Memory & data

x86 assembly

Procedures &

Arrays & structs

Virtual memory

Memory & caches

Memory allocation

stacks

Processes

Java vs. C

Integers & floats
Machine code & C

Roadmap

C:

car *c = malloc(sizeof(car)); c->miles = 100; c->gals = 17; float mpg = get_mpg(c); free(c);

Java:

```
Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =
    c.getMPG();
```

Assembly language:

```
get_mpg:

pushq %rbp

movq %rsp, %rbp

...

popq %rbp

ret
```

α

OS:

Machine code:

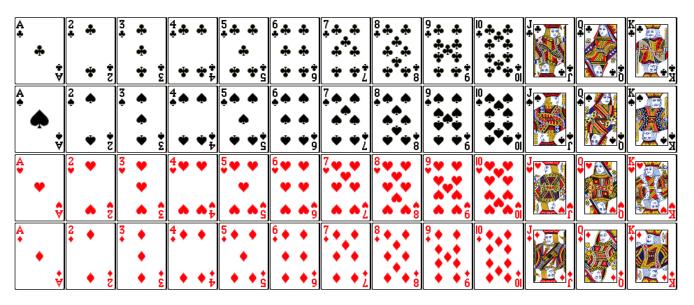
Computer system:

Integers

- Representation of integers: unsigned and signed
- Casting
- Arithmetic and shifting
- Sign extension

But before we get to integers....

- Encode a standard deck of playing cards.
- 52 cards in 4 suits
 - How do we encode suits, face cards?
- What operations do we want to make easy to implement?
 - Which is the higher value card?
 - Are they the same suit?



Two possible representations

■ 52 cards - 52 bits with bit corresponding to card set to 1

"One-hot" encoding

low-order 52 bits of 64-bit word

- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required

Two possible representations

52 cards – 52 bits with bit corresponding to card set to 1

low-order 52 bits of 64-bit word

- "One-hot" encoding
- Drawbacks:
 - Hard to compare values and suits
 - Large number of bits required
- 4 bits for suit, 13 bits for card value 17 bits with two set to 1
 - Pair of one-hot encoded values
 - Easier to compare suits and values
 - Still an excessive number of bits
- Can we do better?

Two better representations

Binary encoding of all 52 cards – only 6 bits needed

Fits in one byte

low-order 6 bits of a byte

- Smaller than one-hot encodings.
- How can we make value and suit comparisons easier?

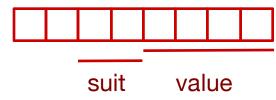
Two better representations

■ Binary encoding of all 52 cards — only 6 bits needed

Fits in one byte

low-order 6 bits of a byte

- Smaller than one-hot encodings.
- How can we make value and suit comparisons easier?
- Binary encoding of suit (2 bits) and value (4 bits) separately



Also fits in one byte, and easy to do comparisons

K	Q	J	 3	2	Α
1101	1100	1011	 0011	0010	0001

•	00
*	01
•	10
•	11

Compare Card Suits

```
#define SUIT MASK
                    0x30
int sameSuitP(char card1, char card2) {
  return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
     return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
 returns int
                                                       equivalent
             SUIT_MASK = 0x30 =
use char for a single byte
                                     suit
                                            value
char hand[5]; // represents a 5-card hand
char card1, card2; // two cards to compare
card1 = hand[0];
card2 = hand[1];
if ( sameSuitP(card1, card2) ) { ... }
```

Compare Card Suits

```
#define SUIT MASK
                     0x30
 int sameSuitP(char card1, char card2) {
   return (!((card1 & SUIT_MASK) ^ (card2 & SUIT_MASK)));
   // return (card1 & SUIT_MASK) == (card2 & SUIT_MASK);
                      0
                      0
                         0
                           0
                             0
                                                      0
SUIT_MASK:
                    0
                      0
                        0
                           0 0
                                             0
                                                      0
                                 Λ
                                  0
                                     0
                                       0
                              0
                                0
!(x^y) equivalent to x==y
```

Compare Card Values

```
VALUE_MASK = 0x0F = 0 0 0 0 1 1 1 1 1 suit value
```

Spring 2016

Compare Card Values

```
#define VALUE MASK
                      0x0F
int greaterValue(char card1, char card2) {
  return ((unsigned int)(card1 & VALUE_MASK) >
           (unsigned int)(card2 & VALUE_MASK));
            0
                 0
                                             0
VALUE_MASK:
                   0
                                             0
                 0
                      0
                        0
                             0
                                        0
                                          0
                             2_{10} > 13_{10} = 0 (false)
```

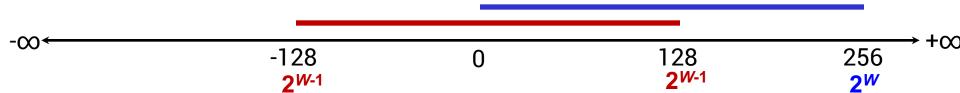
April 6

Announcements

Thurs 10:30am Section moved to EEB 045.

Encoding Integers

- The hardware (and C) supports two flavors of integers:
 - unsigned only the non-negatives
 - signed both negatives and non-negatives
- Cannot represent all the integers
 - There are only 2^w distinct bit patterns of W bits
 - Unsigned values: 0 ... 2^w-1
 - Signed values: -2^{W-1} ... 2^{W-1}-1



Reminder: terminology for binary representations

```
"Least-significant" or "high-order" bit(s) or "low-order" bit(s) or "low-order" bit(s)
```

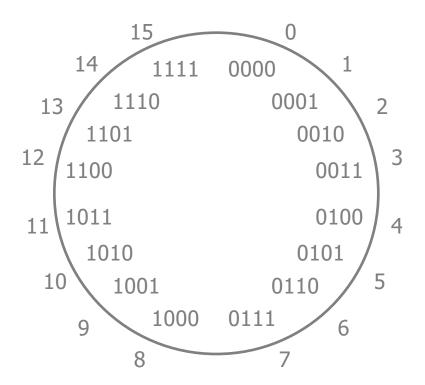
Unsigned Integers

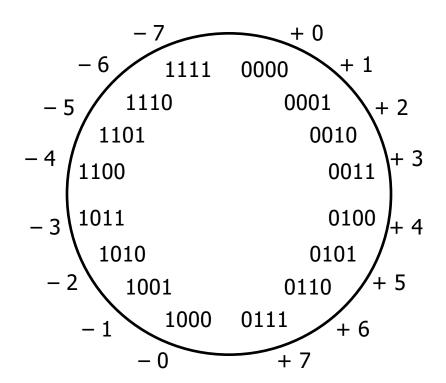
- Unsigned values are just what you expect
 - $b_7b_6b_5b_4b_3b_2b_1b_0 = b_72^7 + b_62^6 + b_52^5 + ... + b_12^1 + b_02^0$
 - Useful formula: $1+2+4+8+...+2^{N-1} = 2^N 1$
- Add and subtract using the normal "carry" and "borrow" rules, just in binary.

How would you make signed integers?

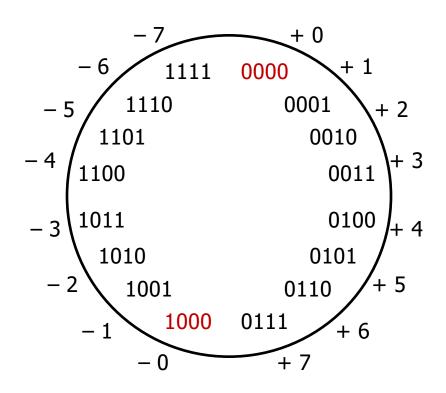
- Use high-order bit to indicate positive/negative (the "sign bit")
- Positive numbers: sign = 0
 - Does the natural thing, same as for unsigned
- Negative numbers: sign = 1
- Examples (8 bits):
 - $0x00 = 00000000_2$ is non-negative, because the sign bit is 0
 - $0x7F = 011111111_2$ is non-negative (+127₁₀)
 - $0x85 = 10000101_2$ is negative (-5₁₀)
 - $0x80 = 10000000_2$ is negative...
 - Negative zero!

