W UNIVERSITY of WASHINGTON emory & data Spring 2016

CSE351: Memory and data

MAN, | SUCK AT THIS GAME.
CAN YOU GIVE ME
A FEW POINTERS?

‘ 0Ox3A28213A
Ox6339292C,
Ox 7363632E.

[HATE YOUL.

Y

http://xked.com/138/

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Roadmap

Memory & data

C: Java:

car *¢ = malloc(sizeof(car)); Car ¢ = new Car();
c->miles = 100; c.setMiles(100);
c->gals = 17; c.setGals(17);
float mpg = get_mpg(c); float mpg =
free(c); c.getMPG();

\ /

Assembly get_mpg:

: pushqg %rbp
Ianguage' movq %rsp, %rbp

popq %rbp

ret I
\ 4
Machine 0111010000011 000
code: 10001101 0000010000001 @
10001 00111000010
110000011111101000011111
i
Computer

system:

W UNIVERSITY of WASHINGTON

Spring 2016

Hardware: Logical View

CPU emory
TEU/S)
—
Net USB Etc.

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Hardware: Physical View

Q
O \ USB...
C) PCl-Express Slots

< 1 PCI-E X16, 2 PCI-E X1 k Panel Connectors

OQQ PC Slots

CPU
(empty slot)

Socket 775
Core2 Quad/
Core2 Extreme
Ready

Intel P45
Chipset

|/O Intel ICH10 ‘.

Chipset

controller

DDR2
1066+MHz
Dual Channel
Memory Slots
Serial ATA 0090820

Headers ~ [:, A S T] <) MemOry
Storage connections

W UNIVERSITY of WASHINGTON Memory & data

Hardware: 351 View

Instructions

= CPU executes instructions; memory stores data

m To execute an instruction, the CPU must:

fetch an instruction;

fetch the data used by theinstruction; and, finally,
execute the instruction on the data...

which may result in writing data back to memory.

Spring 2016

W UNIVERSITY of WASHINGTON Spring 2016

Hardware: 351 View

(f‘i-c—ache N) instructions

‘_."/

take 470...

"

- this week...

Memory

b

GP aqiste

m The CPU holdsinstructions temporarily in the instruction cache

m The CPU holdsdata temporarilyin a fixed number of registers

m Instructionand operandfetching is HW-controlled

m Data movementis programmer-controlled (inassemblylanguage)

m We'll learn about the instructions the CPU executes —
take cse/ee470 to find out how it actually executesthem

data

W UNIVERSITY of WASHINGTON Spring 2016

Hardware: 351 View

/ I-cache

Instructions

this week...

Memory

How are data and

Instructions \
d

ata

\represented?

s The CPU holdsinstructions tempor: How does a program e.
= The CPU holds data temporarilyin a find its data in

= Instruction fetchingis HW-controlle, MeMOry?

m Data movement is programmer-controlled.

Spring 2016

W UNIVERSITY of WASHINGTON

Memory, Data, and Addressing

m Representing information as bits and bytes
m Organizing and addressing data in memory
= Manipulating data in memory using C

m Boolean algebra and bit-level manipulations

W UNIVERSITY of WASHINGTON Spring 2016

Instructions

/ I-cache
this week...

Memory

How are data and d\\b

. . 7 ata
Instructions
represented?

W UNIVERSITY of WASHINGTON

Binary Representations

= Base 2 number representation
= Abase2digit (0 or1)is called a bit.
= Represent351,pa 0000101011111, 0r 101011111,

= Electronic implementation

Memory & data Spring 2016

Easy to store with bi-stable elements

Reliably transmitted on noisy and inaccurate wires

«— 0
3.3V —
2.8V —

0.5V —
0.0V —

)

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Describing Byte Values N
SR
= Binary 00000000,-- 11111111,
s (bi - 0| 0| 0000
= Byte=8bits (b digit
yte its (binary digits) T W
0 0 1 0 1 1 0 1 2 1210010
0%27 | 0%26 | 1%25 | 0%24 | 1%23 | 1%22 | Q%21 | 1%20 3 |3 | 0011
32 8 | 4 1| 400 4410100
5151|0101
= Decimal 0,0 --255;, 6160110
] 7|7 0111
s Hexadecimal 00,6-- FF+¢ 8 | 8 | 1000
= Byte =2 hexadecimal (or “hex” or base 16) digits 9 |9 | 1001
= Base 16 number representation A 10| 1010
= Use characters ‘0’ to‘9’ and ‘A’ to 'F’ B |11 1011
= Write FA1D37B,¢in the C language C |12]1100
- as OxFAID3TB or @xfald3Tb D [13] 1101
. E|14]| 1110
= More on specificdata types later... F115] 1111

W UNIVERSITY of WASHINGTON Spring 2016

q Instructions

‘ this week...
Memory

\CPU register3/ data

How does a
program find its
data in memory?

