W UNIVERSITY of WASHINGTON

Roadmap

Integers & Floats

Spring 2016

Memory & data
Integers & floats
Machine code & C

v Java: x86 assembly
car xc = malloc(sizeof(car)); Car ¢ = new Car(); Procedures &
c->miles = 100; c.setMiles(100); stacks
c->gals = 17; c.setGals(17); Arravs & structs
float mpg = get_mpg(c); float mpg = M y 2 H
free(c); c.getMPG(); emory & caches
Y — Processes
Assembly get_mpg: Virtual memory
language: pushq  %rbp Memory allocation
movq %»rsp, %»rbp Javavs. C
slejele %rbp
ret i
\ 4
Machine 0111010000011000
Code. 10001101 00000100VVVV1 O
) 1000100111000010
110000011111101000011111
.
Computer

system:




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Integers

= Representation of integers: unsigned and signed
m Casting
= Arithmetic and shifting

= Sign extension



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

But before we get to integers....

s Encode a standard deck of playing cards.

m 52 cards in 4 suits
= How do we encode suits, face cards?

= What operations do we want to make easy to implement?
= Which s the higher value card?
= Are they the same suit?

- 2 3 [iesd%s S Z&&& 24.&4- id & Qg
& & N R B B ool Il
)

Sl 5| ® E| b ki b B ke bF| b k| b ey ¢ wE vy

3 o (3o [ioaieana|iaas Zo.o 20: i o [Ja0
V'S o N R Y R - 3"3
J e e vl el el vel el vl v

A 29 (39 [ivw|ivw|ive Zv'v Ev'v v lve
v v v |[vvo|ve|love|[%|YY
S o A o a 'Y a “a“‘a “Q‘o

s 5l & 2 & Al & al] & all aall aall aall a®)

A 2 0 130 (e 0[50 0500 Zo’o §0’0 10 ¢ (D00
¢ ¢ N KX XN R PO IS¢
L R RN R NN EENEX I ERE KLY




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Two possible representations

m 52 cards — 52 bits with bit corresponding to card set to 1

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE)
low-order 52 bits of 64-bit word

= “One-hot” encoding

= Drawbacks:
= Hard to compare values and suits
= Large number of bits required



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Two possible representations

m 52 cards — 52 bits with bit corresponding to card set to 1

EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE)
low-order 52 bits of 64-bit word

= “One-hot” encoding

= Drawbacks:
= Hard to compare values and suits
= Large number of bits required

m 4 bits for suit, 13 bits for card value — 17 bits with two setto 1

= Pair of one-hot encoded values

= Easierto compare suits and values
= Still an excessive number of bits

m Can we do better?



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Two better representations

= Binary encoding of all 52 cards — only 6 bits needed

= Fits in one byte low-order 6 bits of a byte
= Smallerthan one-hot encodings.
= How can we make value and suit comparisons easier?



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Two better representations

= Binary encoding of all 52 cards — only 6 bits needed

= Fits in one byte low-order 6 bits of a byte
= Smallerthan one-hot encodings.
= How can we make value and suit comparisons easier?

= Binary encoding of suit (2 bits) and value (4 bits) separately

. & | 00
suit value
= Also fits in one byte, and easy to do comparisons & | 21
K | Q | J 3 | 2 | A ¢ |10
1101 [ 1100 | 1011 0011 | 0010 | 0001 v |11




W UNIVERSITY of WASHINGTON Integers & Floats

Compare Card Suits

Spring 2016

mask: a bit vector that, when bitwise
ANDed with another bit vector v, turns
all but the bits of interest invto 0

#tdefine SUIT MASK 0x30

}

int sameSuitP(char card1, char card2) {
return (!((cardl & SUIT_MASK) ~ (card2 & SUIT_MASK)));
/ return (cardl & SUIT_MASK) == (card2 & SUIT_MASK):

[Tetumsmt] SUIT_MASK =0x30 = [0 [e

111

0109

equivalent ]

@lﬁrfor a single byte ]

char hand[5];

char card1, card2; // two cards to compare

cardl = hand|[Q];
card2 = hand[1];

if ( sameSuitP(cardi, card2) ) {

-

suit

value

// represents a 5-card hand



W UNIVERSITY of WASHINGTON Integers & Floats

Spring 2016

mask: a bit vector that, when bitwise

Compare Card Suits

ANDed with another bit vector v, turns
all but the bits of interest invto 0

#tdefine SUIT MASK 0x30

int sameSuitP(char card1, char card2) {

return (!((cardl & SUIT_MASK) ~ (card2 & SUIT_MASK)));
// return (cardl & SUIT_MASK) == (card2 & SUIT_MASK);

1
P 5’/@1
) O(0|1|0|0(0|1]|0 (0|10 ﬁ{@;‘
¢ 2 2 .
SUIT_MASK : 001111 ]|0(0|0 |0 00|11
Q|l0|1]|0|0|0|0 |0 (0|10
A

[ | (xMy) equivalentto x==y ]7 !




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

mask: a bit vector that, when bitwise

ANDed with another bit vector v, turns
Com pa re Ca rd Va I ues all but the bits of interest invto 0

#define VALUE_MASK OxOF

int greaterValue(char cardl, char card2) {
return ((unsigned int)(cardl & VALUE_MASK) >
(unsigned int)(card2 & VALUE_MASK));

}
VALUE_MASK = OxOF = |0 |0 |0 |O |1 |1 |1 |1
suit value
char hand[5]; // represents a 5-card hand

char card1, card2; // two cards to compare
cardl = hand|[Q];
card2 = hand[1];

if ( greaterValue(cardi, card2) ) { ... }



W UNIVERSITY of WASHINGTON Integers & Floats

Compare Card Values

Spring 2016

mask: a bit vector that, when bitwise

ANDed with another bit vector v, turns
all but the bits of interest invto 0

#define VALUE_MASK OxOF

int greaterValue(char cardl, char card2) {
return ((unsigned int)(cardl & VALUE_MASK) >

(unsigned int)(card2 & VALUE_MASK));

]
s 5’/@1
. O(0(1|10|0(0|1 |0 001|011 |1 t@/’;
z 2 2
VALUE _MASK: |0 |0 |0 |01 (1|1 |1 000|001 |1




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

April 6

Announcements
Thurs 10:30am Section moved to EEB 045.




W UNIVERSITY of WASHINGTON Integers & Floats

Encoding Integers

s The hardware (and C) supports two flavors of integers:

= unsigned — only the non-negatives
= signed — both negatives and non-negatives

= Cannot represent all the integers
= There are only 2% distinct bit patterns of W bits

= Unsigned values: 0 ... 2W-1
= Signed values: -2W-1 __ 2W-1.]

