	of	memory	references	not	found	in	cache	(misses	/	accesses)

=	1	- hit	rate
§ Typical	numbers	(in	percentages):

§ 3%	- 10%	for	L1
§ Can	be	quite	small	(e.g.,	<	1%)	for	L2,	depending	on	size,	etc.

¢ Hit	Time
§ Time	to	deliver	a	line	in	the	cache	to	the	processor

§ Includes	time	to	determine	whether	the	line	is	in	the	cache
§ Typical	hit	times:	4	clock	cycles	for	L1;	10	clock	cycles	for	L2

¢ Miss	Penalty
§ Additional	time	required	because	of	a	miss
§ Typically	50	- 200	cycles	for	missing	in	L2	&	going	to	main	memory	

(Trend:	increasing!)
27



Spring 2016Caches

Can	we	have	more	than	one	cache?
¢ Why	would	we	want	to	do	that?

28



Spring 2016Caches

Memory	Hierarchies
¢ Some	fundamental	and	enduring	properties	of	hardware	and	

software	systems:
§ Faster	storage	technologies	almost	always	cost	more	per	byte	and	have	

lower	capacity
§ The	gaps	between	memory	technology	speeds	are	widening

§ True	for:	registers	↔	cache,	cache	↔	DRAM,	DRAM	↔	disk,	etc.
§ Well-written	programs	tend	to	exhibit	good	locality

¢ These	properties	complement	each	other	beautifully

¢ They	suggest	an	approach	for	organizing	memory	and	storage	
systems	known	as	a	memory	hierarchy

29



Spring 2016Caches

May	6

30



Spring 2016Caches

An	Example	Memory	Hierarchy

31

registers

on-chip	L1
cache	(SRAM)

main	memory
(DRAM)

local	secondary	storage
(local	disks)

Larger,		
slower,	
cheaper	
per	byte

remote	secondary	storage
(distributed	file	systems, web	servers)

off-chip	L2
cache	(SRAM)

Smaller,
faster,
costlier
per	byte

<1	ns

1	ns

5-10	ns

100	ns

150,000	ns

10,000,000	ns
(10	ms)

1-150	ms

SSD

Disk

5-10	s

1-2	min

15-30	min

31	days

66	months	 =	1.3	years

1	- 15	years



Spring 2016Caches

An	Example	Memory	Hierarchy

32

registers

on-chip	L1
cache	(SRAM)

main	memory
(DRAM)

local	secondary	storage
(local	disks)

Larger,		
slower,	
cheaper	
per	byte

remote	secondary	storage
(distributed	file	systems, web	servers)

Local	disks	hold	 files	
retrieved	from	disks	on	
remote	network	servers

Main	memory	holds	disk	blocks	
retrieved	from	local	disks

off-chip	L2
cache	(SRAM)

L1	cache	holds	cache	lines	retrieved	from	L2	cache

CPU	registers	hold	 words	retrieved	from	L1	cache

L2	cache	holds	cache	lines	retrieved	
from	main	memory

Smaller,
faster,
costlier
per	byte



Spring 2016Caches

An	Example	Memory	Hierarchy

33

registers

on-chip	L1
cache	(SRAM)

main	memory
(DRAM)

local	secondary	storage
(local	disks)

Larger,		
slower,	
cheaper	
per	byte

remote	secondary	storage
(distributed	file	systems, web	servers)

off-chip	L2
cache	(SRAM)

explicitly	program-controlled	
(e.g.	refer	to	exactly	%rax,	%rbx)

Smaller,
faster,
costlier
per	byte

program	sees	“memory”;
hardware	manages	caching

transparently



Spring 2016Caches

Memory	Hierarchies

¢ Fundamental	idea	of	a	memory	hierarchy:
§ For	each	level	k,	the	faster,	smaller	device	at	level	k	serves	as	a	cache	for	

the	larger,	slower	device	at	level	k+1.

¢ Why	do	memory	hierarchies	work?
§ Because	of	locality,	programs	tend	to	access	the	data	at	level	k more	

often	than	they	access	the	data	at	level	k+1.	
§ Thus,	the	storage	at	level	k+1	can	be	slower,	and	thus	larger	and	

cheaper	per	bit.

¢ Big	Idea: The	memory	hierarchy	creates	a	large	pool	of	
storage	that	costs	as	much	as	the	cheap	storage	near	the	
bottom,	but	that	serves	data	to	programs	at	the	rate	of	the	
fast	storage	near	the	top.

34



Spring 2016Caches

Intel	Core	i7	Cache	Hierarchy

Regs

L1	
d-cache

L1	
i-cache

L2	unified	cache

Core	0

Regs

L1	
d-cache

L1	
i-cache

L2	unified	cache

Core	3

…

L3	unified	cache
(shared	by	all	cores)

Main	memory

Processor	package

Block	size:	
64	bytes	for	all	caches.

