W UNIVERSITY of WASHINGTON

Roadmap
C:

Structs

Java:

car *c = malloc(sizeof(car));
c->miles = 100;

c->gals = 17;

float mpg = get_mpg(c);

Car ¢ = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

Spring 2016

Arrays & structs

free(c); c.getMPG();
Assembly get_mpg:
. pushq %»rbp
language: movq %rsp, %rbp
popq %rbp
ret *
Machine 0111010000011 000
code: 10001101 000001000VVV1 0
' 1000100111000010
110000011111101000011111
Computer

system:

W UNIVERSITY of WASHINGTON Structs Spring 2016

Data Structures in Assembly

m Arrays
® One-dimensional
" Multi-dimensional (nested)

" Multi-level
m Structs
= Alignment

m Unions

W UNIVERSITY of WASHINGTON

Structs

Review: Structs in Lab 0

Spring 2016

// Use typedef to create a type: Fourlnts
typedef struct {

int a, b, ¢, d;
} Fourlnts; // Name of type is “FourInts”
int main(int argc, charx argv[]) {
FourInts f1; // Allocates memory to hold a FourlInts

// (16 bytes) on stack (local variable)

fi1.a = O; // Assign the first field in f1 to be zero

FourIntsx f2; // Declare f2 as a pointer to a Fourlnts

// Allocate space for a FourlInts on the heap,

// f2 is a “pointer to”/”’address of” this space.
f2 = (Fourlntsx)malloc(sizeof(Fourlnts));

f2->b = 17; // Assign the second field to be 17

W UNIVERSITY of WASHINGTON Structs

Syntax for structs without typedef

Spring 2016

struct rec { // Declares the type “struct rec”
int a[4]; // Total size = _______ bytes
long 1i;

struct rec xnext;
}i
struct rec rl1; // Allocates memory to hold a struct rec
// named r1, on stack or globally,
// depending on where this code appears

struct rec xr; // Allocates memory for a pointer
r = &r1; // Initializes r to “point to” ri

Minor syntax note: Need that semicolon after a struct
declaration (easy to forget)

W UNIVERSITY of WASHINGTON Structs Spring 2016

Syntax for structs with typedef

struct rec { // Declares the type “struct rec”
int a[4]; // Total size = _______ bytes
long 1i;

struct rec xnext;
}i
struct rec rl1; // Allocates memory to hold a struct rec
// named r1, on stack or globally,
// depending on where this code appears

struct rec xr; // Allocates memory for a pointer
r = &r1; // Initializes r to “point to” ri

typedef struct rec {

int a[4];

long 1i;

struct rec xnext;
} Record; // typedef creates new name for ‘struct rec’

// (that doesn’t need ‘struct’ in front of it)
Record r2; // Declare variable of type ‘Record’
// (really a ‘struct rec’)

W UNIVERSITY of WASHINGTON Structs

More Structs Syntax

Spring 2016

struct rec { // Declares the type “struct rec”
int a[4];
long 1i;
struct rec xnext;

b

struct rec rl1; // Declares r1 as a struct rec

Equivalent to:

struct rec { // Declares the type ‘“struct rec”
int a[4];
long 1i;
struct rec xnext;

} r1; // Declares r1 as a struct rec

W UNIVERSITY of WASHINGTON Structs Spring 2016

More Structs Syntax: Pointers

struct rec { // Declares the type “struct rec”
int a[4];
long 1i;
struct rec xnext;

s

struct rec xr; // Declares r as pointer to a struct rec

Equivalent to:

struct rec { // Declares the type ‘“struct rec”
int a[4];
long 1i;
struct rec xnext;
}oxr; // Declares r as pointer to a struct rec

W UNIVERSITY of WASHINGTON

Structs

Spring 2016

Accessing Structure Members

.] struct rec {
m Given an instance of the struct, int a[4];
we can use the . operator: long i,
struct rec xnext;
struct rec ri; _
. Ji
r1.1 = val;

m Given a pointer to a struct:

struct rec xr;

r = &rl; // or malloc space for r to point to
We have two options:

= Usingx and . operators: (r).i = val;

= Or, use—> operatorforshort: r->i = val;

m The pointer is the address of the first byte of the structure
= Access members with offsets

W UNIVERSITY of WASHINGTON Structs Spring 2016

Java:

Ja\la Side-note class Record { ... }

Record x = new Record();

m Aninstance of a class is like a pointer to a struct containing the
fields

= (lgnoring methods and subclassing for now)

m SolJava’sx.fislikeC'sx->f,i.e., (xx).f

m In Java, almost everything is a pointer (“reference”) to an object
= Cannotdeclarevariablesorfieldsthat are structs or arrays
= Always a pointer to a struct or array
= So every Java variable orfield is <= 8 bytes (but can point to lots of data)