Spring 2016

-128 0 128 256
2W-1 2W-1 2w

= Reminder: terminology for binary representations

“Most-significant” “Least-significant”

or “high-order” bit(s) U] s
(MSB) SN0110010110107007% O low-order”bit(s

> +0C



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Unsigned Integers

= Unsigned values are just what you expect

. b7b6b5b4b3b2b] bo = b727 + b626 + b525 + ...+ b121 + b020
= Useful formula: 1+2+4+8+. +2N1 =2N_1

= Add and subtract using the normal
“carry” and “borrow” rules, just in binary.

63 00111111
+ 8 +00001 000
4! 01000111

= How would you make signed integers?



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Sign-and-Magnitude

= Use high-order bit to indicate positive/negative (the “sign bit")

= Positive humbers: sigh =0

Does the natural thing, same as for unsigned

= Negative numbers: sign = 1

s Examples (8 bits):

0x00 = 00000000, is non-negative, because the sign bit is 0
Ox7F = 01111111, is non-negative (+127;¢)
0x85 = 10000101, is negative (-5;¢)

0x80 = 10000000, is negative...
= Negative zero!



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Sign-and-Magnitude

s High-order bit (MSB) flipsthe sign, rest of the bits are magnitude




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Sign-and-Magnitude

s High-order bit (MSB) flipsthe sign, rest of the bits are magnitude

s Downsides
= There are two representations of 0! (bad for checking equality)




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Sign-and-Magnitude

s High-order bit (MSB) flipsthe sign, rest of the bits are magnitude

s Downsides
= There are two representations of 0! (bad for checking equality)
= Arithmetic is cumbersome.

= Example:
4-31=4+(-3)
4 0100 4 0100
— 3 |- _0011 + -3 |+ 1011
1 001 7 1111
4 X

How do we solve these problems?



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Two's Complement

m High-orderbit (MSB) still indicates that the value is negative




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Two's Complement Negatives

m High-orderbit (MSB) still indicates that the value is negative
= But instead, let MSB have same value, but negative weight.

b,.;1 =1 adds -2%' to the valuefori<w-1: b, =1 adds +2' to the value.

/ I N
~ but | bu’ ' T b,




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Two's Complement Negatives

m High-orderbit (MSB) still indicates that the value is negative
= But instead, let MSB have same value, but negative weight.

b,.;1 =1 adds -2%' to the valuefori<w-1: b, =1 adds +2' to the value.

/ I N
~ but | bu’ ' T b,

e.g. unsigned 1010,:

1*23 + 0*22 + 1*21 + 0*20 = 104
2’s compl. 1010,:

-1*23 +0%22 + 1*21 + 020 = -6,




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Two's Complement Negatives

m High-orderbit (MSB) still indicates that the value is negative
= But instead, let MSB have same value, but negative weight.

b,.;1 =1 adds -2%' to the valuefori<w-1: b, =1 adds +2' to the value.

/ I N
~ but | bu’ ' T b,

e.g. unsigned 1010,:

1*23 + 0*22 + 1*21 + 0*20 = 104
2’s compl. 1010,:

-1*23 +0%22 + 1*21 + 020 = -6,

m -1lisrepresentedas 1111,=-23+(23-1)

= MSB makes it supernegative,
add up all the other bits to get back up to -1




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Two's Complement Negatives

m High-orderbit (MSB) still indicates that the value is negative
= But instead, let MSB have same value, but negative weight.

b,.;1 =1 adds -2%' to the valuefori<w-1: b, =1 adds +2' to the value.

/ I N
~ but | bu’ ' T b,

e.g. unsigned 1010,:

1*23 + 0*22 + 1*21 + 0*20 = 104
2’s compl. 1010,:

-1*23 +0%22 + 1*21 + 020 = -6,

m -1lisrepresentedas 1111,=-23+(23-1)

= Advantages:
= Single zero
=  Simple arithmetic




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

4-bit Unsigned vs. Two's Complement
1011

23x1+22x0+2'x1+20x1 X1 +22x0+2'x1+20%x1

11 -5




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

4-bit Unsigned vs. Two's Complement

1 0 1 1
22xT1T+22x0+2'x1+20x1 23T +22x0+2'x1+209%x1
11 \[ (math) difference =16 = 24 J/’ -5
15 0 -1 0
0000 1 -2

13 2 -3 + 2
12 3 -4 + 3
1111011 0100 | 4 _|\1011 0100 [, 4

10 5 -6 +5

-8 + 7 -



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

4-bit Unsigned vs. Two's Complement
1011

23x1+22x0+2'x1+20x1 X1 +22x0+2'x1+20x1

11 (math) difference = 16 = 24 } -5




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Two's Complement Arithmetic

m The same addition procedure works for both unsigned and two’s
complement integers

= Simplifies hardware: only one algorithm for addition

= Algorithm: simple addition, discard the highest carry bit
= Called “modular” addition: result is sum modulo 2W

= Examples:

4 0100 4 0100 -4 1100
+3 + 0011 -3 + 1101 +3 +0011

27



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Two's Complement Arithmetic

m The same addition procedure works for both unsigned and two’s
complement integers

= Simplifies hardware: only one algorithm for addition

= Algorithm: simple addition, discard the highest carry bit
= Called “modular” addition: result is sum modulo 2W

= Examples:

4 0100 4 0100 | -4 1100
+3  +0011 -3 +1101 | +3 +0011
=7 =011 =1 10001 | -1 1111

= 0001

(drop carry)

28



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Two's Complement

= Why does it work?
= Put another way, for all positive integers x, we want:

Bit representation of x
+ Bit representation of —x

0 | (ignoring the carry-out bit)

= What should the 8-bit representation of -1 be?

516141415151%)
+ ~ (we want whichever bit string gives the right resulf)

915%14151%/4%)

= Other examples:

0LVVV10 0VVV11

9151%14151%.4%) 915%14151%.41%)

29



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Two's Complement

= Why does it work?

= Put another way, for all positive integers x, we want:

Bit representation of x
+ Bit representation of —x

0 | (ignoring the carry-out bit)

= What should the 8-bit representation of -1 be?

516164145 %k)
+ 11111111 (we want whichever bit string gives the right result)
61616/4,44%%
= Other examples: Turns out to be the bitwise
complement plus 1!
0010 0011
+ 11111110 + 11111101

9151%14151%.4%) 915%14151%.41%)

30



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Two's Complement

= Negate any 2s-complement integer
= Take bitwise complement (flip all the bits) and then add one!