L1	i-cache	and	d-cache:
32	KB,		8-way,	
Access:	4	cycles

L2	unified	cache:
256	KB,	8-way,	
Access:	11	cycles

L3	unified	cache:
8	MB,	16-way,
Access:	30-40	cycles

35



Spring 2016Caches

Making	memory	accesses	fast!
¢ Cache	basics
¢ Principle	of	locality
¢ Memory	hierarchies
¢ Cache	organization

§ Direct-mapped (sets; index	+	tag)
§ Associativity	(ways)
§ Replacement	policy
§ Handling	writes

¢ Program	optimizations	that	consider	caches

36



Spring 2016Caches

Cache	Organization
¢ Where	should	data	go	in	the	cache?

§ We	need	a	mapping	from	memory	addresses	to	specific	locations	in	the	
cache	to	make	checking	the	cache	for	an	address	fast
§ Otherwise	each	memory	access	requires	“searching	the	entire	cache”	
(slow!)

§ What	is	a	data	structure	that	provides	fast	lookup?

37



Spring 2016Caches

Aside:	Hash	Tables	for	Fast	Lookup

38

0
1
2
3
4
5
6
7
8
9

Insert:

5
27
34

1002
119



Spring 2016Caches

Aside:	Hash	Tables	for	Fast	Lookup

39

000
001
010
011
100
101
110
111

0
1
2
3
4
5
6
7

Insert:

000001
000101
110011
101010
100111



Spring 2016Caches

Where should we put data in the cache?

40

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Data

Memory Cache

¢ How can we compute this mapping? 

address	mod	cache	size
same	as:
low-order	log2(cache	size)	bits



Spring 2016Caches

Where should we put data in the cache?

41

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Data

Memory Cache

Collision.
Hmm..	The	cache	might	get	confused	later!
Why?	And	how	do	we	solve	that?



Spring 2016Caches

Use	tags	to	record	which	location	is	cached

42

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Tag Data
00
??
01
01

Memory Cache

tag	=	rest	of	address	bits



Spring 2016Caches

What’s	a	cache	block?	(or	cache	line)

43

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Byte
Address

0
1
2
3

Index

0

1

2

3

4

5

6

7

Block	(line)
number

block/line	size	=	?

typical	block/line	sizes:
32	bytes,	64	bytes

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

(00)
(01)
(10)
(11)

Tag



Spring 2016Caches

A	puzzle.
¢ What	can	you	infer	from	this:

¢ Cache	starts	empty
¢ Access	(addr: hit/miss)	stream:

¢ (12:	miss),	(13:	hit),	(14:	miss)

44

block	size	>=	2	bytes block	size	<	3	bytes



Spring 2016Caches

Direct	mapped	cache

¢ Direct	mapped:
§ Each	memory	address	can	

be	mapped	to	exactly	one	
index	in	the	cache.

§ Easy	to	find	an	address!	
Cheap	to	implement.

§ But…

¢ What	happens	if	a	
program	uses	addresses	
2, 6, 2, 6, 2,	…?

45

00
01
10
11

Index

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory
Address

__
__
__
__

Tag

2	and	6	conflict,
rest	of	cache	is	unused



Spring 2016Caches

Associativity
¢ What	if	we	could	store	data	in	any	place	in	the	cache?

§ Minimize	conflicts!
§ More	complicated	hardware,	consumes	more	power,	slower.

46

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

Memory
Address

____
____
0010
0110

Tag
Accesses:
2, 6, 2, 6, 2,	…?



Spring 2016Caches

Associativity
¢ What	if	we	could	store	data	in	any	place	in	the	cache?

§ More	complicated	hardware,	consumes	more	power,	slower.

¢ So	we	combine the	two	ideas:
§ Each	address	maps	to	exactly	one	set.
§ Each	set	can	have	more	than	one	way.

47

0
1
2
3
4
5
6
7

Set

0

1

2

3

Set

0

1

Set

1-way
8 sets,

1 block each

2-way
4 sets,

2 blocks each

4-way
2 sets,

4 blocks each

0

Set

8-way
1 set,

8 blocks

direct mapped fully associative



Spring 2016Caches

Now	how	do	I	know	where	data	goes?

48

m-bit Address

k bits(m-k-n) bits
n-bit Block

OffsetTag Index



Spring 2016Caches

Now	how	do	I	know	where	data	goes?

