
Spring 2016Machine Code & C

Roadmap

1

car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq %rbp
movq %rsp, %rbp
...
popq %rbp
ret

Java:C:

Assembly
language:

Machine
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures &
stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C

Spring 2016Machine Code & C

Basics of Machine Programming & Architecture

¢ What is an ISA (Instruction Set Architecture)?

¢ A brief history of Intel processors and architectures

¢ C, assembly, machine code

2

Spring 2016Machine Code & C

Translation

3

What makes programs run fast?

Hardware
User

program
in C

AssemblerC
compiler

Code Time Compile Time Run Time

.exe file.c file

Spring 2016Machine Code & C

C Language

HW Interface Affects Performance

4

x86-64

Intel Pentium 4

Intel Core 2

Intel Core i7

AMD Opteron

AMD Athlon

GCC

ARMv8
(AArch64/A64)

ARM Cortex-A53

Apple A7

Clang

Your
program

Program
B

Program
A

CompilerSource code Architecture
Different applications
or algorithms

Perform optimizations,
generate instructions

Different
implementations

Hardware
Instruction set

Spring 2016Machine Code & C

Instruction Set Architectures
¢ The ISA defines:

§ The system’s state (e.g. registers, memory, program counter)
§ The instructions the CPU can execute
§ The effect that each of these instructions will have on the system state

5

CPU

MemoryPC

Registers

Spring 2016Machine Code & C

General ISA Design Decisions
¢ Instructions

§ What instructions are available? What do they do?
§ How are they encoded?

¢ Registers
§ How many registers are there?
§ How wide are they?

¢ Memory
§ How do you specify a memory location?

6

Spring 2016Machine Code & C

X86 ISA

¢ Processors that implement the x86 ISA completely dominate
the server, desktop and laptop markets

¢ Evolutionary design
§ Backwards compatible up until 8086, introduced in 1978
§ Added more features as time goes on

¢ Complex instruction set computer (CISC)
§ Many, highly specialized instructions

§ But, only small subset encountered with Linux programs
§ (as opposed to Reduced Instruction Set Computers (RISC), which use

simpler instructions)

7

Spring 2016Machine Code & C

Intel x86 Evolution: Milestones
Name Date Transistors MHz

¢ 8086 1978 29K 5-10
§ First 16-bit Intel processor. Basis for IBM PC & DOS
§ 1MB address space

¢ 386 1985 275K 16-33
§ First 32 bit Intel processor , referred to as IA32
§ Added “flat addressing”, capable of running Unix

¢ Pentium 4E 2004 125M 2800-3800
§ First 64-bit Intel x86 processor, referred to as x86-64

¢ Core 2 2006 291M 1060-3500
§ First multi-core Intel processor

¢ Core i7 2008 731M 1700-3900
§ Four cores

8

Spring 2016Machine Code & C

Intel x86 Processors
¢ Machine Evolution

§ 486 1989 1.9M
§ Pentium 1993 3.1M
§ Pentium/MMX 1997 4.5M
§ Pentium Pro 1995 6.5M
§ Pentium III 1999 8.2M
§ Pentium 4 2001 42M
§ Core 2 Duo 2006 291M
§ Core i7 2008 731M

¢ Added Features
§ Instructions to support multimedia operations

§ Parallel operations on 1, 2, and 4-byte data (“SIMD”)
§ Instructions to enable more efficient conditional operations
§ Hardware support for virtualization (virtual machines)
§ More cores!

9

Intel Core i7

Spring 2016Machine Code & C

More information
¢ References for Intel processor specifications:

§ Intel’s “automated relational knowledgebase”:
§ http://ark.intel.com/

§ Wikipedia:
§ http://en.wikipedia.org/wiki/List_of_Intel_microprocessors

10

Spring 2016Machine Code & C

x86 Clones: Advanced Micro Devices (AMD)
¢ Same ISA, different implementation

¢ Historically
§ AMD has followed just behind Intel
§ A little bit slower, a lot cheaper

¢ Then
§ Recruited top circuit designers from Digital Equipment and other downward

trending companies
§ Built Opteron: tough competitor to Pentium 4
§ Developed x86-64, their own extension of x86 to 64 bits

11

Spring 2016Machine Code & C

Intel’s Transition to 64-Bit

¢ Intel attempted radical shift from IA32 to IA64 (2001)
§ Totally different architecture (Itanium) and ISA than x86
§ Executes IA32 code only as legacy
§ Performance disappointing

¢ AMD stepped in with evolutionary solution (2003)
§ x86-64 (also called “AMD64”)

¢ Intel felt obligated to focus on IA64
§ Hard to admit mistake or that AMD is better

¢ Intel announces “EM64T” extension to IA32 (2004)
§ Extended Memory 64-bit Technology
§ Almost identical to AMD64!