~X + 1 == =X
~ 0101 O10
1010
+ 0001
1011 5.0

[You can even do it again and it still works! }




W UNIVERSITY of WASHINGTON

Integers & Floats Spring 2016

Unsigned & Signed Numeric Values

bits Unsigned| Signed
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 ~7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 -2
1111 15 -1

m Signed and unsigned integers have limits.

32



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Overflow/Wrapping: Unsigned

addition: drop the carry bit

15 1111 15 —— 0

1111 0000

+2 + 0010 1110 0001

1 100017 1101 0010

1100 0011

1 11\ 1011 0100 | 4
1010 0101

1001 0110

1000 0111

Modular Arithmetic

33



Spring 2016

W UNIVERSITY of WASHINGTON Integers & Floats

Overflow/Wrapping: Two's Complement

addition: drop the carry bit

S 1111 J—

1111 0000
1110 0001
1101 0010

1100 0011

+ 2 + 0010

1010
1001

I
(@ 0)
+
N

Modular Arithmetic

34



Integers & Floats Spring 2016

W UNIVERSITY of WASHINGTON

Overflow/Wrapping: Two's Complement

{For signed: overflow if operands have J

addition: drop the carry bit
P y same sign and result’s sign is different.

T 1111 =
£2 40010y
1 10001,

1101 0010
1100 0011

1010
1001

0110 _6
+ 0011
1001 —

! Modular Arithmetic

LW O

ol

35



W UNIVERSITY of WASHINGTON

Integers & Floats Spring 2016

Unsigned & Signed Numeric Values

bits Unsigned| Signed
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 -8
1001 9 ~7
1010 10 -6
1011 11 -5
1100 12 —4
1101 13 -3
1110 14 -2
1111 15 -1

Signed and unsigned integers have limits.

= |f you compute a number that is too big
(positive), it wraps.

= |f you compute a number that is too
small (negative), it wraps.

The CPU may be capable of “throwing an
exception” for overflow on signed values.

= [t won't for unsigned.

But C and Java just cruise along silently
when overflow occurs... Oops.

36



W UNIVERSITY of WASHINGTON

Integers & Floats

Signed/Unsigned Conversion

m Two's Complement = Unsigned

= QOrdering Inversion
= Negative = Big Positive

2's Complement
Range

UMax
UMax — 1

™ 1
/—:: ax +

TMax

TMax @

Spring 2016

Unsigned
Range

37



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Values To Remember

= Unsigned Values m Two's Complement Values
= UMin = 0 * TMin = -2v
= 000..0 = 100..0
= UMax = 2w — 1 = TMax = ow-1 _ 1
- 111..7 .- 0111
= Negative one
Values for W = 32 = 111..1  OxF...F
T Decimal | Hex | Binay
UMax  4,294,967,296 FF FF FF FF 144494494 A449494 49999944 AAA4444
TMax 2,147,483,647 TF FF FF FF 91111111 11111111 11111111 11111111
TMin  -2,147,483,648 80 00 00 00 10000000 Q00 VVVAVAVA VAR
-1 -1 FF FF FF FF 11111111 11111111 11111111 11111111
0 0 Q0 00 00 00 00000V VYYD APV VAYVVAVY
LONG_MIN = -9223372036854775808

Values for W = 64: LONG_MAX = 9223372036854775807
ULONG_MAX = 18446744073709551615



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

In C: Signed vs. Unsigned

= Integer Literals (constants)

= By default are considered to be signed integers

= Use “U” (or “u”) suffix to force unsigned:
= QU, 4294967259

39



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

In C: Signed vs. Unsigned 1]

m Casting
= int tx, ty;
» unsigned ux, uy;
Explicit casting between signed & unsigned:

= tx = (int) ux;

= uy = (unsigned) ty;

Implicit casting also occurs via assignments and function calls:
» tX = ux;
" uy = ty;

= The gcc flag -Wsign-conversion produces warnings for implicit casts, but -Wall
does not!

= How does casting between signed and unsigned work?

What values are going to be produced?

40



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

In C: Signed vs. Unsigned 1]

m Casting
= int tx, ty;
» unsigned ux, uy;
Explicit casting between signed & unsigned:
= tx = (int) ux;
= uy = (unsigned) ty;
Implicit casting also occurs via assignments and function calls:
» tX = ux;
= uy = ty;

= The gcc flag -Wsign-conversion produces warnings for implicit casts, but -Wall
does not!

How does casting between signed and unsigned work?

What values are going to be produced?

= Bits are unchanged, just interpreted
differently!

41



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Casting Surprises 11

m Expression Evaluation

= |f you mix unsigned and signed in a single expression, then
signed values are implicitly cast to unsigned.

= Including comparison operations <, >, ==, <=, >=

42



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Casting Surprises

 Examplesfor W = 32:
Reminder: TMIN = -2,147,483,648 TMAX =2,147,483,647

Constant, Constant, Relation | Interpret the
bits as:
0 ou == Unsigned
-1 0 < Signed
-1 QU > Unsigned
2147483647 -2147483648 > Signed
2147483647U -2147483648 < Unsigned
1 _2 > Signed
(unsigned int)-1 |[-2 > Unsigned
2147483647 2147483648U < Unsigned
2147483647 (int) 2147483648U |> Signed

43



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Casting Surprises

 Examplesfor W = 32:
Reminder: TMIN = -2,147,483,648 TMAX =2,147,483,647

Constant; Constant, Relation | Interpret
the bits as:

o ou == Unsigned

0000 0000 0000 DOVO OV 0000 000D VOO 0000 0000 0000 DOVO VGO 0000 000D VOO

-1 0 < Signed

1111 1414 1111 1111 4441 1411 1141 1444 0000 0000 0000 DOVO OO 0000 000D Q0O

-1 ou > Unsigned

1111 1411 1111 1111 4141 1411 1111 1444 0000 0000 0000 DOVO COCO 0000 000D VOV

2147483647 -2147483648 > Signed

0111 1111 1141 1111 1111 1411 1111 1111 1000 0000 000D Q0O 000 DOV CVCO 0000

2147483647V -2147483648 < Unsigned

0111 1111 1111 1111 1111 1411 1111 1111 1000 0000 000D QCPQ 000 GOV CVCO 000

-1 -2 > Signed

1111 1111 1111 1111 11411 11411 1111 1111 1111 1111 1111 1111 1111 1411 1111 1110

(unsigned) -1 -2 > Unsigned

1111 1111 1111 1111 4141 1411 1111 1444 1111 1111 1111 1111 1141 1111 1111 1110

2147483647 2147483648U < Unsigned

2111 1111 1111 11411 1141 1444 1444 1444 1000 0000 0000 Q0O 000 BV 0VCO 0000

2147483647 (int) 2147483648U > Signed

0111 1111 1111 1111 1111 1411 1111 1111 1000 0000 000D QCPQ 000 GOV CVCO 000

44



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Sign Extension

= What happens if you convert a 32-bit signed integer to a 64-
bit signed integer?