49

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

Byte
Address

0
1
2
3

Index

0

1

2

3

4

5

6

7

Block	(line)
number

0000
0001
0010
0011
0100
0101
0110
0111
1000
1001
1010
1011
1100
1101
1110
1111

00
01
10
11

capacity: 8	bytes
block	size: 2	bytes
sets: 4
ways: 1

m-bit Address

k bits(m-k-n) bits
n-bit Block

OffsetTag Index

Where	would	13	(1101)	be	stored?

Tag



Spring 2016Caches

Example	placement	in	set-associative	caches
¢ Where	would	data	from	address	0x1833 be	placed?
¢ 0x1833 in	binary	is:

50

m-bit Address

k bits(m-k-n) bits
n-bit Block

OffsetTag Index

k	=	?	 k	=	?	 k	=	?	

block	size: 16	bytes
capacity: 8	blocks0001 1000 0011 0011011 0011

Set Tag Data
0
1
2
3
4
5
6
7

1-way associativity
8 sets, 1 block each

Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way associativity
4 sets, 2 blocks each

4-way associativity
2 sets, 4 blocks each



Spring 2016Caches

m-bit Address

k bits(m-k-4) bits
4-bit Block

OffsetTag Index

k	=	3	 k	=	2 k	=	1

51

Example	placement	in	set-associative	caches
¢ Where	would	data	from	address	0x1833 be	placed?
¢ 0x1833 in	binary	is:

block	size: 16	bytes
capacity: 8	blocks0001 1000 0011 0011

Set Tag Data
0
1
2
3
4
5
6
7

1-way associativity
8 sets, 1 block each

Set Tag Data

0

1

2

3

Set Tag Data

0

1

2-way associativity
4 sets, 2 blocks each

4-way associativity
2 sets, 4 blocks each



Spring 2016Caches

Block	replacement
¢ Any	empty	block	in	the	correct	set	may	be	used	for	storing	data.
¢ If	there	are	no	empty	blocks,	which	one	should	we	replace?

§ Obvious	for	direct-mapped	caches,	what	about	set-associative?
§ Caches	typically	use	something	close	to	least	recently	used	(LRU)

(hardware	usually	implements	“not	most	recently	used”)

52

0
1
2
3
4
5
6
7

Set

0

1

2

3

Set

0

1

Set

1-way associativity
8 sets, 1 block each

2-way associativity
4 sets, 2 blocks each

4-way associativity
2 sets, 4 blocks each



Spring 2016Caches

Another	puzzle.
¢ What	can	you	infer	from	this?

¢ Cache	starts	empty
¢ Access	(addr: hit/miss)	stream:

¢ (10:	miss);	(12:	miss);	(10:	miss)

53

12	is	not	in	the	same
block	as	10

12’s	block	replaced	10’s	block

direct-mapped	cache	with	<=2	sets



Spring 2016Caches

General	Cache	Organization	(S,	E,	B)
E	=	lines	per	set	(we	say	“E-way”)

S	=	#	sets

set

line

0 1 2 B-1tagv

valid	bit
B	=	bytes	of	data	per	cache	line	(the	data	block)

cache	size:
S	x	E	x	B		data	bytes

54



Spring 2016Caches

Cache	Read
E	=	lines	per	set

S	=	2s sets

0 1 2 B-1tagv

valid	bit
B	=	2b bytes	of	data	per	cache	line	(the	data	block)

t	bits s	bits b	bits
Address	of	byte	in	memory:

tag set
index

block
offset

data	begins	at	this	offset

• Locate	set
•Check	if	any	line	 in	set
has	matching	 tag
•Yes	+	line	valid:	hit
• Locate	data	starting
at	offset

55



Spring 2016Caches

Example:	Direct-Mapped	Cache	(E	=	1)

S	=	2s sets

Direct-mapped:	One	line	per	set
Assume:	cache	block	size	8	bytes

t	bits 0…01 100
Address	of	int:

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

0 1 2 7tagv 3 654

find	set

56



Spring 2016Caches

Example:	Direct-Mapped	Cache	(E	=	1)
Direct-mapped:	One	line	per	set
Assume:	cache	block	size	8	bytes

t	bits 0…01 100
Address	of	int:

0 1 2 7tagv 3 654

match?:	yes	=	hitvalid?			+

block	offset

tag

57



Spring 2016Caches

Example:	Direct-Mapped	Cache	(E	=	1)
Direct-mapped:	One	line	per	set
Assume:	cache	block	size	8	bytes

t	bits 0…01 100
Address	of	int:

0 1 2 7tagv 3 654

match?:	yes	=	hitvalid?			+

int (4	Bytes)	is	here

block	offset

No	match? Then	old	line	gets	evicted	and	replaced

58

This	is	why	we	
want	alignment!