■ **High-order bit (MSB)** flips the sign, rest of the bits are **magnitude**

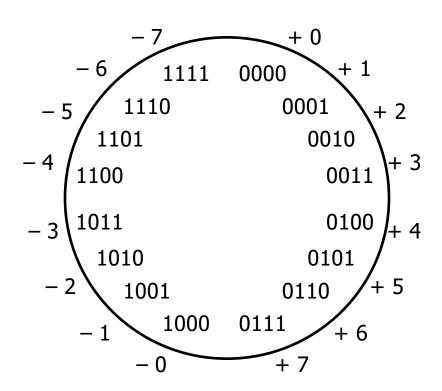




- **High-order bit (MSB)** flips the sign, rest of the bits are **magnitude**
- Downsides
 - There are two representations of 0! (bad for checking equality)

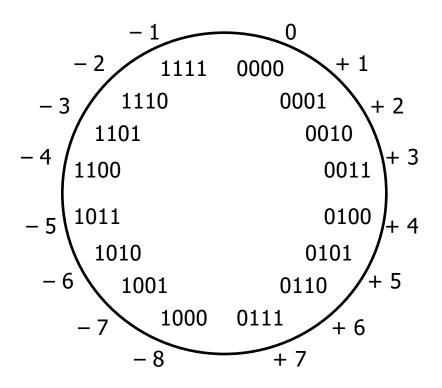


- **High-order bit (MSB)** flips the sign, rest of the bits are **magnitude**
- Downsides
 - There are two representations of 0! (bad for checking equality)
 - Arithmetic is cumbersome.
 - Example:4 3 != 4 + (-3)

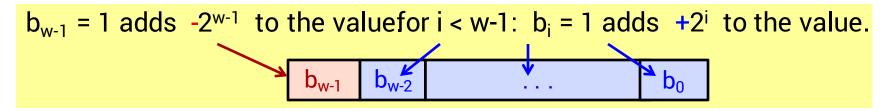


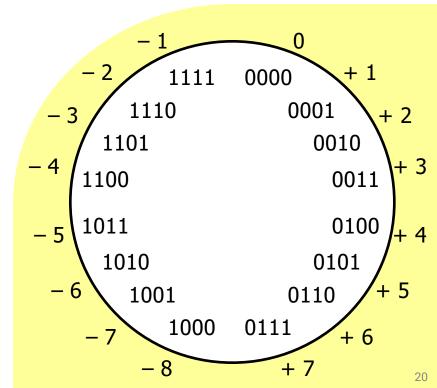
How do we solve these problems?

High-order bit (MSB) still indicates that the value is negative



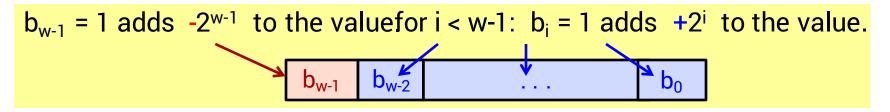
- High-order bit (MSB) *still* indicates that the value is *negative*
 - But instead, let MSB have same value, but negative weight.



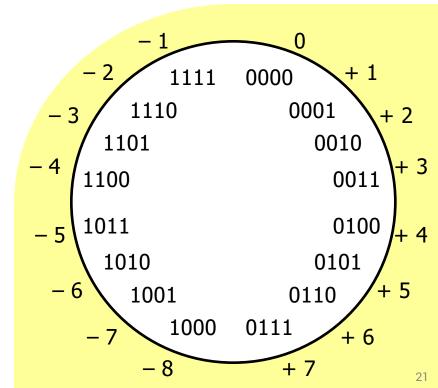


Spring 2016

- High-order bit (MSB) *still* indicates that the value is *negative*
 - But instead, let MSB have *same value*, but *negative weight*.



e.g. unsigned
$$1010_2$$
:
 $1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10}$
2's compl. 1010_2 :
 $-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10}$



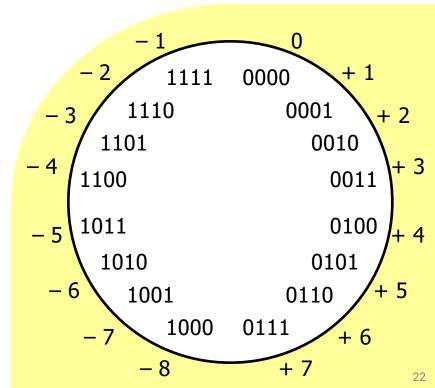
Spring 2016

- High-order bit (MSB) still indicates that the value is negative
 - But instead, let MSB have same value, but negative weight.

$$b_{w-1} = 1$$
 adds -2^{w-1} to the value for $i < w-1$: $b_i = 1$ adds $+2^i$ to the value.

e.g. unsigned
$$1010_2$$
:
 $1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10}$
2's compl. 1010_2 :
 $-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10}$

- -1 is represented as $1111_2 = -2^3 + (2^3 1)$
 - MSB makes it super negative, add up all the other bits to get back up to -1

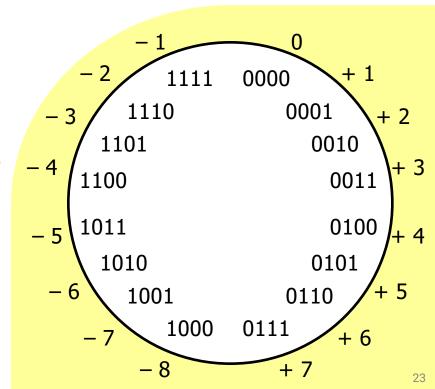


- High-order bit (MSB) still indicates that the value is negative
 - But instead, let MSB have same value, but negative weight.

$$b_{w-1} = 1$$
 adds -2^{w-1} to the value for $i < w-1$: $b_i = 1$ adds $+2^i$ to the value.

e.g. **unsigned**
$$1010_2$$
:
 $1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = 10_{10}$
2's compl. 1010_2 :
 $-1*2^3 + 0*2^2 + 1*2^1 + 0*2^0 = -6_{10}$

- -1 is represented as $1111_2 = -2^3 + (2^3 1)$
- Advantages:
 - Single zero
 - Simple arithmetic