45



Sign Extension

0010
00000010

1100
____11060

4-bit 2

8-bit 2

4-bit -4

8-bit -4



W UNIVERSITY of WASHINGTON

Integers & Floats Spring 2016

Sign Extension

0010 4-bit 2
00000010  sbi

11T00 4-bit -4
00001100  sbit2

Just adding zeroes to the front does not work

a7



W UNIVERSITY of WASHINGTON

Integers & Floats Spring 2016

Sign Extension

0010 4-bit 2
00000010  sbi

11T00 4-bit -4
100071100  sbit-116

Just making the first bit=1 also does not work

48



W UNIVERSITY of WASHINGTON

Integers & Floats Spring 2016

Sign Extension

0010 4-bit 2

7

00000010  sbi

11T00 4-bit -4

11 1100  sbit

Need to extend the sign bit to all “new” locations

49



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Sign Extension
m Task:

= Given w-bit signed integer x
= Convert it to w+k-bit integer with same value

= Rule:
= Make k copies of sign bit:
= X'= Xw=1r- Xw=1+» Xw=1» Xw=2,---» X0

k copies of MSB < w >

v v v v v

X, e o o e o o

50



W UNIVERSITY of WASHINGTON

Integers & Floats

Sign Extension Example

m Converting from smaller to larger integer data type

s C automatically performs sign extension (Javatoo)

Spring 2016

short int x = 12345;

int ix = (int) x;

short int y = -12345;

int iy = (int) y;

Decimal Hex Binary

X 12345 30 39 00110000 01101101
ixX 12345 | 00 00 30 39 0VVVVY VVVLLYVLY V110000 01101101
y -12345 CF C7 11001111 11000111
iy -12345| FF FF CF CT7 11111111 11111111 11001111 11000111

51



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Shift Operations

m Leftshift: x<<n

= Shift bit vector x left by n positions
= Throw away extra bits on left
= Fill with Os on right

= Right shift: x >>n
= Shift bit-vector x right by n positions
= Throw away extra bits on right

= Logical shift (for unsigned values)
= Fill with Os on left

= Arithmetic shift (for signed values)
= Replicate most significant bit on left
= Maintains sign of x

52



W UNIVERSITY of WASHINGTON Integers & Floats

Shift Operations

m Leftshift: x<<n

= Shift bit vector x left by n positions
= Throw away extra bits on left
= Fill with Os on right

= Right shift: x >>n
= Shift bit-vector x right by n positions
= Throw away extra bits on right

= Logical shift (for unsigned values)
= Fill with Os on left

= Arithmetic shift (for signed values)
= Replicate most significant bit on left
= Maintains sign of x

m Note

Spring 2016

Argument X 00100010
X << 3| 00010000
Logical: x>>2{| 00001000

Arithmetic: x >> 2

00001000

Argument x

10100010

X << 3

00010000

Logical: x>>2

00107000

Arithmetic: x >> 2

11101000

= Shifts by n < 0 or n >= size of x (in bits) are undefined

= |n C: Behavior of >> depends on the compiler!
= In GCC/Clang: it depends on if x is signed/unsigned

= |n Java: >>> is logical shift; >> is arithmetic

53



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

What are these computing?

m X > n: divide by 2"

B X << N multiply by 2"

Shifting is faster than general multiply or divide operations

54



W UNIVERSITY of WASHINGTON Spring 2016

Shifting and Arithmetic Example #1 General Form:

X<<n
X>>nNn

= 2, 000110711 X*2"

y = x < 2; / // // logical shift left

y == 108 01101100 shift in zeros from the right

unsigned
X/2" 117101101 x = 237,
logical shift right: y = X >> 2
shift in zeros from the left 0}1\‘]\>A>>‘1 y == 59

[ rounding (down)




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Shifting and Arithmetic Example #2 General Form:

X<<n
X>>nNn

sighed

<=0 10907110711 X*2

y = x < 2; /// logical shift left

y == 108 01101100 shift in zeros from the right

[ overflﬁ

sighed

X/ 2" 111011071 x =19
arithmetic shift right: \\‘\A\A\A\A\A y = X >> 2

gnh:‘trci)rr]nct?\pei?:f(t)meSt significant -I -I 0-| -I - _5

Shifts by n < 0 or n >= size of x are undefined rounding (down) ]

56




W UNIVERSITY of WASHINGTON

Integers & Floats

Using Shifts and Masks

m Extract the 2nd most significant byte of an integer?

X

01100001

01100010

01100011

01100100

Spring 2016

57



W UNIVERSITY of WASHINGTON

Using Shifts and Masks

Integers & Floats

m Extract the 2nd most significant byte of an integer:
= First shift, then mask: (x >> 16 ) & OxFF

X 01100001 | 01100010 | 01100011 01100100

x >> 16 00000000 00000000 01100001 | 01100010
OxFF 00000000 00000000 00000000 117711111
(x>>16) & oxFF | 00000000 00000000 00OOOOCOOO 0717100010

m Extract the sign bit of a signed integer?

Spring 2016

mask

result

58



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

This picture is assuming arithmetic

U S | n g S h |ftS a n d M a S kS shifts, but process works in either

case

= Extract the sign bit of a signed integer:
" (x>>31)&1 -needthe “& 1" to clearout all other bits except LSB

X 100001 01100010 01100011 01100100
X >»> 31 1111111111111111111111111111111

00000000 00000000 00000000 00000001 |mask
00000000 00000000 00000000 00000001 |result

(x >> 31) & 0x1

X @100001 01100010 01100011 01100100
x > 31 00000000 00000000 00000000 000000@

00000000 00000000 00000000 00000001 |mask
00000000 00000000 00000000 00000000 |result

(x >> 31) & ox1

59



W UNIVERSITY of WASHINGTON

Integers & Floats Spring 2016

Using Shifts and Masks

s Conditionals as Boolean expressions (assuming x is 0 or 1)
" InC:if (x) a=y else a=z; whichisthesameasa =x ? vy : z;
= Ifx == 1 thena = y,otherwise x == 9 anda = z

= Can be re-written (assuming arithmetic right shift) as:
a = (((x <<31) > 31)&y) | ((('x) << 31) »> 31) & z);

x = 1 00000000 00000000 00000000 00000001

x << 31 10000000 00000000 00000000 00000000

((x << 31) »> 31) TTTITTIT 1111111 11111111 11111177

y = 257 00000000 00000000 00000001 0000000T

(((x << 31) »» 31) & y) | 00000000 00000000 00000001 00000001

If x == 1,then !x == @and ((!x) << 31) >> 31) = 00. .0,

so: (00..0 & z) = @ and

a = (000VVRRY PPRRVVO PEERE1 PEEEEER1) | ( ©0..00) (in other wordsa = y)
If x == ©,then !'x == 1 and insteada = =z.