Spring 2016Caches

Example	(for	E	=	1)
int sum_array_rows(double a[16][16])
{

int i, j;
double sum = 0;

for (i = 0; i < 16; i++)
for (j = 0; j < 16; j++)

sum += a[i][j];
return sum;

}

32	B	=	4	doubles

Assume:	cold	(empty)	cache
3	bits	for	set,	5	bits	for	offset

aa...ayyy yxx xx000

int sum_array_cols(double a[16][16])
{

int i, j;
double sum = 0;

for (j = 0; j < 16; j++)
for (i = 0; i < 16; i++)

sum += a[i][j];
return sum;

}

Assume	sum,	i,	j in	registers
Address	of	an	aligned	element
of	a:		aa...ayyyyxxxx000

59

0,0 0,1 0,2 0,3

0,4 0,5 0,6 0,7

0,8 0,9 0,a 0,b

0,c 0,d 0,e 0,f

1,0 1,1 1,2 1,3

1,4 1,5 1,6 1,7

1,8 1,9 1,a 1,b

1,c 1,d 1,e 1,f

32	B	=	4	doubles
4	misses	per	row	of	array

4*16	=	64	misses
every	access	a	miss
16*16	=	256	misses

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

4,0 4,1 4,2 4,3

0,0:	aa...a000 000 000000,4:	aa...a000 001 000001,0:	aa...a000 100 000002,0:	aa...a001 000 00000



Spring 2016Caches

Example	(for	E	=	1)
float dotprod(float x[8], float y[8])
{

float sum = 0;
int i;

for (i = 0; i < 8; i++)
sum += x[i]*y[i];

return sum;
}

60

x[0] x[1] x[2] x[3]y[0] y[1] y[2] y[3]x[0] x[1] x[2] x[3]y[0] y[1] y[2] y[3]x[0] x[1] x[2] x[3]

if	x and	y have	aligned
starting	addresses,	

e.g.,	&x[0]	=	0,	&y[0]	=	128

if	x and	y have	unaligned
starting	addresses,	

e.g.,	&x[0]	=	0,	&y[0]	=	160

x[0] x[1] x[2] x[3]

y[0] y[1] y[2] y[3]

x[4] x[5] x[6] x[7]

y[4] y[5] y[6] y[7]

In	this	example,	cache	blocks	are
16	bytes;	8	sets	in	cache
How	many	block	offset	bits?
How	many	set	index	bits?

Address	bits:	ttt....t	sss	bbbb
B	=	16	=	2b: b=4	offset	bits
S	=			8	=	2s: s=3	index	bits

0: 000....0	000	0000
128: 000....1	000	0000
160: 000....1	010	0000



Spring 2016Caches

E-way	Set-Associative	Cache	(Here:	E	=	2)
E	=	2:	Two	lines	per	set
Assume:	cache	block	size	8	bytes

t	bits 0…01 100
Address	of	short	int:

find	set

61

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

0 1 2 7tagv 3 6540 1 2 7tagv 3 654



Spring 2016Caches

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

E-way	Set-Associative	Cache	(Here:	E	=	2)
E	=	2:	Two	lines	per	set
Assume:	cache	block	size	8	bytes

t	bits 0…01 100
Address	of	short	int:

compare	both

valid?		+	 match:	yes	=	hit

block	offset

tag

62



Spring 2016Caches

0 1 2 7tagv 3 6540 1 2 7tagv 3 654

E-way	Set-Associative	Cache	(Here:	E	=	2)
E	=	2:	Two	lines	per	set
Assume:	cache	block	size	8	bytes

t	bits 0…01 100
Address	of	short	int:

valid?		+	 match:	yes	=	hit

block	offset

short	int (2	Bytes)	is	here

No	match?
• One	line	in	set	is	selected	for	eviction	and	replacement
• Replacement	policies:	random,	least	recently	used	(LRU),	…

63

compare	both



Spring 2016Caches

Example	(for	E	=	2)
float dotprod(float x[8], float y[8])
{

float sum = 0;
int i;

for (i = 0; i < 8; i++)
sum += x[i]*y[i];

return sum;
}

64

x[0] x[1] x[2] x[3] y[0] y[1] y[2] y[3]If	x and	y have	aligned	starting	
addresses,	e.g.	&x[0]	=	0,	&y[0]	=	128,	
can	still	fit	both	because	two	lines	in	
each	set

x[4] x[5] x[6] x[7] y[4] y[5] y[6] y[7]



Spring 2016Caches

Types	of	Cache	Misses:	3	C’s!
¢ Cold	(compulsory)	miss

§ Occurs	on	first	access	to	a	block

¢ Conflict	miss
§ Conflict	misses	occur	when	the	cache	is	large	enough,	but	multiple	data	

objects	all	map	to	the	same	slot
§ e.g.,	referencing	blocks	0,	8,	0,	8,	...	could	miss	every	time

§ direct-mapped	caches	have	more	conflict	misses	than
n-way	set-associative (where	n		>	1)

¢ Capacity	miss
§ Occurs	when	the	set	of	active	cache	blocks	(the	working	set)	

is	larger	than	the	cache	(just	won’t	fit,	even	if	cache	was	fully-associative)
§ Note:	Fully-associative only	has	Cold	and	Capacity	misses

65



Spring 2016Caches

What	about	writes?
¢ Multiple	copies	of	data	exist:

§ L1,	L2,	possibly	L3,	main	memory

¢ What	is	the	main	problem	with	that?
§ Which	copies	should	we	update?
§ What	if	it’s	a	hit?	Miss?

