
Spring 2016Structs

Roadmap

1

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly	
language:

Machine	
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer	
system:

OS:

Memory	&	data
Integers	&	floats
Machine	code	&	C
x86	assembly
Procedures	&	stacks
Arrays	&	structs
Memory	&	caches
Processes
Virtual	memory
Memory	allocation
Java	vs.	C

Spring 2016Structs

Data	Structures	in	Assembly
¢ Arrays

§ One-dimensional
§ Multi-dimensional	(nested)
§ Multi-level

¢ Structs
§ Alignment

¢ Unions

2

Spring 2016Structs

Review:	Structs in	Lab	0

3

// Use typedef to create a type: FourInts
typedef struct {

int a, b, c, d;
} FourInts; // Name of type is “FourInts”

int main(int argc, char* argv[]) {

FourInts f1; // Allocates memory to hold a FourInts
// (16 bytes) on stack (local variable)

f1.a = 0; // Assign the first field in f1 to be zero

FourInts* f2; // Declare f2 as a pointer to a FourInts

// Allocate space for a FourInts on the heap,
// f2 is a “pointer to”/”address of” this space.
f2 = (FourInts*)malloc(sizeof(FourInts));
f2->b = 17; // Assign the second field to be 17

…
}

Spring 2016Structs

Syntax	for	structs without	typedef

4

struct rec { // Declares the type “struct rec”
int a[4]; // Total size = _______ bytes
long i;
struct rec *next;

};
struct rec r1; // Allocates memory to hold a struct rec

// named r1, on stack or globally,
// depending on where this code appears

struct rec *r; // Allocates memory for a pointer
r = &r1; // Initializes r to “point to” r1

Minor	syntax	note:	Need	that	semicolon	after	a	struct
declaration	(easy	to	forget)

Spring 2016Structs

Syntax	for	structs with typedef

5

struct rec { // Declares the type “struct rec”
int a[4]; // Total size = _______ bytes
long i;
struct rec *next;

};
struct rec r1; // Allocates memory to hold a struct rec

// named r1, on stack or globally,
// depending on where this code appears

struct rec *r; // Allocates memory for a pointer
r = &r1; // Initializes r to “point to” r1

typedef struct rec {
int a[4];
long i;
struct rec *next;

} Record; // typedef creates new name for ‘struct rec’
// (that doesn’t need ‘struct’ in front of it)

Record r2; // Declare variable of type ‘Record’
// (really a ‘struct rec’)

Spring 2016Structs

More	Structs Syntax

struct rec { // Declares the type “struct rec”
int a[4];
long i;
struct rec *next;

} r1; // Declares r1 as a struct rec

6

struct rec { // Declares the type “struct rec”
int a[4];
long i;
struct rec *next;

};
struct rec r1; // Declares r1 as a struct rec

Equivalent	to:

Spring 2016Structs

More	Structs Syntax:	Pointers

struct rec { // Declares the type “struct rec”
int a[4];
long i;
struct rec *next;

} *r; // Declares r as pointer to a struct rec

7

struct rec { // Declares the type “struct rec”
int a[4];
long i;
struct rec *next;

};
struct rec *r; // Declares r as pointer to a struct rec

Equivalent	to:

Spring 2016Structs

¢ Given	an	instance	of	the	struct,	
we	can	use	the	. operator:

struct rec r1;
r1.i = val;

¢ Given	a	pointer to	a	struct:			
struct rec *r;

r = &r1; // or malloc space for r to point to

We	have	two	options:
§ Using	* and	. operators: (*r).i = val;

§ Or,	use	-> operator	for	short:	 r->i = val;

¢ The	pointer	is	the	address	of	the	first	byte	of	the	structure
§ Access	members	with	offsets

Accessing	Structure	Members

8

struct rec {
int a[4];
long i;
struct rec *next;

};

Spring 2016Structs

Java	side-note

¢ An	instance	of	a	class	is	like	a	pointer	to a	struct	containing	the	
fields
§ (Ignoring	methods	and	subclassing for	now)

¢ So	Java’s	x.f is	like	C’s	x->f,	i.e.,	(*x).f

¢ In	Java,	almost	everything	is	a	pointer	(“reference”)	to	an	object
§ Cannot	declare	variables	or	fields	that	are	structs or	arrays
§ Always	a	pointer to	a	struct	or	array
§ So	every	Java	variable	or	field	is	<=	8	bytes	(but	can	point	to	lots	of	data)

9

class Record { ... }
Record x = new Record();

Java:

Spring 2016Structs

Structure	Representation

¢ Characteristics
§ Contiguously-allocated	region	of	memory
§ Refer	to	members	within	structure	by	names
§ Members	may	be	of	different	types

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

} *r;

10

Spring 2016Structs

Structure	Representation

¢ Structure	represented	as	block	of	memory
§ Big	enough	to	hold	all	of	the	fields