One of two sides of the | will always be all zeroes.

60



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Multiplication

= What do you get when you multiply 9 x 9?

= What about 23° x 3?

m 230x5?

m -231x-2317

61



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Unsigned Multiplication in C

u
Operands: w bits
* \%
True Product: 2*w bits u-v
Discard w bits:w bits UMult,(u , v)

= Standard Multiplication Function
= |gnores high order w bits

= Implements Modular Arithmetic
UMult,(u,v) =u-v mod2w

62



W UNIVERSITY of WASHINGTON Integers & Floats

Multiplication with shift and add

= Operation

" u << k gives u x 2k
= Both signed and unsigned

u
Operands: w bits o
True Product: w+k bits u - 2
Discard k bits: w bits UMult,(u , 2%)
TMult, (u , 25)

= Examples
" u << 3 == u *x 8

B Uy << 5 — U << 3 == u x 24

= Most machines shift and add faster than multiply

= Compiler generates this code automatically

Spring 2016




W UNIVERSITY of WASHINGTON Integers & Floats

Code Security Example

/* Kernel memory region holding user-accessible data x/
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer x/
int copy_from_kernel(void* user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen x/

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

return len;

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE] ;
copy_from_kernel (mybuf, MSIZE);
printf(“%s\n’”, mybuf);

Spring 2016

64



W UNIVERSITY of WASHINGTON

Malicious Usage

Integers & Floats Spring 2016

/* Declaration of library function memcpy x/
voidx memcpy(void« dest, voidx src, size_t n);

#define KSIZE 1024
char kbuf[KSIZE];

return len;

/* Kernel memory region holding user-accessible data x/

/* Copy at most maxlen bytes from kernel region to user buffer x/
int copy_from_kernel(void* user_dest, int maxlen) {

/* Byte count len is minimum of buffer size and maxlen x/

int len = KSIZE < maxlen ? KSIZE : maxlen;

memcpy(user_dest, kbuf, len);

#define MSIZE 528

void getstuff() {
char mybuf[MSIZE] ;

« lenis computed by finding the
minimum of the two, which will
be maxlen if we passed a negative
value.

« Because memcpy takes an unsigned

copy_from_kernel (mybuf, -MSIZE); integer (size_t), this allows a

malicious caller to read more of the
kernel memory than it should.

65



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

= Announcements
Aprll 8 Lab 1 Prelim due today at 5pm.

Q&A: THE PENTIUM FDIV BUG

(floating point division)

Q: What do you get when you cross a Pentium PC
with a research grant?
A: A mad scientist.

Q: Complete the followingword analogy:
Add is to Subtract as Multiplyis to:
1) Divide
2) ROUND
3) RANDOM
4) On a Pentium, all of the above
A: Number 4.

Prove you are human:

Q: What algorithmdid Intel use in the Pentium's
floating point divider?

A: "Lifeis like a box of chocolates.”

(Source: F. Gump of Intel)

01+02="?

WELCOME TO
THE SECRET [0:30000000000000004

ROBOT INTERNET

Q: According to Intel, the Pentium conforms to the
|IEEE standards 754 and 854 for floating point
arithmetic. If you fly in aircraft designed using a
Pentium, what is the correct pronunciation of

"IEEE"? http://www.smbc-comics.com/?id=2999
A: Aaaaaaallllllllieeeeeeeeeeeeel!

Source: http://www.columbia.edu/~sss31/rainbow/pentium.jokes.html 66




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Floating point topics

s Background: fractional binary numbers

= |EEE floating-point standard

= Floating-point operations and rounding

m Floating-pointin C

m There are many more details that we won't cover
= |t's a 58-page standard...

67



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Summary

m As with integers, floats suffer from the fixed number of bits
available to represent them

= Can get overflow/underflow, just like ints
= Some “simple fractions” have no exactrepresentation (e.g.,0.2)

= (Can also lose precision, unlike ints
= “Every operation gets a slightly wrong result”

s Mathematically equivalent ways of writing an expression may
compute different results

= Violates associativity/commutativity/distributivity...

m Never test floating point values for equality!

m Careful when converting between ints and floats!

68



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Fractional Binary Numbers

1011

;
:

4 2 1 % % %
23 92 21 20 21 22 93

— T

8+2+1+ Y2+ V8 = 11.625,,

69



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Fractional Binary Numbers

i
2i-1

4
2

.

bi bi—l eoe b2 bl b() ° b—l b_z b_3 eeoe b_j
12 — \
1/4

1/8

2-J
m Representation

= Bits to right of “binary point” represent fractional powers of 2

* Represents rational number: éb N
.
k=-j

70



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Fractional Binary Numbers

s Value | " Binary:
575 5 7% RN
= 2and 7/8 R
= 47/64 Vg Y

71



W UNIVERSITY of WASHINGTON Integers & Floats

Fractional Binary Numbers

= Value Binary:

= 5,75 101 .11,
= 2and7/8 10.111,
= 47/64 0.101111,

m Observations
= Shift left = multiply by power of 2
= Shift right = divide by power of 2

" Numbers of the form©.411111.., are just below 1.0
= 1/2+1/4+1/8+..+1/2'+ .= 1.0
= Use notation1.0 — ¢

Spring 2016

u@ﬁ

72



W UNIVERSITY of WASHINGTON

Integers & Floats Spring 2016

Limits of Representation

= Limitations:

= Even given an arbitrary number of bits, can only exactly represent numbers
of the form x * 2¥ (y can be negative)

\

= QOther rational numbers have repeating bit representations

Value:
- 1/3
= 1/5
= 1/10

©.333333..4p =

.

Ib

Binary Representation:
0.01010101[01]..,
0.001100110011 [0011 ..,
0.0001100110011[0011 ]..,

73



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Fixed Point Representation

= Binary point has a fixed position
= Position = number of binary digits before and after

= Implied binary point. Two example schemes:

#1: the binary point is betweenbits 2 and 3
32 brlulsbibs bbby
#2: the binary point is betweenbits 4 and 5
¢ 8 bzbgbs [.] bs bs by by by

m Whereverwe put the binary point, with fixed point representations
thereis a trade off betweenthe amount of range and precision

m Fixed point = fixed range and fixed precision
= range: difference between largest and smallest numbers possible
= precision: smallest possible difference between any two numbers

= Hard to pick how much you need of each!