66

L1

L2	Cache

L3	Cache

Main	Memory



Spring 2016Caches

What	about	writes?
¢ Multiple	copies	of	data	exist:

§ L1,	L2,	possibly	L3,	main	memory

¢ What	to	do	on	a	write-hit?
§ Write-through:	write	immediately	to	memory,	all	caches	in	between.
§ Write-back:	defer	write	to	memory	until	line	is	evicted	(replaced)

§ Must	track	which	cache	lines	have	been	modified	(“dirty	bit”)

¢ What	to	do	on	a	write-miss?
§ Write-allocate(“fetch	on	write”):	load	into	cache,	update	line	in	cache.

§ Good	if	more	writes	or	reads	to	the	location	follow
§ No-write-allocate(“write	around”):	just	write	immediately	to	memory.

¢ Typical	caches:
§ Write-back	+	Write-allocate,	usually
§ Write-through	+	No-write-allocate,	occasionally

67

why?



Spring 2016Caches

Write-back,	write-allocate	example

68

0xBEEFCache

Memory

U

0xCAFE

0xBEEF

0

T

U

dirty	bit

tag	(there	is	only	one	set	in	this	tiny	cache,	so	the	tag	is	the	entire	address!)

In	this	example	we	are	sort	of	
ignoring	block	offsets.	Here	a	block
holds	2	bytes	(16	bits,	4	hex	digits).	

Normally	a	block	would	be	much	
bigger	and	thus	there	would	be	
multiple	items	per	block.		While	only	
one	item	in	that	block	would	be	
written	at	a	time,	the	entire	line	would	
be	brought	into	cache.

Contents	of	memory	stored	at	address	U



Spring 2016Caches

Write-back,	write-allocate	example

69

0xBEEFCache

Memory

U

0xCAFE

0xBEEF

0

T

U

mov 0xFACE, T

dirty	bit

Step	1:	Bring	T	into	cache Step	2:	Write	0xFACE to	cache	
only	and	set	dirty	bit.

mov U,%rax

mov 0xFEED,T Write	hit!	Write	0xFEED to	cache	only

1. Write	T	back	to	
memory	since	
it’s	dirty.

2. Bring	U	into	the	
cache	so	we	can	
copy	it	into	%rax



Spring 2016Caches

0xBEEFU 0

Write-back,	write-allocate	example

70

0xCAFECache

Memory

T

0xCAFE

0xBEEF

T

U

mov 0xFACE, T

dirty	bit0xCAFE 0

Step	1:	Bring	T	into	cache



Spring 2016Caches

0xBEEFU 0

Write-back,	write-allocate	example

71

0xCAFECache

Memory

T

0xCAFE

0xBEEF

T

U

mov 0xFACE, T

dirty	bit0xFACE 1

Step	2:	Write	0xFACE
to	cache	only	and	set
dirty	bit.



Spring 2016Caches

0xBEEFU 0

Write-back,	write-allocate	example

72

0xCAFECache

Memory

T

0xCAFE

0xBEEF

T

U

mov 0xFACE,T mov 0xFEED,T

dirty	bit0xFACE 10xFEED

Write	hit!
Write	0xFEED to	

cache	only



Spring 2016Caches

0xBEEFU 0

Write-back,	write-allocate	example

73

0xCAFECache

Memory

U

0xFEED

0xBEEF

T

U

mov 0xFACE,T mov 0xFEED,T

dirty	bit0xFACE 00xBEEF

mov U,%rax

1.	Write	T	back	to	memory	
since	it	is	dirty.

2.	Bring	U	into	the	cache	so	
we	can	copy	it	into	%rax



Spring 2016Caches

Back	to	the	Core	i7	to	look	at	ways

Regs

L1	
d-cache

L1	
i-cache

L2	unified	cache

Core	0

Regs

L1	
d-cache

L1	
i-cache

L2	unified	cache

Core	3

…

L3	unified	cache
(shared	by	all	cores)

Main	memory

Processor	package

Block/line	size:	
64	bytes	for	all.	