¢ Fields	ordered	according	to	declaration	order
§ Even	if	another	ordering	could	yield	a	more	compact	representation

¢ Compiler	determines	overall	size	+	positions	of	fields
§ Machine-level	program	has	no	understanding	of	the	structures	in	the	source	

code	

11

a

r

i next

0 16 24 32

struct rec {
int a[4];
long i;
struct rec *next;

} *r;

Spring 2016Structs

r in %rdi, index in %rsi
movq 16(%rdi), %rax
ret

long get_i(struct rec *r)
{

return r->i;
}

Accessing	a	Structure	Member

¢ Compiler	knows	the	offset	
of	each	member	within	a	
struct.
§ Compute	as:		*(r+offset)

r->i

a

r

i next

0 16 24 32

12

struct rec {
int a[4];
long i;
struct rec *next;

} *r;

Spring 2016Structs

r in %rdi

,%rax
ret

Exercise:	Generating	Pointer	to	Structure	Member

13

a

r

i next

0 16 24 32

r in %rdi

,%rax
ret

long* address_of_i(struct rec *r)
{

return &(r->i);
}

struct rec* address_of_next(struct rec *r)
{

return &(r->next);
}

struct rec {
int a[4];
long i;
struct rec *next;

} *r;

Spring 2016Structs

r in %rdi
leaq 16(%rdi), %rax
ret

Exercise:	Generating	Pointer	to	Structure	Member

14

a

r

i next

0 16 24 32

r in %rdi
leaq 24(%rdi), %rax
ret

long* address_of_i(struct rec *r)
{

return &(r->i);
}

struct rec* address_of_next(struct rec *r)
{

return &(r->next);
}

struct rec {
int a[4];
long i;
struct rec *next;

} *r;

Spring 2016Structs

r in %rdi, index in %rsi
leaq (%rdi,%rsi,4), %rax
ret

int* find_address_of_elem
(struct rec *r, long index)

{
return &r->a[index];

}

Generating	Pointer to	Structure	Member

¢ Generating	Pointer	to	
Array	Element
§ Offset	of	each	structure	

member	determined	at	
compile	time

§ Compute	as:		r + 4*index

r + 4*index

a

r

i next

0 16 24 32

&(r->a[index])

15

struct rec {
int a[4];
long i;
struct rec *next;

} *r;

Spring 2016Structs

Review:	Memory	Alignment	in	x86-64
¢ For	good	memory	system	performance,	Intel	recommends	data	

be	aligned	
§ However	the	x86-64	hardware	will	work	correctly	regardless	of	alignment	of	

data.

¢ Alignedmeans:	
§ Any	primitive	object	of	K	bytes	must	have	an	address	that	is	a	multiple	of	K.

¢ This	means	we	could	expect	these	types	to	have	starting	
addresses	that	are	the	following	multiples:

16

K Type Addresses

1 char No	restrictions

2 short Lowest	bit	must be	zero:	…02
4 int, float Lowest	2	bits	zero: …002
8 long, double, pointers Lowest	3	bits	zero:	…0002
16 long double Lowest	4	bits	zero:	…00002

Spring 2016Structs

Alignment	Principles
¢ Aligned	Data
§ Primitive	data	type	requires	K bytes
§ Address	must	be	multiple	of	K
§ Required	on	some	machines;	advised	on	x86-64

¢ Motivation	for	Aligning	Data
§ Memory	accessed	by	(aligned)	chunks	of	4	or	8	bytes	(system	dependent)

§ Inefficient	to	load	or	store	value	that	spans	quad	word	boundaries
§ Virtual	memory	trickier	when	value	spans	2	pages	(more	on	this	later)

17

Spring 2016Structs

Structures	&	Alignment
¢ Unaligned	Data

¢ Aligned	Data
§ Primitive	data	type	requires	K bytes
§ Address	must	be	multiple	of	K

c i[0] i[1] v3	bytes 4	bytes

p+0 p+4 p+8 p+16 p+24

Multiple	of	4 Multiple	of	8

Multiple	of	8 Multiple	of	8

c i[0] i[1] v

p p+1 p+5 p+9 p+17

struct S1 {
char c;
int i[2];
double v;

} *p;

internal	fragmentation
18

Spring 2016Structs

¢ Within structure:
§ Must	satisfy	each	element’s	alignment	requirement

¢ Overall structure	placement
§ Each	structure has	alignment	requirement	K

§ K =	Largest	alignment	of	any	element
§ Initial	address	of	structure	&	structure	length	must	be	multiples	of	K

¢ Example:
§ K	=	8,	due	to	double element

Satisfying	Alignment	with	Structures

c i[0] i[1] v3	bytes 4	bytes

p+0 p+4 p+8 p+16 p+24

Multiple	of	4 Multiple	of	8

Multiple	of	8 Multiple	of	8internal	fragmentation
19

struct S1 {
char c;
int i[2];
double v;

} *p;