[ Rarely used In practice. Not built-in. ]

74



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Floating Point

= Analogous to scientific notation

= |n Decimal:
= Not 12000000, but 1.2 x 107 In C: 1.2e7
. Not 0.0000012, but 1.2 x 10°:6  In C: 1.2e-6
= |n Binary:

. Not11000 000, but 1.1 x 24
. Not0000101 but1 .01 x 24

s We have to divvy up the bits we have (e.g., 32) among:
= the sign (1 bit)
= the significand / mantissa
= the exponent

75



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

IEEE Floating Point

s IEEE 754

= Established in 1985 as uniform standard for floating point arithmetic
= Main idea: make numerically sensitive programs portable

= Specifiestwo things: representation and result of floating operations

= Now supported by all major CPUs
= Some cheat! (looking at you, GPUs...)

= Driven by numerical concerns

= Scientists/numerical analysts want them to be as real as possible

= Engineers want them to be easy to implement and fast
= |n the end:
= Scientists mostly won out

= Nice standards for rounding, overflow, underflow, but...
= Hard to make fast in hardware

= Float operations can be an order of magnitude slower than integer

76



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Floating Point Representation

VigE (=13 M* 2F

= Sign bit s determines whether number is negative or positive

m Numerical form:

= Significand (mantissa) M normally a fractional value in range [1.0, 2.0)
= Exponent E weights value by a (possibly negative) power of two

1



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Floating Point Representation

m Numerical form:

Vip= (-1)S* M 2F

= Sign bit s determines whether number is negative or positive
= Significand (mantissa) M normally a fractional value in range [1.0, 2.0)
= Exponent E weights value by a (possibly negative) power of two

= Representation in memory:

= MSBsissignbits
= exp field encodes E (but is not equal to E)
= frac field encodes M (but is not equal to M)

s |exp frac

78



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Precisions

= Single precision: 32 bits

s |exp frac

1bit™ 8hits— = 23 bits ——

= Double precision: 64 bits

s |exp frac
1 bit 11 bits 52 bits

= Finite representation means not all values can be represented
exactly. Some will be approximated.

79



W UNIVERSITY of WASHINGTON Integers & Floats

Normalization and Special Values

E

V= (=1)°*M *2 -

exp

frac

m “"Normalized” = M has the form 1.0xxx

= As in scientific notation, but in binary

= 0.011 x 2% and 1.1 x 23 represent the same number, but the latter makes

better use of the available bits

= How do we represent 0.0?

Or special or undefined values like 1.0/0.0?

Since we know the mantissa starts with a 1, we don't bother to store it

Spring 2016




W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Normalization and Special Values

V=(—1)S*M*2E s |exp

frac

s “Normalized” = M has the form 1.xxxxx
= As in scientific notation, but in binary

= 0.011 x2%and 1.1 x 23 represent the same number, but the latter makes
better use of the available bits

= Since we know the mantissa starts with a 1, we don't bother to store it.

m Special values (“denormalized”):
= Zero (0): exp==00...0, frac == 00...0

" +00,-00: exp==11...1, frac ==00...0
1.0/0.0 = -1.0/-0.0 = +00, 1.0/-0.0 =-1.0/0.0 = -00

= NaN (“Not a Number"): exp==11...1 frac!=00...0
Results from operations with undefinedresult: —
sqgrt(-1), co—00, 00°0, ...

= Note: exp=11...1 and exp=00...0 arereserved, limiting exp range...

81



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Normalized Values

S E
V=(-1)"*M*2 s |exp frac

k n
= Condition: exp = 000..0 and exp = 111..1

= Exponent coded as biased value: E = exp - Bias
= exp IS an unsigned value ranging from 1 to ok (k == # bits inexp)
= Bias = 2K1 - 1

= Single precision: 127 (so exp: 1..254, E:-126..127)
= Double precision: 1023 (so exp: 1..2046, E:-1022...1023)

= These enable negative values for E, for representing very small values
= Could have encoded with 2's complement or sign-and-magnitude
= This just made it easier for HW to do float-exponent operations

! L 3 264
.255)

82



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Normalized Values

S E
V=(-1)"*M*2 s |exp frac

k n
m Condition: exp = 000.0 and exp = 111.1

= Exponent coded as biased value: E = exp - Bias
= exp IS an unsigned value ranging from 1 to ok (k == # bits inexp)

= Bias = 2K -
= Single precision: 127 (so exp: 1..254, E:-126..127)
= Double precision: 1023 (so exp: 1..2046, E:-1022...1023)

= These enable negative values for E, for representing very small values
= Could have encoded with 2's complement or sign-and-magnitude
= This just made it easier for HW to do float-exponent operations

m Mantissa coded with implied leading 1: M = 1 .xxx..x,

= xxx..x:the n bits of frac \
" Minimum when 000..0 (M =1.0)
= Maximumwhen111..1 (M =2.0 —¢)

= Get extra leading bit for “free”

83



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Normalized Encoding Example

S E
V=(-1) @ 2 s |exp frac
k n

m Value: float f = 12345.0;

= 12345,, = 11000000111001,
= 1.1@@@@@@111% X @ (normalized form)

)

= Mantissa:
M = 1.1@@@@@@111@@12:1@
frac =__ |1000000111001/0000200000,

N S —

m Exponent: E = exp - Bias, so exp = E + Bias /
E = 1 31@ i\q\ \\
Bias = 1270 A {f\\\
exp = 140,, = 10001100, O°

= Result:

7"1@0@'11@0 10000001110010000000000
s exp frac

E

V=(=1)"*M*2" = (-1)0 *1.5069580078125,, % 2!

84



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Distribution of Values

m 6-bit IEEE-like format

= e =3 exponent bits s | exp frac

= f =2 fraction bits 1 3 2
= Bjasis231-1 =3

= Notice how the distribution gets denser toward zero.