L1	i-cache	and	d-cache:
32	KB,		8-way,	
Access:	4	cycles

L2	unified	cache:
256	KB,	8-way,	
Access:	11	cycles

L3	unified	cache:
8	MB,	16-way,
Access:	30-40	cycles

74

slower,	but
more	likely
to	hit



Spring 2016Caches

May	11
¢ Reminders

§ Lab	3	due	tonight	@	11:59pm
§ HW	3	(mostly	cache	problems)	due	Friday

75



Spring 2016Caches

Where	else	is	caching	used?

76



Spring 2016Caches

Software	Caches	are	More	Flexible
¢ Examples

§ File	system	buffer	caches,	browser	caches,	etc.
§ Content-delivery	networks	(CDN):	cache	for	the	Internet	(e.g.	Netflix)

¢ Some	design	differences
§ Almost	always	fully-associative

§ so,	no	placement	restrictions
§ index	structures	like	hash	tables	are	common	(for	placement)

§ More	complex	replacement	policies
§ misses	are	very	expensive	when	disk	or	network	involved
§ worth	thousands	of	cycles	to	avoid	them

§ Not	necessarily	constrained	to	single	“block”	transfers
§ may	fetch	or	write-back	in	larger	units,	opportunistically

77



Spring 2016Caches

Optimizations	for	the	Memory	Hierarchy
¢ Write	code	that	has	locality!

§ Spatial:	access	data	contiguously
§ Temporal:	make	sure	access	to	the	same	data	is	not	too	far	apart	in	time

¢ How	can	you	achieve	locality?
§ Proper	choice	of	algorithm
§ Loop	transformations

78



Spring 2016Caches

Example:	Array	of	Structs

79

typedef struct {
char * name;
int scores[4];

} Student;
/* Array of structs */
Student students[N];

/* Compute average score for assignment ‘hw’ */
void average_score(int hw) {

int total = 0;
for (int s = 0; s < N; s++) {

total += students[s].scores[hw];
return total / (double)N;

}

0x00 0x60010

0x08 10 10

0x10 9 8

0x18 0x6020b

0x20 9 9

0x28 9 7

0x30 0x6031a

0x38 10 8

0x40 5 6

... ...

student[0]

Memory

student[1]

student[2]

.scores[1]

.scores[1]

.scores[1]



Spring 2016Caches

Example:	Array	of	Structs

1. students[0].scores[1]  set:0,tag:000
COLD MISS

2. students[1].scores[1]  set:0,tag:001
COLD MISS

3. students[2].scores[1]  set:1,tag:001
COLD MISS

80

double average_score(int hw) {
int total = 0;
for (int s = 0; s < N; s++) {

total += students[s].scores[hw];
return total / (double)N;

}

0x00 0x60010

0x08 10 10

0x10 9 8

0x18 0x6020b

0x20 9 9

0x28 9 7

0x30 0x6031a

0x38 10 8

0x40 5 6

... ...

students[0]

Memory

students[1]

students[2]

.scores[1]

.scores[1]

.scores[1]

Set Tag Data

0

1

capacity: 32	bytes
block	size: 16	bytes
sets: 2
ways: 1

typedef struct {
char * name;
int scores[4];

} Student;
/* Array of structs */
Student students[N];

0x60010

10 10
000

9 9

9 7
001

0x6031a

10 8
001



Spring 2016Caches

Example:	Array	of	Structs
¢ Cache	Miss	Analysis

§ Accesses: int	(4	bytes)
§ Stride: sizeof(Student)	=	24
§ Cache	block	size:16	bytes
§ No	temporal	locality,	so	only	cold	misses
§ Miss	rate:	100%

81

double average_score(int hw) {
int total = 0;
for (int s = 0; s < N; s++) {

total += students[s].scores[hw];
return total / (double)N;

}

0x00 0x60010

0x08 10 10

0x10 9 8

0x18 0x6020b

0x20 9 9

0x28 9 7

0x30 0x6031a

0x38 10 8

0x40 5 6

... ...

students[0]

Memory

students[1]

students[2]

.scores[1]

.scores[1]

.scores[1]

capacity: 32	bytes
block	size: 16	bytes
sets: 2
ways: 1

typedef struct {
char * name;
int scores[4];

} Student;
/* Array of structs */
Student students[N];

Cache



Spring 2016Caches

0x00 0x60010

0x08 0x6020b

0x10 0x6031a

... ...

0x80 10 9

0x88 10 ?

... ...

0xb0 10 9

0xb8 8 ?

... ...