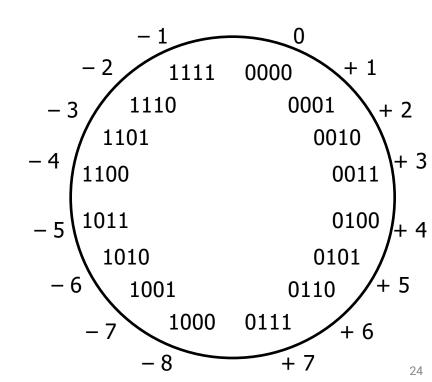
4-bit Unsigned vs. Two's Complement

 $I \cup I$

$$2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1$$

$$-2^3$$
 x 1 + 2^2 x 0 + 2^1 x 1 + 2^0 x 1

-5

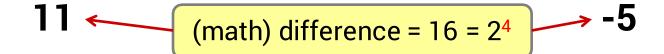


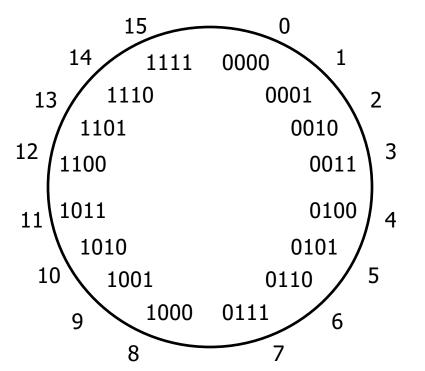
4-bit Unsigned vs. Two's Complement

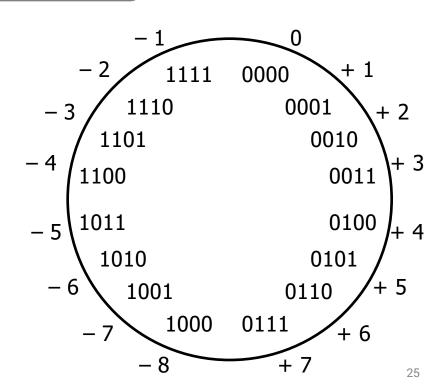
 $I \cup I$

$$2^3 \times 1 + 2^2 \times 0 + 2^1 \times 1 + 2^0 \times 1$$

$$-2^3$$
 x 1 + 2^2 x 0 + 2^1 x 1 + 2^0 x 1

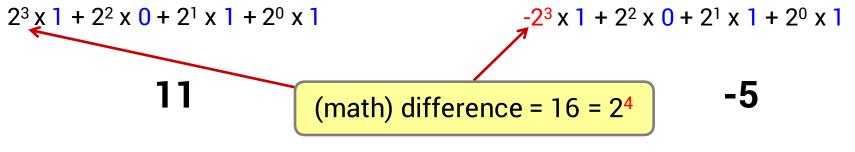


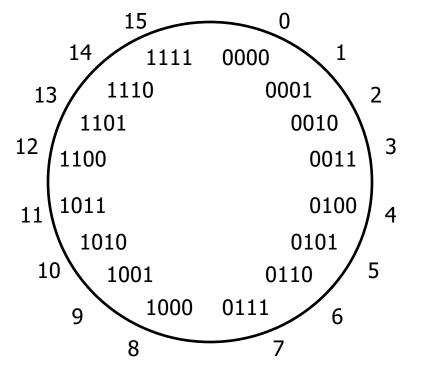


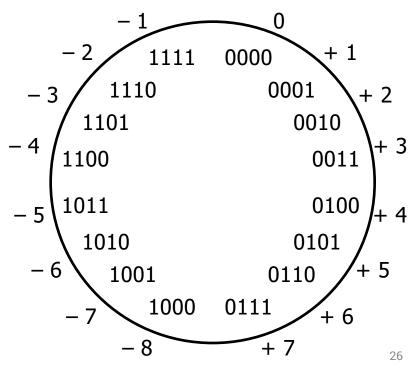


4-bit Unsigned vs. Two's Complement

 $I \cup I$







Two's Complement Arithmetic

- The same addition procedure works for both unsigned and two's complement integers
 - Simplifies hardware: only one algorithm for addition
 - Algorithm: simple addition, discard the highest carry bit
 - Called "modular" addition: result is sum modulo 2W
- Examples:

4 + 3	0100	4	0100	- 4	1100
	+ 0011	- 3	+ 1101	+ 3	+ 0011

Two's Complement Arithmetic

- The same addition procedure works for both unsigned and two's complement integers
 - Simplifies hardware: only one algorithm for addition
 - Algorithm: simple addition, discard the highest carry bit
 - Called "modular" addition: result is sum modulo 2W

Examples:

4	0100	4	0100	- 4	1100
+ 3	+ 0011	- 3	+ 1101	+ 3	+ 0011
= 7	= 0111	= 1	1 0001	- 1	1111
			= 0001		
(drop carry)					

Why does it work?

Put another way, for all positive integers x, we want:

```
Bit representation of x
+ Bit representation of -x
0 (ignoring the carry-out bit)
```

What should the 8-bit representation of -1 be?

Other examples:

Why does it work?

Put another way, for all positive integers x, we want:

```
Bit representation of x
+ Bit representation of -x
0 (ignoring the carry-out bit)
```

What should the 8-bit representation of -1 be?

Other examples:

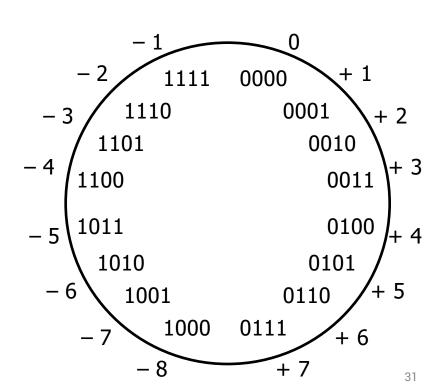
Turns out to be the bitwise complement plus 1!

Negate any 2s-complement integer

Take bitwise complement (flip all the bits) and then add one!

$$\sim x + 1 == -x$$

You can even do it again and it still works!



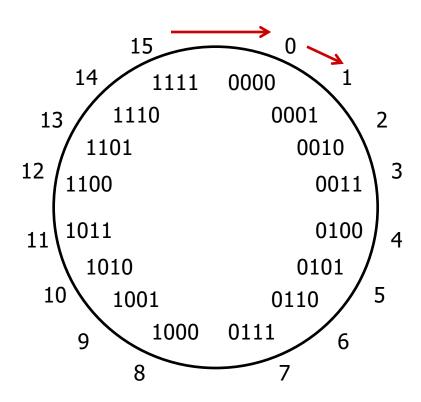
Unsigned & Signed Numeric Values

bits	Unsigned	Signed
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

■ <u>Signed</u> and <u>unsigned</u> integers have limits.

Overflow/Wrapping: Unsigned

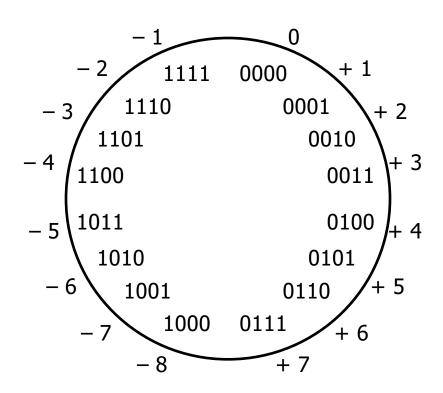
addition: drop the carry bit



Modular Arithmetic

Overflow/Wrapping: Two's Complement

addition: drop the carry bit

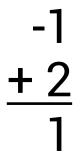


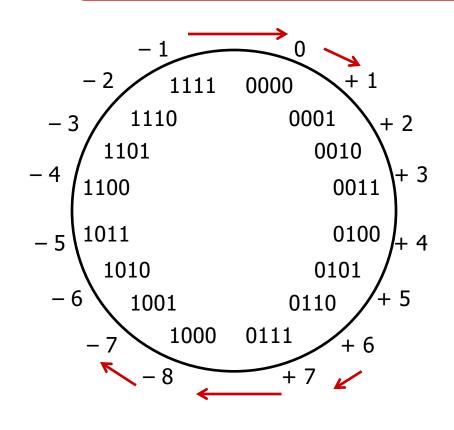
Modular Arithmetic

Overflow/Wrapping: Two's Complement

addition: drop the carry bit

For signed: overflow if operands have same sign and result's sign is different.





Modular Arithmetic

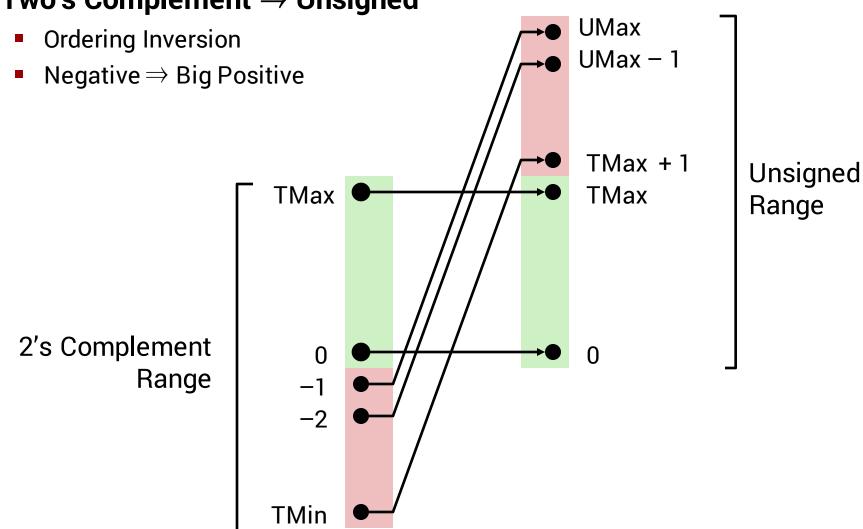
Unsigned & Signed Numeric Values

bits	Unsigned	Signed
0000	0	0
0001	1	1
0010	2	2
0011	3	3
0100	4	4
0101	5	5
0110	6	6
0111	7	7
1000	8	-8
1001	9	-7
1010	10	-6
1011	11	-5
1100	12	-4
1101	13	-3
1110	14	-2
1111	15	-1

- Signed and unsigned integers have limits.
 - If you compute a number that is too big (positive), it wraps.
 - If you compute a number that is too small (negative), it wraps.
- The CPU may be capable of "throwing an exception" for overflow on signed values.
 - It won't for <u>unsigned</u>.
- But C and Java just cruise along silently when overflow occurs... Oops.