. —k

M

L & A—A—A—A—w—\;//LH—A—H\Jﬁf

-15

-10 -5 0 5 10 15
¢ Denormalized A Normalized  Infinity

85



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Floating Point Operations

= Unlike the representation for integers, the representation for
floating-point numbers is not exact

s We have to know how to round from the real value

86



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Floating Point Operations: Basic Idea

S E
V=(-1)"*M*2 s |exp frac

m X +, Yy = Round(x + y)

m X x; Yy = Round(x * y)

m Basic idea for floating point operations:
= First, compute the exactresult

= Then, roundthe result to makeit fit into desired precision:
= Possibly overflow if exponent too large
= Possibly drop least-significant bits of mantissa to fit into frac

87



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Floating Point Addition |[Lineup the binary points

1.010% 1.0100%22
(=1)51kM1x2F1 + (—1)S2xM2x2F? + 1.000%2-1) + ©.0001x2?
—>5 2
Assume ET > E2 i iﬁ*?
m Exact Result: (—1)sxMx2F [ E1-E2 —
= Sign s, mantissaM: (=1)s' M1
= Result of signed align & add .
— S
= EXxponentE: E1 + (=1)*2 M2
CIFM

= Fixing /\&ﬁ%x
= |f M =2, shift M right, increment E

= if M <1, shift Mleft k positions, decrement E by k
= Qverflow if E out of range
= Round M to fit frac precision

88



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Floating Point Multiplication

(—1)stxM1x2F % (—1)S%2xM2x2F2
m Exact Result: (-1 )sxMx2F

= Signs: s1 N s2

= Mantissa M: M1 % M2

= EXponentE: E1 + E2
= Fixing

= |f M=z 2, shift Mright, increment E
= |f E out of range, overflow
= Round M to fit frac precision

89



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Rounding modes

m Possible rounding modes (illustrated with dollarrounding):
$1.40 $1.60 $1.50 $2.50 -$1.50
Round-toward-zero ST ST ST $2 -$1

Round-down (-00) S1 S1 S1 $2 -$2

Round-up (+00) $2 $2 $2 $3 -S1

Round-to-nearest S1 S2 ?? ?7? ??
= Round-to-even S1 $2 %2 $2 -$2

= Round-to-even avoids statistical bias in repeated rounding.
= Rounds up about half the time, down about half the time.
= Default rounding mode for IEEE floating-point

90



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Mathematical Properties of FP Operations

s Exponent overflow yields +00 or -co

= Floats with value +00, -00, and NaN can be used in operations
= Result usually still +00, -00, or NaN; sometimes intuitive, sometimes not

= Floating point ops do not work like real math, due to rounding!

= Not associative: (3.14 + 1e100) - 1e100 != 3.14 + (1e100 — 1e100)

= Not distributive: 100 x (0.1 + ©.2) != 100 * 0.1 + 100 * 0.2

= Not cumulative 30 . 000VVVYVVVVVVYV3553 30

= Repeatedly adding a very small number to a large one may do nothing

91



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Floating Point in C 11

m C offers two (well, 3) levels of precision

float 1.0f  single precision (32-bit)
double 1.0 double precision (64-bit)
long double 1.0L (double double, quadruple, or "extended”) precision (64-128 bits)

m #include <math.h> toget INFINITY and NAN constants

s Equality (==) comparisons between floating point numbers are
tricky, and often return unexpected results

= Just avoid them!

92



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Floating Point in C 11

m Conversions between data types:

= (Casting between int, float, and double changes the bit representation.

" int - float
= May be rounded (not enough bits in mantissa: 23)
= Overflow impossible
" int - doubleor float - double
= Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
= long - double
= Rounded or exact, depending on word size (64-bit > 52 bit mantissa = round)
" doubleor float - int

= Truncates fractional part (rounded toward zero)
~ Eg.1.999 > 1,-1.99 - -1

= “Not defined” when out of range or NaN: generally sets to Tmin
(even if the value is a very big positive)

93



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Number Representation Really Matters

= 1991: Patriot missile targeting error
= clock skew due to conversion from integer to floating point

m 1996: Ariane 5 rocket exploded ($1 billion)

= overflow converting 64-bit floating point to 16-bit integer

= 2000:Y2K problem

= |imited (decimal) representation: overflow, wrap-around

= 2038:Unix epoch rollover
= Unix epoch = seconds since 12am, January 1, 1970
= signed 32-bit integer representation rolls over to TMin in 2038

m other related bugs
= 1982: Vancouver Stock Exchange 10% error in less than 2 years
= 1994: Intel Pentium FDIV (floating point division) HW bug ($475 million)
= 1997: USS Yorktown “smart” warship stranded: divide by zero
= 1998: Mars Climate Orbiter crashed: unit mismatch ($193 million)

94



W UNIVERSITY of WASHINGTON Integers & Floats

Spring 2016

Floating Point and the Programmer

#include <stdio.h»
int main(int arge, charx argv[]) {

float f1

float f2

int i;

for (i = 0; i < 10; i++) {
£2 += 1.0/10.0;

}

printf("0x%08x 0x%08x\n", *x(int*)&F1, *(int*)&f2);
printf("f1 = %10.8f\n", f1);
printf("f2 = %10.8f\n\n", £2);

1.0;
0.0;

f1 = 1E30;
£2 = 16-30;

float £3 = f1 + £2;

printf("f1 == £3? %s\n", f1 == £3 ? "yes" : "no" );
return 9;

$ ./a.out

0x3f800000 0x3f800001
f1 = 1.000000000

f2 = 1.000000119

f1 == £37? yes

95



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Summary

m As with integers, floats suffer from the fixed number of bits
available to represent them

= Can get overflow/underflow, just like ints
= Some “simple fractions” have no exactrepresentation (e.g.,0.2)

= (Can also lose precision, unlike ints
= “Every operation gets a slightly wrong result”

s Mathematically equivalent ways of writing an expression may

compute different results
= Violates associativity/distributivity

m Never test floating point values for equality!

m Careful when converting between ints and floats!

96



W UNIVERSITY of WASHING
TON
Integers & Floats
Spring 2016

97



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Many more details for the curious...

= Denormalized values — to get finer precision near zero
= Distribution of representable values
m Floating point multiplication & addition algorithms

= Rounding strategies

= We won't be using or testing you on any of these extras in 351.

98



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Denormalized Values

m Condition: exp =000...0

s Exponent value: E = exp — Bias + 1 (instead of E = exp — Bias)

= Significand coded with implied leading 0: M= 0. xxx..x,

» xxX..X.bits of frac

m Cases

" exp =000..9, frac =000...0

= Represents value 0

= Note distinct values: +0 and —0 (why?)
" exp = 000..0, frac z 000..0

= Numbers very close t00.0

= Lose precision as get smaller

= Equispaced

99



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Special Values
m Condition: exp =111...1

m Case:exp=111..1, frac =000...0
= Represents value oo (infinity)
= QOperation that overflows
= Both positive and negative

= E.g.,1.0/0.0=-1.0/-0.0 = +00, 1.0/-0.0 =-1.0/0.0 = -00

m Case: exp =111..1, frac -000...0

= Not-a-Number (NaN)
= Represents case when no numeric value can be determined
= E.qg., sqrt(-1), 0co—00, 00°0, ...