Example:	Array	of	Structs vs	Struct	of	Arrays

82

0x00 0x60010

0x08 10 10

0x10 9 8

0x18 0x6020b

0x20 9 9

0x28 9 7

0x30 0x6031a

0x38 10 8

0x40 5 6

... ...

students[0]

Memory

students[1]

students[2]

.scores[1]

.scores[1]

.scores[1]

/* “Struct of arrays” */
struct {    

char * names[N];
int scores[4][N];

} students;

typedef struct {
char * name;
int scores[4];

} Student;
/* Array of structs */
Student students[N];

Memory students.names

students.scores[0]

students.scores[1]

Disclaimer:	This	is	not	ideal	style-
wise,	just	an	option	for	optimizing.



Spring 2016Caches

Example:	Array	of	Structs vs Struct	of	Arrays

1. students.scores[1][0]  set:1,tag:100
COLD MISS 

2. students.scores[1][1]  set:1,tag:101
HIT

3. students.scores[1][2]  set:1,tag:101
HIT

83

/* “Struct of arrays” */
struct {    

char * names[N];
int scores[4][N];

} students;

0x00 0x60010

0x08 0x6020b

0x10 0x6031a

... ...

0x80 10 9

0x88 10 ?

... ...

0xb0 10 9

0xb8 8 ?

... ...

Memory students.names

students.scores[0]

students.scores[1]

0xb0 = 1011 0000

Set Tag Data

0

1

double average_score(int hw) {
int total = 0;
for (int s = 0; s < N; s++) {

total += students[s].scores[hw];
return total / (double)N;

}



Spring 2016Caches

Example:	Array	of	Structs vs Struct	of	Arrays

84

/* “Struct of arrays” */
struct {    

char * names[N];
int scores[4][N];

} students;

0x00 0x60010

0x08 0x6020b

0x10 0x6031a

... ...

0x80 10 9

0x88 10 ?

... ...

0xb0 10 9

0xb8 8 ?

... ...

Memory students.names

students.scores[0]

students.scores[1]

¢ Cache	Miss	Analysis
§ Accesses: int	(4	bytes)
§ Stride:	4	bytes
§ Cache	block	size:	16	bytes
§ 16	bytes/block /	4	bytes/int =	4	ints/block
§ Miss	rate:	

§ 1	COLD	MISS	/	block
§ 4	ints/block – 1	MISS/block =	3	HIT/block
§ 75%	HIT	rate

capacity: 32	bytes
block	size: 16	bytes
sets: 2
ways: 1

Cache



Spring 2016Caches

Example:	Array	of	Structs vs Struct	of	Arrays

85

/* “Struct of arrays” */
struct {    

char * names[N];
int scores[4][N];

} students;

0x00 0x60010

0x08 0x6020b

0x10 0x6031a

... ...

0x80 10 9

0x88 10 ?

... ...

0xb0 10 9

0xb8 8 ?

... ...

Memory students.names

students.scores[0]

students.scores[1]

Set Tag Data

0

1

double student_grade(int s) {
int total = 0;
for (int hw = 0; hw < 4; hw++) {

total += students.scores[s][hw];
return total / (double)4;

}

But	don’t	 forget	about	other	uses	of	this	
struct/array…

What	would	the	MISS	rate	be	for	this?



Spring 2016Caches

Example:	Matrix	Multiplication

a b

i

j

*
c

=

c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k;
for (i = 0; i < n; i++)

for (j = 0; j < n; j++)
for (k = 0; k < n; k++)

c[i*n + j] += a[i*n + k] * b[k*n + j];
}

86

i

j

memory	access	pattern?

Extra	example
(skipping	 in	class)



Spring 2016Caches

Cache	Miss	Analysis
¢ Assume:	

§ Matrix	elements	are	doubles
§ Cache	block	=	64	bytes	=	8	doubles
§ Cache	size	C	<<	n	(much	smaller	than	n,	not left-shifted	by	n)

¢ First	iteration:
§ n/8	+	n	=	9n/8	misses

(omitting	matrix	c)

§ Afterwards	in	cache:
(schematic)

*=

n

*=
8	doubles	wide

87

n/8	misses

…

n	m
isses

each	item	in	column	in	
different	cache	line

spatial	locality:
chunks	of	8	items	in	a	row
in	same	cache	line

Extra	example
(skipping	 in	class)



Spring 2016Caches

Cache	Miss	Analysis
¢ Assume:	

§ Matrix	elements	are	doubles
§ Cache	block	=	64	bytes	=	8	doubles
§ Cache	size	C	<<	n	(much	smaller	than	n)

¢ Other	iterations:
§ Again:

n/8	+	n	=	9n/8	misses
(omitting	matrix	c)

¢ Total	misses:
§ 9n/8	*	n2 =	(9/8)	*	n3

n

*=
8	wide

88once	per	element

Extra	example
(skipping	 in	class)



Spring 2016Caches

Blocked	Matrix	Multiplication
c = (double *) calloc(sizeof(double), n*n);