Signed/Unsigned Conversion

■ Two's Complement ⇒ Unsigned



Values To Remember

Unsigned Values

- UMin = 0000...0
- UMax = 2w 1 ■ 111...1

- Two's Complement Values
 - TMin = -2^{w-1} 100...0
 - TMax = $2^{w-1} 1$ 011...1
 - Negative one
 - 111...1 0xF...F

Values for W = 32

	Decimal	Hex	Binary
UMax	4,294,967,296	FF FF FF FF	11111111 11111111 11111111 11111111
TMax	2,147,483,647	7F FF FF FF	01111111 11111111 11111111 11111111
TMin	-2,147,483,648	80 00 00 00	10000000 00000000 00000000 00000000
-1	-1	FF FF FF FF	11111111 11111111 11111111 11111111
0	0	00 00 00 00	00000000 00000000 00000000 00000000

 $LONG_MIN = -9223372036854775808$

Values for W = 64: LONG_MAX = 9223372036854775807

In C: Signed vs. Unsigned

- Integer Literals (constants)
 - By default are considered to be signed integers
 - Use "U" (or "u") suffix to force unsigned:
 - 0U,4294967259u

In C: Signed vs. Unsigned

Casting

```
int tx, ty;unsigned ux, uy;
```

Explicit casting between signed & unsigned:

```
tx = (int) ux;uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and function calls:

```
tx = ux;uy = ty;
```

- The gcc flag -Wsign-conversion produces warnings for implicit casts, but -Wall does not!
- How does casting between signed and unsigned work?
- What values are going to be produced?

In C: Signed vs. Unsigned

Casting

```
int tx, ty;unsigned ux, uy;
```

Explicit casting between signed & unsigned:

```
tx = (int) ux;
uy = (unsigned) ty;
```

Implicit casting also occurs via assignments and function calls:

```
tx = ux;uy = ty;
```

- The gcc flag -Wsign-conversion produces warnings for implicit casts, but -Wall does not!
- How does casting between signed and unsigned work?
- What values are going to be produced?
 - Bits are unchanged, just interpreted differently!

Casting Surprises

- Expression Evaluation
 - If you mix unsigned and signed in a single expression, then signed values are implicitly cast to <u>unsigned</u>.
 - Including comparison operations <, >, ==, <=, >=

Casting Surprises

• Examples for W = 32:

Reminder: TMIN = -2,147,483,648 TMAX = 2,147,483,647

Constant ₁	Constant ₂	Relation	Interpret the bits as:
0	0 <mark>U</mark>	==	Unsigned
-1	Ø	<	Signed
-1	0 <mark>U</mark>	>	Unsigned
2147483647	-2147483648	>	Signed
2147483647 <mark>U</mark>	-2147483648	<	Unsigned
-1	-2	>	Signed
(unsigned int)-1	-2	>	Unsigned
2147483647	2147483648 <mark>U</mark>	<	Unsigned
2147483647	(int) 2147483648 <mark>U</mark>	>	Signed

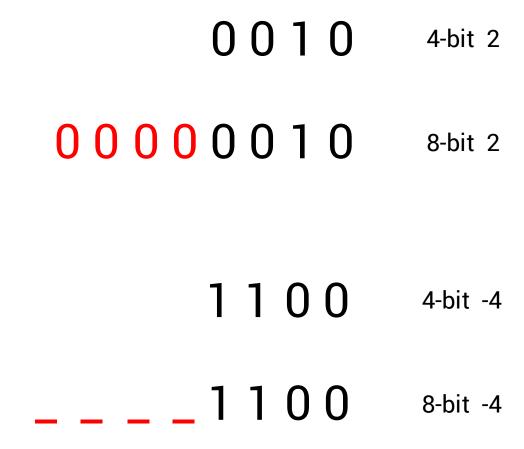
Casting Surprises

Examples for W = 32:
 Reminder: TMIN = -2,147,483,648

TMAX = 2,147,483,647

Constant ₁	Constant ₂	Relation	Interpret the bits as:
0 0000 0000 0000 0000 0000 0000 0000 0	0U 0000 0000 0000 0000 0000 0000 0000	==	Unsigned
-1 1111 1111 1111 1111 1111 1111 1111	0 0000 0000 0000 0000 0000 0000 0000	<	Signed
-1 1111 1111 1111 1111 1111 1111 1111	0U 0000 0000 0000 0000 0000 0000 0000	>	Unsigned
2147483647 Ø111 1111 1111 1111 1111 1111 1111	-2147483648 1000 0000 0000 0000 0000 0000 0000 000	>	Signed
2147483647 U Ø111 1111 1111 1111 1111 1111 1111	-2147483648 1000 0000 0000 0000 0000 0000 0000 000	<	Unsigned
-1 1111 1111 1111 1111 1111 1111 1111	-2 1111 1111 1111 1111 1111 1111 1110	>	Signed
(unsigned) -1 1111 1111 1111 1111 1111 1111 1111	-2 1111 1111 1111 1111 1111 1111 1110	>	Unsigned
2147483647 Ø111 1111 1111 1111 1111 1111	2147483648U 1000 0000 0000 0000 0000 0000 0000 000	<	Unsigned
2147483647 <pre>0111 1111 1111 1111 1111 1111</pre>	(int) 2147483648U 1000 0000 0000 0000 0000 0000 0000	>	Signed

What happens if you convert a 32-bit signed integer to a 64-bit signed integer?

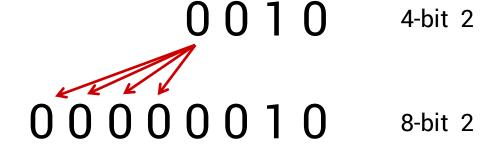


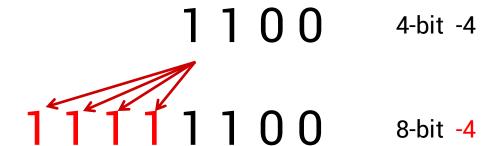
00001100

Just adding zeroes to the front does not work

8-bit 12

Just making the first bit=1 also does not work





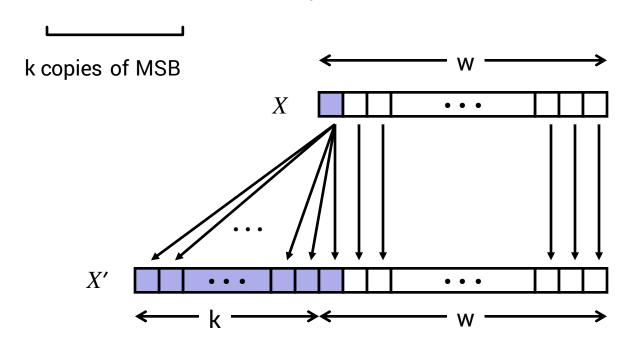
Need to extend the sign bit to all "new" locations

■ Task:

- Given w-bit signed integer x
- Convert it to w+k-bit integer with same value

Rule:

- Make k copies of sign bit:
- $X' = X_{w-1}, ..., X_{w-1}, X_{w-1}, X_{w-2}, ..., X_0$



Sign Extension Example

- Converting from smaller to larger integer data type
- C automatically performs sign extension (Java too)

```
short int x = 12345;

int ix = (int) x;

short int y = -12345;