100



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Visualization: Floating Point

Encodings
-00 : . +00
 -Normalized |-Denorm ; ; ; +Denorm, +Normalized
| | Py | |
/ \ NaN
|—NaN 0 +0 —

101



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Tiny Floating Point Example

s |exp frac
1 4 3

= 8-bit Floating Point Representation

= the sign bit is in the most significant bit.
= the next four bits are the exponent, with a bias of 7.
= the last three bits are the frac

s Same general form as IEEE Format
= normalized, denormalized
= representation of 0, NaN, infinity

102



W UNIVERSITY of WASHINGTON

Dynamic Range (Positive Only)

Denormalized
numbers

Normalized
numbers

S

]
9]
%]

OO0 OO

©C OO0 OO

© O O

exp

9151914
9151914
9151519

9151914
9151914
0001
0001

0110
0110
0111
0111
0111

1110
1110
1111

Integers & Floats

frac E Value

000 -6 0O

Vo1 -6 1/8x1/64 = 1/512
010 -6 2/8x1/64 = 2/512
110 -6 6/8x1/64 = 6/512
111 -6 7/8x1/64 = 7/512
000 -6 8/8x1/64 = 8/512
001 -6 9/8%x1/64 = 9/512
110 -1 14/8%x1/2 = 14/16
111 -1 15/8%1/2 = 15/16
000 © 8/8x1 =1

001 0 9/8x1 = 9/8
010 0 10/8x1 = 10/8
1107 14/8x128 = 224
111 7 15/8%128 = 240

Q0 n/a inf

Spring 2016

closest to zero

largest denorm
smallest norm

closest to 1 below

closest to 1 above

largest norm



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Distribution of Values

m 6-bit IEEE-like format
= e = 3 exponent bits
= f =2 fraction bits s [exp frac
= Biasis23-1-1 =3 1 3 2

= Notice how the distribution gets denser toward zero.

-15 -10 -5 0 5 10 15
¢ Denormalized A Normalized  Infinity

104



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Distribution of Values (close-up view)

m 6-bit IEEE-like format

= e = 3 exponent bits
= f =2 fraction bits

s |exp frac
= Biasis3 1 3 2

h—Ah—Ah A b2 A A A0 060600606 L A A A Ah—A—A—A—A

-1 -0.5 0 0.5 1
¢ Denormalized A Normalized B Infinity

105



W UNIVERSITY of WASHINGTON

Integers & Floats

Interesting Numbers

Description
m Zero

m Smallest Pos. Denorm.
= Single=1.4*10°%
= Doublex 4.9 * 107324

m Largest Denormalized
* Single=1.18* 10738
" Double=2.2*107308

m Smallest Pos. Norm.

exp frac

00..00 00...00
00..00 00...01

00..00 11..11

00..01 00..00

= Just larger than largest denormalized

m One

m Largest Normalized
* Single =3.4* 1038
= Double= 1.8 * 10308

01..11 00..00
11..10 11..11

Spring 2016
{single,double}

Numeric Value
0.0

2 {23,562} * 2- {126,1022}

('| 0 - 8) * 92— {126,1022}

1.0*2- {126,1022}

1.0
(2.0 — g) * 20127.1023}

106



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Special Properties of Encoding

m Floating point zero (0*) exactly the same bits as integer zero
= Allbits=0

s Can (Almost) Use Unsigned Integer Comparison
= Must first compare sign bits
"= Must consider0-=0*=0

= NaNs problematic
= Will be greater than any other values
= What should comparison yield?

= Otherwise OK
= Denorm vs. normalized
= Normalized vs. infinity

107



W UNIVERSITY of WASHINGTON Integers & Floats Spring 2016

Floating Point Multiplication

(_‘l)S'l M‘l 2E1 * (_'I)SZMZ 2E2

m Exact Result: (-1)sM 2F

= Signs: s1 *s2 // xor of s1 and s2
= Significand M: M1 * M2
= EXponent E: E1+E2

= Fixing

= |f M =2, shift Mright, incrementE
= |f E out of range, overflow
= Round M to fit frac precision

108



W UNIVERSITY of WASHINGTON Integers & Floats

Spring 2016

Floating Point Addition

(=1)s'M1 2E1 + (-1)s2M2 2F2 Assume E1 > E2

= Exact Result: (-1)sM 2F [ E1-E2 —]
—1)s]
= Sign s, significand M: (=1)s" M1
= Result of signed align & add = )si Y
= Exponent E:E1 *
(=1)°M

= Fixing

If M > 2, shift M right, incrementE
if M <1, shift M left k positions, decrement E by k

Overflow if E out of range
Round M to fit frac precision

109



W UNIVERSITY of WASHINGTON Integers & Floats

Closer Look at Round-To-Even

m Default Rounding Mode

= Hard to get any other kind without dropping into assembly

= All others are statistically biased
= Sum of set of positive numbers will consistently be over- or under- estimated

m Applying to Other Decimal Places / Bit Positions

= When exactly halfway between two possible values
= Round so that least significant digit is even

= E.g., round to nearest hundredth

1.2349999 1.23 (Less than half way)
1.2350001 1.24 (Greater than half way)
1.2350000 1.24 (Half way—round up)

1.2450000 1.24 (Half way—round down)

Spring 2016

110



W UNIVERSITY of WASHINGTON

Integers & Floats

Rounding Binary Numbers

= Binary Fractional Numbers
= “Half way” when bits to right of rounding position =100...,

= Examples

= Round to nearest 1/4 (2 bits right of binary point)

Value Binary

23/32 10.00011,
2 3/16 10.00110,
27/8 10.11100,
2 5/8 10.10100,

Rounded
10.00,
10.01,
11 .00,
10.10,

Action
(<1/2—down)
(>1/2—up)

( 1/2—up)

( 1/2—down)

Spring 2016

Rounded Value
2

21/4

3

21/2

111



W UNIVERSITY of WASHINGTON

Integers & Floats Spring 2016

Floating Point Puzzles [dexx Terac |
1 bit 8 bits 23 bits
s |exp frac
1 bit 11 bits 52 bits

m For each of the following C expressions, either:
= Argue that it is true for all argument values

= Explainwhy not true

int x = ..;

float f = ..;
double d
double d2 = ..;

Assume neither
d nor £ is NaN

ey

1) X (int)(float) x

2) X (int)(double) x
3) f == (float)(double) f
4) d (double)(float) d
5) f == —(-1);

6) 2/3 == 2/3.0

7) (d+d2)-d == d2

112