/* Multiply n x n matrices a and b  */
void mmm(double *a, double *b, double *c, int n) {

int i, j, k, i1, j1, k1;
for (i = 0; i < n; i+=B)

for (j = 0; j < n; j+=B)
for (k = 0; k < n; k+=B)

/* B x B mini matrix multiplications */
for (i1 = i; i1 < i+B; i1++)

for (j1 = j; j1 < j+B; j1++)
for (k1 = k; k1 < k+B; k1++)

c[i1*n + j1] += a[i1*n + k1]*b[k1*n + j1];
}

a b

i1

j1

*
c

=

Block	size	B	x	B
89

Extra	example
(skipping	 in	class)



Spring 2016Caches

Cache	Miss	Analysis
¢ Assume:	

§ Cache	block	=	64	bytes	=	8	doubles
§ Cache	size	C	<<	n	(much	smaller	than	n)
§ Three	blocks							fit	into	cache:	3B2 <	C

¢ First	(block)	iteration:
§ B2/8	misses	for	each	block
§ 2n/B	*	B2/8	=	nB/4

(omitting	matrix	c)

§ Afterwards	in	cache
(schematic)

*=

*=

Block	size	B	x	B

n/B	blocks

90

B2	elements	per	block,	8	per	cache	line

n/B	blocks	per	row,	
n/B	blocks	per	column

Extra	example
(skipping	 in	class)



Spring 2016Caches

Cache	Miss	Analysis
¢ Assume:	

§ Cache	block	=	64	bytes	=	8	doubles
§ Cache	size	C	<<	n	(much	smaller	than	n)
§ Three	blocks							fit	into	cache:	3B2 <	C

¢ Other	(block)	iterations:
§ Same	as	first	iteration
§ 2n/B	*	B2/8	=	nB/4

¢ Total	misses:
§ nB/4	*	(n/B)2 =	n3/(4B)

*=

Block	size	B	x	B

n/B	blocks

91

Extra	example
(skipping	 in	class)



Spring 2016Caches

Summary
¢ No	blocking: (9/8) *	n3

¢ Blocking: 1/(4B) *	n3

¢ If	B	=	8				difference	is	4	*	8	*	9	/	8			=	36x
¢ If	B	=	16		difference	is	4	*	16	*	9	/	8	=	72x

¢ Suggests	largest	possible	block	size	B,	but	limit	3B2 <	C!

¢ Reason	for	dramatic	difference:
§ Matrix	multiplication	has	inherent	temporal	locality:

§ Input	data:	3n2,	computation	2n3

§ Every	array	element	used	O(n)	times!
§ But	program	has	to	be	written	properly

92

Extra	example
(skipping	 in	class)



Spring 2016Caches

Cache-Friendly	Code
¢ Programmer	can	optimize	for	cache	performance

§ How	data	structures	are	organized
§ How	data	are	accessed

§ Nested	loop	structure
§ Blocking	(previous	example)	is	a	general	technique

¢ All	systems	favor	“cache-friendly	code”
§ Getting	absolute	optimum	performance	is	very	platform	specific

§ Cache	sizes,	line	sizes,	associativities,	etc.
§ Can	get	most	of	the	advantage	with	generic	code

§ Keep	working	set	reasonably	small	(temporal	locality)
§ Use	small	strides	(spatial	locality)
§ Focus	on	inner	loop	code

93



Spring 2016Caches

Intel	Core	i7	Cache	Hierarchy

Regs

L1	
d-cache

L1	
i-cache

L2	unified	cache

Core	0

Regs

L1	
d-cache

L1	
i-cache

L2	unified	cache

Core	3

…

L3	unified	cache
(shared	by	all	cores)

Main	memory

Processor	package

L1	i-cache	and	d-cache:
32	KB,		8-way,	
Access:	4	cycles

L2	unified	cache:
256	KB,	8-way,	
Access:	11	cycles

L3	unified	cache:
8	MB,	16-way,
Access:	30-40	cycles

Block	size:	64	bytes	for	
all	caches.

94



Spring 2016Caches

The	Memory	Mountain

128m
32m

8m
2m

512k
128k

32k
0

2000

4000

6000

8000

10000

12000

14000

16000

s1
s3

s5
s7

s9
s11

Size	(bytes)

Re
ad
	th

ro
ug
hp
ut
	(
M
B/
s)

Stride	(x8	bytes)

Core	i7	Haswell
2.1	GHz
32	KB	L1	d-cache
256	KB	L2	cache
8	MB	L3	cache
64	B	block	size

Slopes	
of	spatial	
locality

Ridges	
of	temporal	
locality

L1

Mem

L2

L3

Aggressive	
prefetching

95