int iy = (int) y;
```

	Decimal	Hex	Binary
х	12345	30 39	00110000 01101101
iх	12345	00 00 30 39	00000000 00000000 00110000 01101101
У	-12345	CF C7	11001111 11000111
iy	-12345	FF FF CF C7	1111111 1111111 11001111 11000111

Shift Operations

Left shift: x << n</p>

- Shift bit vector x left by n positions
 - Throw away extra bits on left
 - Fill with 0s on right

Right shift: x >> n

- Shift bit-vector x right by n positions
 - Throw away extra bits on right
- Logical shift (for unsigned values)
 - Fill with 0s on left
- Arithmetic shift (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of x

Shift Operations

■ Left shift: x << n

- Shift bit vector x left by n positions
 - Throw away extra bits on left
 - Fill with 0s on right

Right shift: x >> n

- Shift bit-vector x right by n positions
 - Throw away extra bits on right
- Logical shift (for unsigned values)
 - Fill with 0s on left
- Arithmetic shift (for signed values)
 - Replicate most significant bit on left
 - Maintains sign of x

Argument x	00100010
x << 3	00010000
Logical: x >> 2	00001000
Arithmetic: x >> 2	00001000

Argument x	10100010
x << 3	00010000
Logical: x >> 2	00101000
Arithmetic: x >> 2	11 101000

Note

- Shifts by n < 0 or n >= size of x (in bits) are undefined
- In C: Behavior of >> depends on the compiler!
 - In GCC/Clang: it depends on if x is signed/unsigned
- In Java: >>> is logical shift; >> is arithmetic

Spring 2016

What are these computing?

■ x >> n: <u>divide</u> by 2ⁿ

 $\mathbf{x} << n$: multiply by 2^n

Shifting is faster than general multiply or divide operations

Shifting and Arithmetic Example #1

General Form: x << n x >> n

Spring 2016

$$x = 27;$$
 $y = x << 2;$
 $y = 108$
 $0 0 0 1 1 0 1 1$
 $0 0 0 1 1 0 1 1 0 0$

$$x*2^n$$

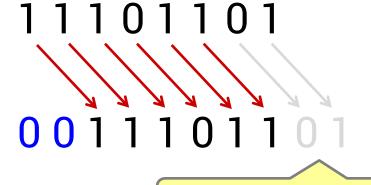
logical shift left:

shift in zeros from the right

$x/2^n$

logical shift right:

shift in zeros from the left



<u>unsigned</u>

$$x = 237u;$$

$$y = x \rightarrow 2$$
;

rounding (down)

Shifting and Arithmetic Example #2

General Form:

x << n

x >> n

<u>signed</u>

$$x = -101;$$
 $y = x << 2;$
 $y = 108$
 $x = -101;$
 $x =$

x*2n

logical shift left:

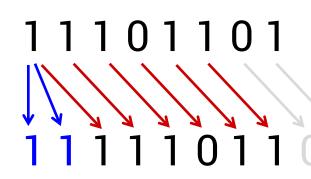
shift in zeros from the right

overflow

 $x/2^n$

arithmetic shift right:

shift in copies of most significant bit from the left



signed

$$x = -19;$$

$$y = x \rightarrow 2$$
;

$$v == -5$$

Shifts by n < 0 or n >= size of x are undefined

rounding (down)

Extract the 2nd most significant byte of an integer?

- Extract the 2nd most significant byte of an integer:
 - First shift, then mask: (x >> 16) & 0xFF

	х	01100001	01100010	01100011	01100100	
	x >> 16	00000000	00000000	01100001	01100010	
	0xFF	00000000	00000000	00000000	111111111	mask
(x	x>>16) & 0xFF	00000000	00000000	00000000	01100010	result

Extract the sign bit of a signed integer?

This picture is assuming arithmetic shifts, but process works in either case

- Extract the sign bit of a signed integer:
 - (x >> 31) & 1 need the "& 1" to clear out all other bits except LSB

х	11100001 01100010 01100011 01100100	
x >> 31	11111111 11111111 11111111 1111111	
(x >> 31) & 0x1		mask result

х	01100001 01100010 01100011 01100100	
x >> 31	00000000 00000000 00000000	
(x >> 31) & 0x1	00000000 00000000 00000000 00000001 00000000	mask resul

- Conditionals as Boolean expressions (assuming x is 0 or 1)
 - In C: if (x) a=y else a=z; which is the same as a = x ? y : z;
 If x == 1 then a = y, otherwise x == 0 and a = z
 - Can be re-written (assuming arithmetic right shift) as:

$$a = (((x << 31) >> 31) & y) | (((!x) << 31) >> 31) & z);$$

x = 1	0000000 00000000 00000000 00000001
x << 31	10000000 00000000 00000000 00000000
((x << 31) >> 31)	11111111 11111111 11111111 11111111
y = 257	00000000 00000000 00000001 00000001
(((x << 31) >> 31) & y)	00000000 00000000 00000001 00000001

```
If x == 1, then !x == 0 and ((!x) << 31) >> 31) = 00..0, so: (00..0 \& z) = 0 and a = (00000000 00000000 00000001 00000001) | (00..00) (in other words <math>a = y)

If x == 0, then !x == 1 and instead a = z.
```

One of two sides of the will always be all zeroes.

Multiplication

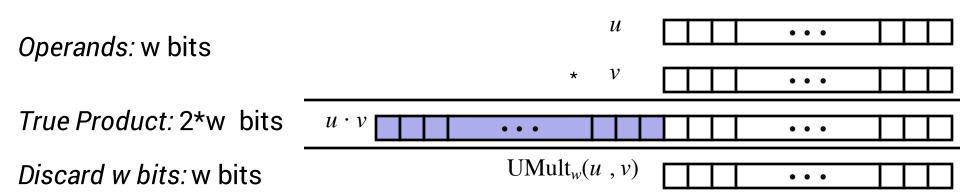
What do you get when you multiply 9 x 9?

■ What about 2³⁰ x 3?

■ 2³⁰ x 5?

 $-2^{31} \times -2^{31}$?

Unsigned Multiplication in C



- Standard Multiplication Function
 - Ignores high order w bits
- Implements Modular Arithmetic

 $UMult_w(u, v) = u \cdot v \mod 2^w$

Multiplication with shift and add

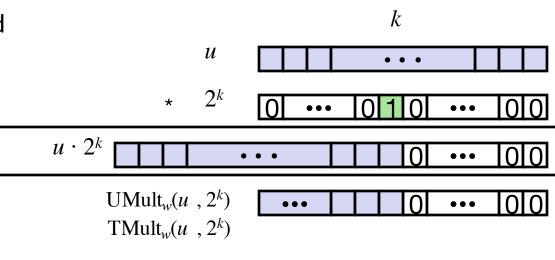
Operation

- u << k gives $u * 2^k$
- Both signed and unsigned

Operands: w bits

True Product: w+k bits

Discard k bits: w bits



Examples

- u << 3 == u * 8
- u << 5 u << 3 == u * 24
- Most machines shift and add faster than multiply
 - Compiler generates this code automatically

Code Security Example

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, MSIZE);
    printf("%s\n", mybuf);
}
```

Malicious Usage

```
/* Declaration of library function memcpy */
void* memcpy(void* dest, void* src, size_t n);
```

```
/* Kernel memory region holding user-accessible data */
#define KSIZE 1024
char kbuf[KSIZE];

/* Copy at most maxlen bytes from kernel region to user buffer */
int copy_from_kernel(void* user_dest, int maxlen) {
    /* Byte count len is minimum of buffer size and maxlen */
    int len = KSIZE < maxlen ? KSIZE : maxlen;
    memcpy(user_dest, kbuf, len);
    return len;
}</pre>
```

```
#define MSIZE 528

void getstuff() {
    char mybuf[MSIZE];
    copy_from_kernel(mybuf, -MSIZE);
    . . .
}
```

- len is computed by finding the minimum of the two, which will be maxlen if we passed a negative value.
- Because memcpy takes an unsigned integer (size_t), this allows a malicious caller to read more of the kernel memory than it should.

April 8

Announcements

Lab 1 Prelim due today at 5pm.

Q&A: THE PENTIUM FDIV BUG

(floating point division)

Q: What do you get when you cross a Pentium PC with a research grant?

A: A mad scientist.

Q: Complete the following word analogy: Add is to Subtract as Multiply is to:

- 1) Divide
- 2) ROUND
- 3) RANDOM
- 4) On a Pentium, all of the above

A: Number 4.

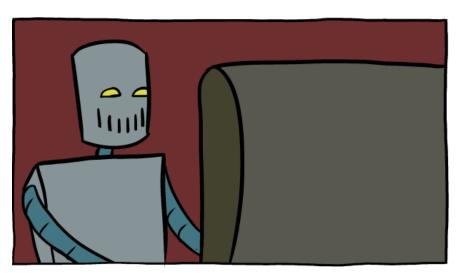
Q: What algorithm did Intel use in the Pentium's floating point divider?

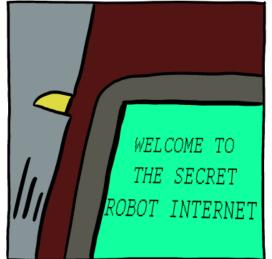
A: "Life is like a box of chocolates."

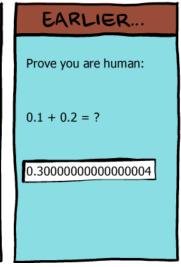
(Source: F. Gump of Intel)

Q: According to Intel, the Pentium conforms to the IEEE standards 754 and 854 for floating point arithmetic. If you fly in aircraft designed using a Pentium, what is the correct pronunciation of "IEEE"?

A: Aaaaaaaiiiiiiiiieeeeeeeeeee!







http://www.smbc-comics.com/?id=2999

Floating point topics

- Background: fractional binary numbers
- IEEE floating-point standard
- Floating-point operations and rounding
- Floating-point in C

- There are many more details that we won't cover
 - It's a 58-page standard...