W UNIVERSITY of WASHINGTON Structs Spring 2016

Structure Representation

I
struct rec {
int a[4]; v
long i; a i next
; *rétruct rec xnext; 0 16 04 39

m Characteristics
= Contiguously-allocatedregion of memory
= Refer to members within structure by names
= Members may be of different types

10

W UNIVERSITY of WASHINGTON Structs Spring 2016

Structure Representation

I
struct rec {
int a[4]; v
long i; a i next
; *rétruct rec xnext; 0 16 04 39

m Structure represented as block of memory
= Bigenoughto holdall of the fields

m Fields ordered according to declaration order
= Even if anotherorderingcouldyield a more compact representation

m Compiler determines overall size + positions of fields

"= Machine-level program has no understanding of the structuresin the source
code

11

W UNIVERSITY of WASHINGTON Structs Spring 2016

Accessing a Structure Member

r r—>1
struct rec {
int a[4]; v v
long i; a i next
; *rétruct rec xnext; 0 16 04 39

m Compiler knows the offset |long get_i(struct rec xr)
of each member within a {
struct. }

= Computeas: x(r+offset)

return r->i;

r In Zrdi, index in Zrsi
movq 16(%rdi), ¥%rax
ret

12

W UNIVERSITY of WASHINGTON Structs

Exercise: Generating Pointer to Structure Member

Spring 2016

I
struct rec {
int a[4]; v
long i; a i next
; *rétruct rec xnext; 0 16 04 39

longx address_of_i(struct rec xr)

{

r In »rdi

return &(r->next);

}

ret

return &(r->i); /%L axX
] ret
struct recx address_of_next(struct rec xr) # r in %rdi
{ ,Arax

13

W UNIVERSITY of WASHINGTON Structs

Spring 2016

Exercise: Generating Pointer to Structure Member

I
struct rec {
int a[4]; v
long i; a i next
; *rétruct rec xnext; 0 16 04 39

longx address_of_i(struct rec xr)

{
}

return &(r->i);

r In »rdi
leaq 16(%rdi), %rax
ret

struct recx address_of_next(struct rec xr)

{
}

return &(r->next);

r in Zrdi
leaq 24(%rdi), %rax
ret

14

W UNIVERSITY of WASHINGTON Structs Spring 2016

Generating Pointer to Structure Member

r r + 4xindex
struct rec { l
int a[4]; v
long i; a i next
struct rec xnext; 0 16 04 39
}o*r;
m Generating Pointer to intx find_address_of_elem
(struct rec xr, long index)
Array Element {
= Offset of each structure return &r->a[index];
member determined at } \
compile time \
= Computeas: r + 4xindex &(r->al[index])

r In 2rdi, index in Zrsi
leaq (%rdi,%rsi,4), %rax
ret

15

W UNIVERSITY of WASHINGTON Structs Spring 2016

Review: Memory Alighment in x86-64

m For good memory system performance, Intel recommends data
be alighed

= However the x86-64 hardware will work correctly regardless of alignment of
data.

m Aligned means:

= Any primitive object of K bytes must have an address thatis a multiple of K.

m This means we could expect these types to have starting
addresses that are the following multiples:

Kt laddeses

1 char No restrictions

2 short Lowest bit must be zero: ...0,
4 int, float Lowest 2 bits zero: ...00,

8 long, double, pointers Lowest 3 bits zero: ...000,

16 long double Lowest 4 bits zero: ...0000,

W UNIVERSITY of WASHINGTON Structs Spring 2016

Alighnment Principles
m Aligned Data

" Primitive datatyperequires K bytes
= Address must be multiple of K
= Required on some machines; advised on x86-64

m Motivation for Aligning Data
= Memory accessed by (aligned) chunks of 4 or 8 bytes (system dependent)
= |nefficientto load or store value that spans quad word boundaries
= Virtual memory trickier when value spans 2 pages (more on this later)

17

W UNIVERSITY of WASHINGTON Structs Spring 2016

Structures & Alignment

m Unaligned Data struct 51 {
char c;
c| i[oQ] i[1] v int i[2];
double v;
p p+l p+5 p+9 p+17 } %p:
m Aligned Data
" Primitive data typerequires K bytes
= Address must be multiple of K
i[0] i[1] v
p+09 p+8 p+16 p+24
Multiple Multiple of 8
Multiple of 8 Multiple of 8

internal fragmentation

18

W UNIVERSITY of WASHINGTON Structs

Spring 2016

Satisfying Alignment with Structures

m Within structure:

= Must satisfy each element’s alignment requirement

m Overall structure placement

= Each structure has alignment requirement K

= K =Largest alignment of any element

struct S1 {
char c;
int i[2];
double v;
} *p;