Spring 2016Structs

Satisfying	Alignment	Requirements:	Another	Example

¢ For	largest	alignment	requirement	K
¢ Overall	structure	size	must	be	multiple	of	K
¢ Compiler	will	add	padding	at	end	of	

structure	to	meet		overall	structure	
alignment	requirement

struct S2 {
double v;
int i[2];
char c;

} *p;

v i[0] i[1] c 7	bytes

p+0 p+8 p+16 p+24

Multiple	of	K=8

external	fragmentation

20

Spring 2016Structs

Alignment	of	Structs
¢ Compiler:

§ Maintains	declared	orderingof	fields	in	struct
§ Each	fieldmust	be	aligned	within the	struct	(may	insert	padding)

§ offsetof can	be	used	to	find	the	actual	offset	of	a	field
§ Overall	struct	must	be	aligned according	to	largest	field
§ Total	struct	sizemust	be	multiple	of	its	alignment	(may	insert	padding)

§ sizeof should	be	used	to	get	true	size	of	structs

21

Spring 2016Structs

Arrays	of	Structures

¢ Overall	structure	length	multiple	of	K
¢ Satisfy	alignment	requirement	

for	every	element	in	array

struct S2 {
double v;
int i[2];
char c;

} a[10];

v i[0] i[1] c 7	bytes

a+24 a+32 a+40 a+48

a[0] a[1] a[2] • • •

a+0 a+24 a+48 a+72

Create	an	array	of
ten	S2	structs
called	“a”

external	fragmentation 22

Spring 2016Structs

Accessing	Array	Elements
¢ Compute	start	of	array	element	as:	12*index
§ sizeof(S3) = 12, including	alignment	padding

¢ Element	j is	at	offset	8	within	structure
¢ Assembler	gives	offset	a+8

struct S3 {
short i;
float v;
short j;

} a[10];

short get_j(int index)
{

return a[index].j;
}

%rdi = index
leaq (%rdi,%rdi,2),%rax # 3*index
movzwl a+8(,%rax,4),%eax

a[0] • • • a[index] • • •

a+0 a+12 a+12*index

i 2	bytes v j 2	bytes
a+12*index

a+ 12*index +8

23

Spring 2016Structs

How	the	Programmer	Can	Save	Space
¢ Compiler	must	respect	order	elements	are	declared	in

§ Sometimes	the	programmer	can	save	space	by	declaring	large	data	types	first

struct S4 {
char c;
int i;
char d;

} *p;

struct S5 {
int i;
char c;
char d;

} *p;

c i3	bytes d 3	bytes ci d 2	bytes

12	bytes 8 bytes
24

Spring 2016Structs

Unions
¢ Only	allocates	enough	space	for	the	largest	element	in	union
¢ Can	only	use	one	member	at	a	time

union U {
char c;
int i[2];
double v;

} *up;

struct S {
char c;
int i[2];
double v;

} *sp;

c 3	bytes i[0] i[1] 4	bytes v

sp+0 sp+4 sp+8 sp+16 sp+24

c

i[0] i[1]

v

up+0 up+4 up+8

25

Spring 2016Structs

What	Are	Unions	Good	For?
¢ Unions	allow	the	same	region	of	memory	to	be	referenced	as	

different	types
§ Different	“views”	of	the	same	memory	location
§ Can	be	used	to	circumvent	C’s	type	system	(bad	idea	and	technically	not	

guaranteed	to	work)

¢ Better	idea:	use	a	struct	inside	a	union	to	access	some	memory	
location	either	as	a	whole	or	by	its	parts

¢ But	watch	out	for	endianness at	a	small	scale…
¢ Layout	details	are	implementation/machine-specific…

26

union int_or_bytes {
int i;
struct bytes {

char b0, b1, b2, b3;
}

}

Spring 2016Structs

Unions	For	Embedded	Programming

27

typedef union
{

unsigned char byte;
struct {

unsigned char reserved:4;
unsigned char b3:1;
unsigned char b2:1;
unsigned char b1:1;
unsigned char b0:1;

} bits;
} hw_register;

hw_register reg;
reg.byte = 0x3F; // 001111112
reg.bits.b2 = 0; // 001110112
reg.bits.b3 = 0; // 001100112
unsigned short a = reg.byte;
printf("0x%X\n", a); // output: 0x33

(Note:	the	placement	of	these	
fields	and	other	parts	of	this	
example	are	implementation-
dependent)

Spring 2016Structs

Summary
¢ Arrays	in	C

§ Contiguous	allocations	of	memory
§ No	bounds	checking
§ Can	usually	be	treated	like	a	pointer	to	first	element
§ Aligned	to	satisfy	every	element’s	alignment	requirement

¢ Structures
§ Allocate	bytes	in	order	declared
§ Pad	in	middle	and	at	end	to	satisfy	alignment

¢ Unions
§ Provide	different	views	of	the	same	memory	location

28