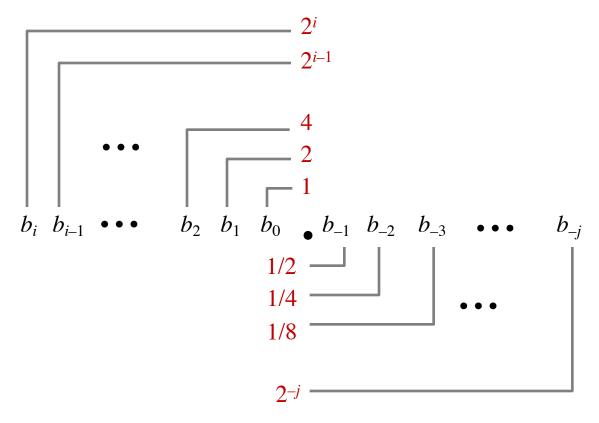
Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some "simple fractions" have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/commutativity/distributivity...
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Fractional Binary Numbers

$$8+2+1+\frac{1}{2}+\frac{1}{8}=11.625_{10}$$

Fractional Binary Numbers



- Representation
 - Bits to right of "binary point" represent fractional powers of 2
 - Represents rational number: $\sum_{k=-i}^{i} b_k \cdot 2^{i}$

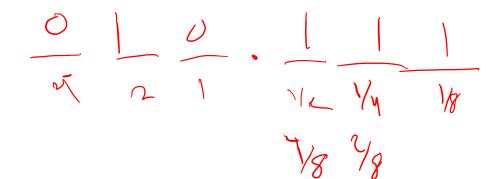
Spring 2016

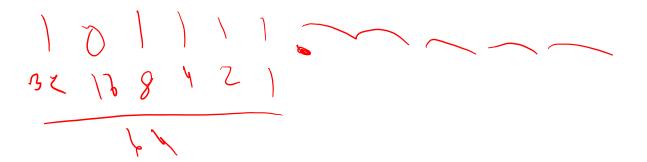
Fractional Binary Numbers

Value

Binary:

- 5.75 5 ³/₄
- 2 and 7/8
- **47/64**





Fractional Binary Numbers

Value Binary:

- **5.75** 101.11₂
- 2 and 7/8 10.111₂
- **47/64** 0.101111₂

Observations

- Shift left = multiply by power of 2
- Shift right = divide by power of 2
- Numbers of the form Ø.1111111...2 are just below 1.0
 - $1/2 + 1/4 + 1/8 + ... + 1/2^i + ... \rightarrow 1.0$
 - Use notation 1.0 ε

0.0000-

Spring 2016

Limits of Representation

Limitations:

- Even given an arbitrary number of bits, can only <u>exactly</u> represent numbers of the form x * 2^y (y can be negative)
- Other rational numbers have repeating bit representations

Value:

```
    1/3 = 0.333333...<sub>10</sub> =
    1/5 = 1/10 = |<sub>0</sub>
```

Binary Representation:

```
0.01010101[01]...<sub>2</sub>
0.001100110011[0011]...<sub>2</sub>
0.0001100110011[0011]...<sub>2</sub>
```

Fixed Point Representation

- Binary point has a <u>fixed</u> position
 - Position = number of binary digits before and after
- Implied binary point. Two example schemes:

- Wherever we put the binary point, with fixed point representations there is a trade off between the amount of range and precision
- Fixed point = fixed range and fixed precision
 - range: difference between largest and smallest numbers possible
 - precision: smallest possible difference between any two numbers
- Hard to pick how much you need of each!

Rarely used in practice. Not built-in.

Floating Point

- Analogous to scientific notation
 - In Decimal:
 - Not 12000000, but 1.2 x 10⁷
 In C: 1.2e7
 - Not 0.0000012, but 1.2 x 10⁻⁶
 In C: 1.2e-6
 - In Binary:
 - Not 11000.000, but 1.1 x 2⁴
 - Not 0.000101, but 1.01 x 2-4
- We have to divvy up the bits we have (e.g., 32) among:
 - the sign (1 bit)
 - the significand / mantissa
 - the exponent

IEEE Floating Point

■ IEEE 754

- Established in 1985 as uniform standard for floating point arithmetic
- Main idea: make numerically sensitive programs portable
- Specifies two things: representation and result of floating operations
- Now supported by all major CPUs
 - Some cheat! (looking at you, GPUs...)

Driven by numerical concerns

- Scientists/numerical analysts want them to be as real as possible
- Engineers want them to be easy to implement and fast
- In the end:
 - Scientists mostly won out
 - Nice standards for rounding, overflow, underflow, but...
 - Hard to make fast in hardware
 - Float operations can be an order of magnitude slower than integer

Floating Point Representation

Numerical form:

$$V_{10} = (-1)^{S} * M * 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0, 2.0)
- Exponent E weights value by a (possibly negative) power of two

Floating Point Representation

Numerical form:

$$V_{10} = (-1)^{S} * M * 2^{E}$$

- Sign bit s determines whether number is negative or positive
- Significand (mantissa) M normally a fractional value in range [1.0, 2.0)
- Exponent E weights value by a (possibly negative) power of two

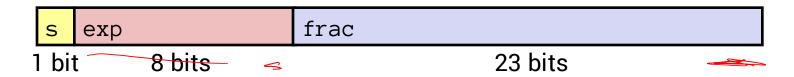
Representation in memory:

- MSB s is sign bit s
- exp field encodes *E* (but is *not equal* to E)
- frac field encodes M (but is not equal to M)

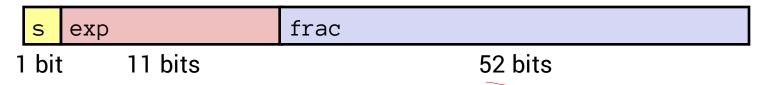
	OWD	frag
Ŋ	exp	Trac

Precisions

Single precision: 32 bits



Double precision: 64 bits



Finite representation means not all values can be represented exactly. Some will be approximated.

Normalization and Special Values

$$V = (-1)^{S} * M * 2^{E}$$

- "Normalized" = M has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it
- How do we represent 0.0? Or special or undefined values like 1.0/0.0?

Normalization and Special Values

$$V = (-1)^{S} * M * 2^{E}$$

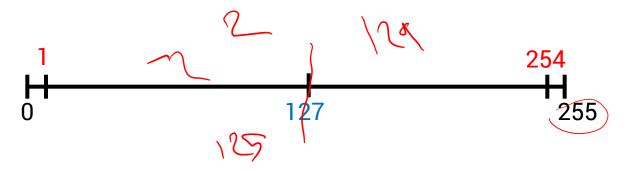
s exp	frac
-------	------

- "Normalized" = M has the form 1.xxxxx
 - As in scientific notation, but in binary
 - 0.011 x 2⁵ and 1.1 x 2³ represent the same number, but the latter makes better use of the available bits
 - Since we know the mantissa starts with a 1, we don't bother to store it.
- Special values ("denormalized"):
 - **Zero** (∅): exp == 00...0, frac == 00...0
 - + ∞ , - ∞ : exp == 11...1, frac == 00...0 1.0/0.0 = -1.0/-0.0 = + ∞ , 1.0/-0.0 = -1.0/0.0 = - ∞
 - NaN ("Not a Number"): $\exp == 11...1$ frac != 00...0 Results from operations with undefined result: $\operatorname{sqrt}(-1)$, $\infty - \infty$, $\infty \cdot 0$, ...
 - Note: exp=11...1 and exp=00...0 are reserved, limiting exp range...

Normalized Values

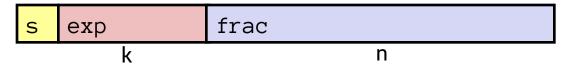
$$V = (-1)^{S} * M * 2^{E}$$

- Condition: exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = exp Bias
 - exp is an *unsigned* value ranging from 1 to 2^{k} -2 (k == # bits in exp)
 - $Bias = 2^{k-1} 1$
 - Single precision: 127 (so *exp*: 1...254, *E*: -126...127)
 - Double precision: 1023 (so exp: 1...2046, E: -1022...1023)
 - These enable negative values for E, for representing very small values
 - Could have encoded with 2's complement or sign-and-magnitude
 - This just made it easier for HW to do float-exponent operations



Normalized Values

$$V = (-1)^{S} * M * 2^{E}$$



- **Condition:** exp ≠ 000...0 and exp ≠ 111...1
- Exponent coded as biased value: E = exp Bias
 - exp is an *unsigned* value ranging from 1 to 2^{k} -2 (k == # bits in exp)
 - *Bias* = 2^{k-1} 1
 - Single precision: 127 (so *exp*: 1...254, *E*: -126...127)
 - Double precision: 1023 (so exp: 1...2046, E: -1022...1023)
 - These enable negative values for E, for representing very small values
 - Could have encoded with 2's complement or sign-and-magnitude
 - This just made it easier for HW to do float-exponent operations
- Mantissa coded with implied leading 1: $M = 1.xxx...x_2$
 - xxx...x: the n bits of frac
 - Minimum when 000...0 (M = 1.0)
 - Maximum when 111...1 $(M = 2.0 \varepsilon)$
 - Get extra leading bit for "free"