¢ Today: all but low-end x86 processors support x86-64
§ But, lots of code out there is still just IA32

12

Spring 2016Machine Code & C

Our Coverage in 351
¢ x86-64

§ The new 64-bit x86 ISA – all lab assignments use x86-64!
§ Book covers x86-64

¢ Previous versions of CSE 351 and 2nd edition of textbook covered
IA32 (traditional 32-bit x86 ISA) and x86-64

¢ We will only cover x86-64 this quarter

13

Spring 2016Machine Code & C

Definitions
¢ Architecture: (also instruction set architecture or ISA)

The parts of a processor design that one needs to understand to
write assembly code
§ “What is directly visible to software”

¢ Microarchitecture: Implementation of the architecture
§ CSE/EE 469, 470

¢ Number of registers?

¢ How about CPU frequency?

¢ Cache size? Memory size?

14

Spring 2016Machine Code & C

CPU

Assembly Programmer’s View

¢ Programmer-Visible State
§ PC: Program counter

§ Address of next instruction
§ Called “RIP” (x86-64)

§ Named registers
§ Heavily used program data
§ Together, called “register file”

§ Condition codes
§ Store status information about most

recent arithmetic operation
§ Used for conditional branching

PC Registers

Memory

• Code
• Data
• Stack

Addresses

Data

InstructionsCondition
Codes

15

§ Memory
§ Byte addressable array
§ Code and user data
§ Includes Stack (for supporting

procedures, we’ll come back to that)

Spring 2016Machine Code & C

text

text

binary

binary

Compiler (gcc –Og -S)

Assembler (gcc or as)

Linker (gcc or ld)

C program (p1.c p2.c)

Asm program (p1.s p2.s)

Object program (p1.o p2.o)

Executable program (p)

Static libraries
(.a)

Turning C into Object Code
¢ Code in files p1.c p2.c

¢ Compile with command: gcc -Og p1.c p2.c -o p
§ Use basic optimizations (-Og) [New to recent versions of GCC]
§ Put resulting machine code in file p

16

Spring 2016Machine Code & C

Compiling Into Assembly
C Code (sum.c)
void sumstore(long x, long y,

long *dest)
{

long t = x + y;
*dest = t;

}

Generated x86-64 Assembly
sumstore(long, long, long*):

addq %rdi, %rsi
movq %rsi, (%rdx)
ret

Produced by command:

gcc –Og –S sum.c

Generates file: sum.s
Warning: You may get different results with other versions of gcc and
different compiler settings.

17https://godbolt.org/g/5hQk8a

Spring 2016Machine Code & C

Machine Instruction Example
¢ C Code

§ Store value t where designated by
dest

¢ Assembly
§ Move 8-byte value to memory

§ Quad words in x86-64 parlance
§ Operands:

t: Register %rsi

dest: Register %rdx

*dest: Memory M[%rdx]

¢ Object Code
§ 3-byte instruction
§ Stored at address 0x40059e

*dest = t;

movq %rsi, (%rdx)

0x400539: 48 89 32

18

Spring 2016Machine Code & C

Code for sumstore

Object Code
¢ Assembler

§ Translates .s into .o
§ Binary encoding of each instruction
§ Nearly-complete image of executable code
§ Missing linkages between code in different

files

¢ Linker
§ Resolves references between files
§ Combines with static run-time libraries

§ E.g., code for malloc, printf
§ Some libraries are dynamically linked

§ Linking occurs when program begins
execution

• Total of 7 bytes
• Each instruction

here 1 or 3 bytes
• Starts at address
0x00400536

19

0x00400536 <sumstore>:
0x48
0x01
0xfe
0x48
0x89
0x32
0xc3

Spring 2016Machine Code & C

Disassembled

Disassembling Object Code

¢ Disassembler
objdump –d sum

§ Useful tool for examining object code (Try man 1 objdump)
§ Analyzes bit pattern of series of instructions
§ Produces approximate rendition of assembly code
§ Can be run on either a.out (complete executable) or .o file

0000000000400536 <sumstore>:
400536: 48 01 fe add %rdi,%rsi
400539: 48 89 32 mov %rsi,(%rdx)
40053c: c3 retq

20

Spring 2016Machine Code & C

$ gdb sum
(gdb) disassemble sumstore
Dump of assembler code for function sumstore:

0x0000000000400536 <+0>: add %rdi,%rsi
0x0000000000400539 <+3>: mov %rsi,(%rdx)
0x000000000040053c <+6>: retq

End of assembler dump.

(gdb) x/7bx sumstore0x400536 <sumstore>: 0x48
0x01 0xfe 0x48 0x89 0x32 0xc3

Alternate Disassembly in GDB

¢ Within gdb Debugger
gdb sum

disassemble sumstore

§ Disassemble procedure
x/14bx sumstore

§ Examine the 7 bytes starting at sumstore
21

Spring 2016Machine Code & C

What Can be Disassembled?

¢ Anything that can be interpreted as executable code

¢ Disassembler examines bytes and reconstructs assembly
source

% objdump -d WINWORD.EXE

WINWORD.EXE: file format pei-i386

No symbols in "WINWORD.EXE".
Disassembly of section .text:

30001000 <.text>:
30001000: 55 push %ebp
30001001: 8b ec mov %esp,%ebp
30001003: 6a ff push $0xffffffff
30001005: 68 90 10 00 30 push $0x30001090
3000100a: 68 91 dc 4c 30 push $0x304cdc91

Reverse engineering forbidden by
Microsoft End User License

Agreement

22