" |nitial address of structure & structure length must be multiples of K

m Example:

" K=8, duetodouble element

i[0] i[1]

p+8 p+16

3

Multiple Multiple of 8

Multiple of 8 internal fragmentation

p+24

Multiple of 8

19

W UNIVERSITY of WASHINGTON

Spring 2016

Satisfying Alignment Requirements: another example

m For largest alignment requirement K

m Overall structure size must be multiple of K

m Compiler will add padding at end of
structure to meet overall structure

alignment requirement

struct S2 {
double v;
int i[2];
char c;

} *p;

i[1]

Cc

p+09 p+8

p+16///////” p+24

external fragmentation /

Multiple of K=8

20

W UNIVERSITY of WASHINGTON Structs Spring 2016

Alignment of Structs

m Compiler:
= Maintains declared ordering of fieldsin struct
= Each field must be aligned within the struct (may insert padding)
= offsetof can be usedto find the actual offset of a field
= Qverall struct must be aligned accordingto largest field
" Totalstruct size must be multiple of its alignment (may insert padding)
= sizeof should be usedto get truesize of structs

21

W UNIVERSITY of WASHINGTON Structs Spring 2016

Create an array of

Arrays of Structures /
: truct S2
m Overall structure length multiple of K > ;’f,jble Vf
m Satisfy alignment requirement i:t il2];
for every element in array } :[?g]?’
a[o] al[1] al[2] o o o
a+0 at+24 a+48 a+72
Y i[0] i[1] c A
a+24 a+32 a+40 \ a+48

external fragmentation

22

W UNIVERSITY of WASHINGTON Structs Spring 2016

Accessing Array Elements struct S3 {
short 1;
m Compute start of array element as: 12*index float v:
" sizeof(S3) = 12, includingalignment padding } sr[ror’]c J;
al19] ;
m Element j is at offset 8 within structure
m Assemblergives offset a+8
a[0] © o o a[index] o o o
a+0 a+12 a+12xindex
1l A" J
a+12xindex
a+ 12xindex +8
?hort get_j(int index) v %rdi — index
. lindex] . i leaq (%rdi,%rdi,2),%rax # 3*index
return atindext-J. movzwl a+8(,%rax,4),%eax

}

23

W UNIVERSITY of WASHINGTON Structs Spring 2016

How the Programmer Can Save Space

m Compiler must respect order elements are declared in

= Sometimes the programmer can save space by declaringlarge data types first

struct S4 { struct S5 {
char c; - int i;
int 1i; char c;
char d; char d;

} *p; b o*p;

c i d i cld

J
| |
12 bytes 8 bytes

24

W UNIVERSITY of WASHINGTON

Unions

Structs

Spring 2016

m Only allocates enough space for the largest element in union

m Can only use one member at a time

un

}

ion U {
char c;
int i[2];
double v;
*Up;,

st

ruct S {
char c;
int i[2];
double v;
*Sp;

i[0]

i[1]

up+9

up+4

up+8

i[o]

i[1]

sp+0

sp+4

sp+8

sp+16

sp+24

25

W UNIVERSITY of WASHINGTON Structs Spring 2016

What Are Unions Good For?

m Unions allow the same region of memory to be referenced as
different types
= Different “views” of the same memory location

" Canbe used tocircumvent C’s type system (bad idea and technically not
guaranteed to work)

m Better idea: use a struct inside a union to access some memory
location either as a whole or by its parts
m But watch out for endianness at a small scale...

m Layout details are implementation/machine-specific...

union int_or_bytes {
int i;
struct bytes {
char b@, b1, b2, b3;

}

26

W UNIVERSITY of WASHINGTON Structs Spring 2016

Unions For Embedded Programming

typedef union

{

unsigned char byte;

struct {
unsigned char reserved:4;
unsigned char b3:1;
unsigned char b2:1;
unsigned char b1:1; dependent)
unsigned char bo:1;

} bits;

} hw_register;

(Note: the placement of these
fieldsand other parts of this
example are implementation-

hw_register reg;

reg.byte = 0x3F; // 00111111,
reg.bits.b2 = 0; // 00111011,
reg.bits.b3 = 0; // 00110011,

unsigned short a = reg.byte;
printf("0x%X\n", a); // output: 0x33

27

W UNIVERSITY of WASHINGTON Structs Spring 2016

Summary

m ArraysinC

= Contiguousallocations of memory

" No boundschecking

= Canusuallybe treated like a pointerto first element

= Alignedto satisfy every element’s alignment requirement
m Structures

= Allocate bytesin order declared

= Padin middleand atend to satisfy alignment
m Unions

" Provide different views of the same memory location

28