Normalized Encoding Example

$$V = (-1)^{S} * M * 2^{E}$$

exp frac n

- Value: float f = 12345.0;
 - \blacksquare 12345₁₀ = 11000000111001₂ = $1.1000000111001_2 \times 2^{13}$ (normalized form)

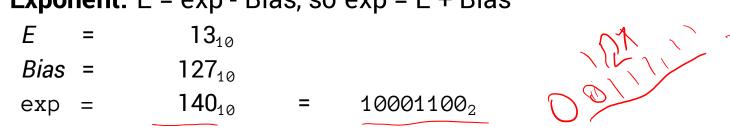
Mantissa:

■ Exponent: E = exp - Bias, so exp = E + Bias

$$E = 13_{10}$$

$$Bias = 127_{10}$$

$$exp = 140_{10}$$



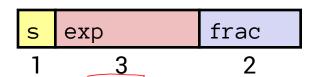
Result:

10001100 1000000011100100000000000 frac exp $V = (-1)^{S} * M * 2^{E} = (-1)^{0} * 1.5069580078125_{10} * 2^{13_{10}}$

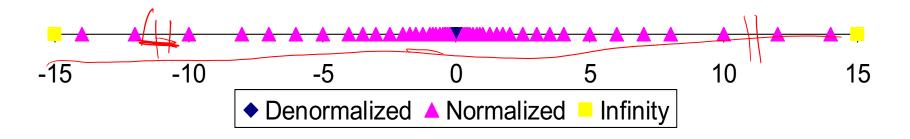
Distribution of Values

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is $2^{3-1}-1=3$



Notice how the distribution gets denser toward zero.



Floating Point Operations

- Unlike the representation for integers, the representation for floating-point numbers is <u>not exact</u>
- We have to know how to round from the real value

Floating Point Operations: Basic Idea

$$V = (-1)^{S} * M * 2^{E}$$

S	ехр	frac
---	-----	------

 $\mathbf{x} \times_{\mathbf{f}} \mathbf{y} = \text{Round}(\mathbf{x} \times \mathbf{y})$

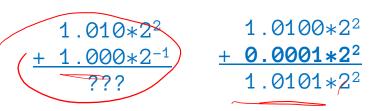
- Basic idea for floating point operations:
 - First, compute the exact result
 - Then, round the result to make it fit into desired precision:
 - Possibly overflow if exponent too large
 - Possibly drop least-significant bits of mantissa to fit into frac

Floating Point Addition

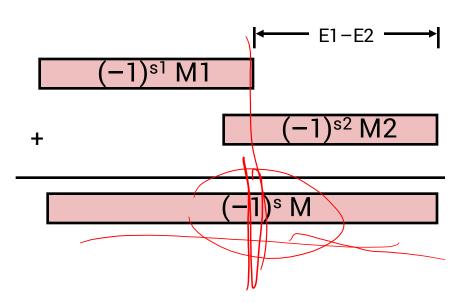
Line up the binary points

$$(-1)^{s1}*M1*2^{E1} + (-1)^{s2}*M2*2^{E2}$$

Assume *E1 > E2*



- Exact Result: (-1)^s*M*2^E
 - Sign s, mantissa M:
 - Result of signed align & add
 - Exponent E: E1



Fixing

- If $M \ge 2$, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k</p>
- Overflow if *E* out of range
- Round M to fit frac precision

Floating Point Multiplication

$$(-1)^{s1}*M1*2^{E1} * (-1)^{s2}*M2*2^{E2}$$

■ Exact Result: (-1)^s*M*2^E

• Sign s: s1 ^ s2

■ Mantissa M: M1 * M2

• Exponent E: E1 + E2

Fixing

- If $M \ge 2$, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Rounding modes

Possible rounding modes (illustrated with dollar rounding):

	\$1.40	\$1.60	\$1.50	\$2.50	-\$1.50
Round-toward-zero	\$1	\$1	\$1	\$2	-\$1
■ Round-down (-∞)	\$1	\$1	\$1	\$2	-\$2
■ Round-up (+∞)	\$2	\$2	\$2	\$3	-\$1
Round-to-nearest	\$1	\$2	??	??	??
Round-to-even	\$1	\$2	\$2	\$2	-\$2

- Round-to-even avoids statistical bias in repeated rounding.
 - Rounds up about half the time, down about half the time.
 - Default rounding mode for IEEE floating-point

Mathematical Properties of FP Operations

■ Exponent overflow yields +∞ or -∞

- Floats with value $+\infty$, $-\infty$, and NaN can be used in operations
 - Result usually still $+\infty$, $-\infty$, or NaN; sometimes intuitive, sometimes not

- Floating point ops do not work like real math, due to rounding!
 - Not associative: (3.14 + 1e100) 1e100 != 3.14 + (1e100 1e100)
 - Not distributive: 100 * (0.1 + 0.2) != 100 * 0.1 + 100 * 0.2
 - Not cumulative 30.000000000000003553 30
 - Repeatedly adding a very small number to a large one may do nothing

Floating Point in C

C offers two (well, 3) levels of precision

```
float 1.0f single precision (32-bit)
double 1.0 double precision (64-bit)
long double 1.0L (double double, quadruple, or "extended") precision (64-128 bits)
```

- #include <math.h> to get INFINITY and NAN constants
- Equality (==) comparisons between floating point numbers are tricky, and often return unexpected results
 - Just avoid them!

Floating Point in C

Conversions between data types:

- Casting between int, float, and double changes the bit representation.
- int → float
 - May be rounded (not enough bits in mantissa: 23)
 - Overflow impossible
- int → double or float → double
 - Exact conversion (32-bit ints; 52-bit frac + 1-bit sign)
- long \rightarrow double
 - Rounded or exact, depending on word size (64-bit \rightarrow 52 bit mantissa \Rightarrow round)
- double or float → int
 - Truncates fractional part (rounded toward zero)
 - E.g. $1.999 \rightarrow 1, -1.99 \rightarrow -1$
 - "Not defined" when out of range or NaN: generally sets to Tmin (even if the value is a very big positive)

Number Representation Really Matters

- 1991: Patriot missile targeting error
 - clock skew due to conversion from integer to floating point
- 1996: Ariane 5 rocket exploded (\$1 billion)
 - overflow converting 64-bit floating point to 16-bit integer
- 2000: Y2K problem
 - limited (decimal) representation: overflow, wrap-around
- 2038: Unix epoch rollover
 - Unix epoch = seconds since 12am, January 1, 1970
 - signed 32-bit integer representation rolls over to TMin in 2038
- other related bugs
 - 1982: Vancouver Stock Exchange 10% error in less than 2 years
 - 1994: Intel Pentium FDIV (floating point division) HW bug (\$475 million)
 - 1997: USS Yorktown "smart" warship stranded: divide by zero
 - 1998: Mars Climate Orbiter crashed: unit mismatch (\$193 million)

Floating Point and the Programmer

```
#include <stdio.h>
int main(int argc, char* argv[]) {
  float f1 = 1.0;
  float f2 = \emptyset.\emptyset;
  int i;
  for (i = 0; i < 10; i++) {
    f2 += 1.0/10.0;
  printf("0x\%08x 0x\%08x\n", *(int*)&f1, *(int*)&f2);
  printf("f1 = %10.8f\n", f1);
  printf("f2 = %10.8f\n\n", f2);
  f1 = 1E30;
  f2 = 1E-30;
  float f3 = f1 + f2;
  printf("f1 == f3? %s\n", f1 == f3 ? "yes" : "no" );
  return 0;
```

```
$ ./a.out

0x3f800000 0x3f800001

f1 = 1.000000000

f2 = 1.000000119

f1 == f3? yes
```

Summary

- As with integers, floats suffer from the fixed number of bits available to represent them
 - Can get overflow/underflow, just like ints
 - Some "simple fractions" have no exact representation (e.g., 0.2)
 - Can also lose precision, unlike ints
 - "Every operation gets a slightly wrong result"
- Mathematically equivalent ways of writing an expression may compute different results
 - Violates associativity/distributivity
- Never test floating point values for equality!
- Careful when converting between ints and floats!

Many more details for the curious...

- Denormalized values to get finer precision near zero
- Distribution of representable values
- Floating point multiplication & addition algorithms
- Rounding strategies

We won't be using or testing you on any of these extras in 351.

Denormalized Values

■ Condition: exp = 000...0

- **Exponent value:** $E = \exp Bias + 1$ (instead of $E = \exp Bias$)
- Significand coded with implied leading 0: M = 0.xxx...x₂
 - xxx...x: bits of frac

Cases

- exp = 000...0, frac = 000...0
 - Represents value 0
 - Note distinct values: +0 and −0 (why?)
- $\exp = 000...0$, frac $\neq 000...0$
 - Numbers very close to 0.0
 - Lose precision as get smaller
 - Equispaced

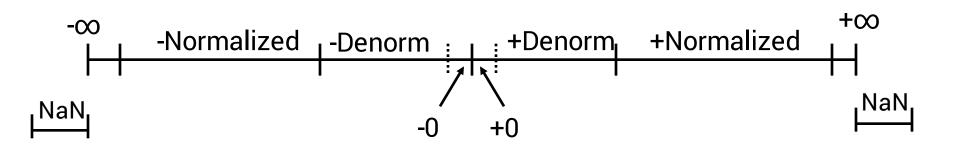
Special Values

■ Condition: exp = 111...1

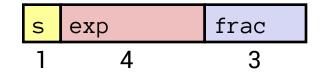
- Case: exp = 111...1, frac = 000...0
 - Represents value ∞ (infinity)
 - Operation that overflows
 - Both positive and negative
 - E.g., $1.0/0.0 = -1.0/-0.0 = +\infty$, $1.0/-0.0 = -1.0/0.0 = -\infty$

- Case: exp = 111...1, frac -000...0
 - Not-a-Number (NaN)
 - Represents case when no numeric value can be determined
 - E.g., $\operatorname{sqrt}(-1)$, $\infty \infty$, $\infty \cdot 0$, ...

Visualization: Floating Point Encodings



Tiny Floating Point Example



8-bit Floating Point Representation

- the sign bit is in the most significant bit.
- the next four bits are the exponent, with a bias of 7.
- the last three bits are the frac

Same general form as IEEE Format

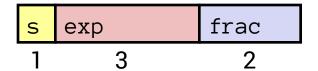
- normalized, denormalized
- representation of 0, NaN, infinity

Dynamic Range (Positive Only)

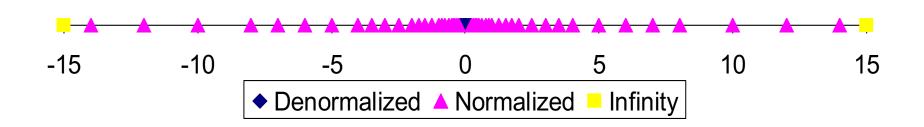
	s exp frac E Value	
Denormalized numbers	0 0000 000 -6 0 0 0000 001 -6 1/8*1/64 = 1/512 0 0000 010 -6 2/8*1/64 = 2/512 	closest to zero
	0 0000 110 -6 6/8*1/64 = 6/512 0 0000 111 -6 7/8*1/64 = 7/512	largest denorm
	0 0001 000 -6 8/8*1/64 = 8/512 0 0001 001 -6 9/8*1/64 = 9/5	smallest norm
	0 0110 110 -1 14/8*1/2 = 14/16	closest to 1 below
Normalized numbers	0 0110 111 -1 15/8*1/2 = 15/16 0 0111 000 0 8/8*1 = 1	closest to 1 below
	0 0111 001 0 9/8*1 = 9/8 0 0111 010 0 10/8*1 = 10/8	Closest to 1 above
	0 1110 110 7	largest norm
	0 1110 111 7	largest norm

Distribution of Values

- 6-bit IEEE-like format
 - e = 3 exponent bits
 - f = 2 fraction bits
 - Bias is 23-1-1 = 3



Notice how the distribution gets denser toward zero.

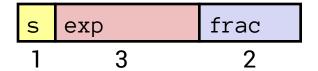


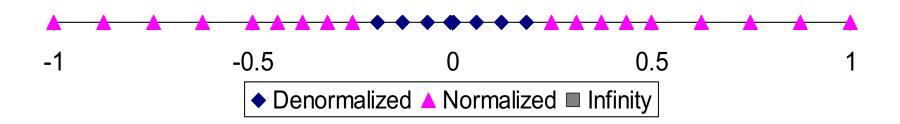
Spring 2016

Distribution of Values (close-up view)

6-bit IEEE-like format

- e = 3 exponent bits
- f = 2 fraction bits
- Bias is 3





Interesting Numbers

{single,double}

Description

Numeric Value

Zero

0.0

Smallest Pos. Denorm. 00...00 00...01

• Single $\approx 1.4 * 10^{-45}$

■ Double
$$\approx 4.9 * 10^{-324}$$

Largest Denormalized 00...00 11...11 $(1.0 - \varepsilon) * 2^{-\{126,1022\}}$

- Single $\approx 1.18 * 10^{-38}$
- Double $\approx 2.2 * 10^{-308}$

Smallest Pos. Norm. 00...01 00...00

Just larger than largest denormalized

01...11 00...00 One

1.0

Largest Normalized

11...10 11...11

 $(2.0 - \varepsilon) * 2^{\{127,1023\}}$

 $1.0 * 2^{-\{126,1022\}}$

Single ≈ 3.4 * 10³⁸

■ Double $\approx 1.8 * 10^{308}$

Special Properties of Encoding

- Floating point zero (0+) exactly the same bits as integer zero
 - All bits = 0

- Can (Almost) Use Unsigned Integer Comparison
 - Must first compare sign bits
 - Must consider 0⁻ = 0⁺ = 0
 - NaNs problematic
 - Will be greater than any other values
 - What should comparison yield?
 - Otherwise OK
 - Denorm vs. normalized
 - Normalized vs. infinity

Floating Point Multiplication

 $(-1)^{s1} M1 2^{E1} * (-1)^{s2} M2 2^{E2}$

■ Exact Result: (-1)^s M 2^E

Sign s: s1 ^ s2 // xor of s1 and s2

Significand M: M1 * M2

• Exponent E: E1 + E2

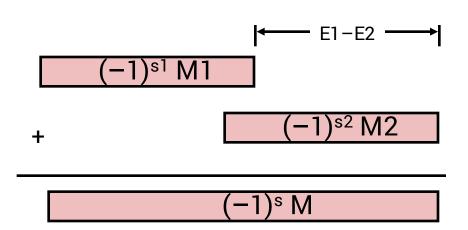
Fixing

- If M ≥ 2, shift M right, increment E
- If E out of range, overflow
- Round M to fit frac precision

Floating Point Addition

$$(-1)^{s1} M1 2^{E1} + (-1)^{s2} M2 2^{E2}$$
 Assume E1 > E2

- Exact Result: (-1)^s M 2^E
 - Sign s, significand M:
 - Result of signed align & add
 - Exponent E: E1



Fixing

- If M ≥ 2, shift M right, increment E
- if M < 1, shift M left k positions, decrement E by k</p>
- Overflow if E out of range
- Round M to fit frac precision

Closer Look at Round-To-Even

Default Rounding Mode

- Hard to get any other kind without dropping into assembly
- All others are statistically biased
 - Sum of set of positive numbers will consistently be over- or under- estimated

Applying to Other Decimal Places / Bit Positions

- When exactly halfway between two possible values
 - Round so that least significant digit is even
- E.g., round to nearest hundredth

1.2349999	1.23	(Less than half way)
1.2350001	1.24	(Greater than half way)
1.2350000	1.24	(Half way-round up)
1.2450000	1.24	(Half way-round down)

Rounding Binary Numbers

Binary Fractional Numbers

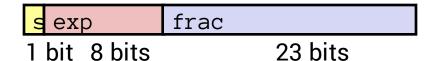
"Half way" when bits to right of rounding position = 100...2

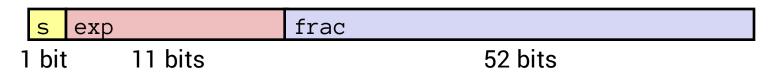
Examples

Round to nearest 1/4 (2 bits right of binary point)

Value	Binary	Rounded	Action	Rounded Value
2 3/32	10.00 <mark>011</mark> 2	10.002	(<1/2-down)	2
2 3/16	10.00 <mark>110</mark> 2	10.012	(>1/2-up)	2 1/4
2 7/8	10.11100_2	11 .00 ₂	(1/2-up)	3
2 5/8	10.10 <mark>100</mark> 2	10.102	(1/2-down)	2 1/2

Floating Point Puzzles





For each of the following C expressions, either:

- Argue that it is true for all argument values
- Explain why not true

```
int x = ...;
float f = ...;
double d = ...;
double d2 = ...;
```

Assume neither d nor f is NaN