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Byte-Oriented Memory Organization

S &
ol |7

Conceptually, memory is a single, large array of bytes,
each with a unique address (index)

The value of each byte in memory can be read and written

Programs refer to bytes in memory by their addresses
= Domain of possible addresses = address space

But not all values (e.g., 351) fit in a single byte...

= Store addresses to “remember” where other data is in memory
* How much memory can we address with 1-byte (8-bit) addresses?

Many operations actually use multi-byte values

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Machine Words

Y192
Word size = address size = register size

\bqj\y?/ 1 kB = 2M@
Word size bounds the size of the @ 1 MB = 2770
1 GB = 2730
address space and memory 1 TB = 2rdg
= wordsize = wbits => 2% addresses 1 PB = 2750
1 EB = 2700

Until recently, most machines used 32-bit (4-byte)
words T

Prefixes for multiples of

. I - 932
Potential address space: 232 addresses e]

232 bytes =4 x 10° bytes = 4 billion bytes = _ _
4GB Decimal Binary
Value sl Value |EC JEDEC

= Became too small formemory-intensive A\moo s | Frem——

app“CatlonS 10002 M mega | 10242 Mi mebi M mega

10002 G giga 10243 Gigbi G giga
1000* T tera | 1024 Ti tebi -

1000° P peta | 1024° Pi pebi
10008 E exa ||/1024° Ei exbi

Current x86 systems use 64-bit (8-byte) words

= Potential address space:
264 addresses

264 pytes w=l.8 x 1079 bytes 10007 Z zetta || 10247 Zi zebi -
= 18 billion billion bytes 10008 Y yotta || 10248 Vi yobi -
= 18 EB (exabytes) VeTeE

(Facebook’s cold storage archive: ~1 EB)

W UNIVERSITY of WASHINGTON

Word-Oriented Memory Organization e ecma

addresses)

Bytes Addr.

m Addresses specify
locations of bytes in memory

= Address of word
= address of first byte in word

= Addresses of successive words
differ by word size (in bytes):
e.g., 4 (32-bit) or 8 (64-bit)

= AddressofwordQ,1,..10?

64-bit
Words

Addr

??

32-bit
Words

Addr

7?

Addr

??

Addr

17

Addr

2??

Addr

7?

Spring 2016

0000
0001
0002
0003
0004
0005
0006
0007
0008
0009
0010
0011
0012
0013
0014
0015

W UNIVERSITY of WASHINGTON

Spring 2016

Word-Oriented Memory Organization e ecma

m Addresses still specify
locations of bytes in memory

= Address of word
= address of first byte in word

= Addresses of successive words
differ by word size (in bytes):
e.g., 4 (32-bit) or 8 (64-bit)

= AddressofwordO,1,..10?

= Alignment

64-bit
Words

Addr

0000

Addr

0008

32-bit
Words

Addr

0000

-

Addr

0004

Addr

0008

addresses)

Bytes Addr.

0000
0001
0002
0003

—0004-

0005
0006
0007

Addr

0012

0008
0009
0010
0011
0012
0013
0014
0015

W UNIVERSITY of WASHINGTON

A Picture of Memory (32-bit view)

m A “32-bit (4-byte) word-aligned” view of memory:
In this type of picture, each row is composed of 4 bytes

Each cell is a byte

A 32-bit pointer will fit

0x00 0x01 0x02 0x03
on onerow p 2 L L

¥

Z

ey

7

iél

0x04 0x05 0x06 0x07

(note hex
addresses)

0x00
0x04
0x08
0x0C
Ox10
Ox14
Ox18
Ox1C
0x20
0x24

Spring 2016

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

A Picture of Memory (64-bit view)

m A “64-bit (8-byte) word-aligned” view of memory:
= Inthis type of picture, each row is composed of 8 bytes

= Each cell is a byte
= A 64-bit pointer will fit

ononerow
(note hex
OX’OO 0)(101 0)(102 0)(’03 0)('04 OX’05 OX’06 0)(’07 addresses)
g ¢ ¢ ¢ % ¢ % % |0x00
a2 2 |0xd
.~ 0)4 OM
Py AL Ox
///,/,// Ox
AN 0x
0x08 0x09 O0x0A 0x0B 040C 0OxOD OxOE OxOF OX
i Ox
Ox
Ox

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

A Picture of Memory (64-bit view)

m A “64-bit (8-byte) word-aligned” view of memory:
= Inthis type of picture, each row is composed of 8 bytes /ODO

= Each cell is a byte
= A 64-bit pointer will fit

ononerow
(note hex
0x00 001 0x02 0x030x04 0x05 0X06 0X07 ,qdresses)
v ¥ ¥ B ¥ ¢ 2 ¥ |10ox00
7y a3 T A A A 0x08
Pl)y O0xT\0
Py Al Ox1
///,/,// 0x2
AN 0x2
0x08 0x09 OxOA 0xOB 04OC O0xOD OxOE OxOF 0Ox3
0x3
0x4
0x4

W UNIVERSITY of WASHINGTON

Addresses and Pointers

m An address is a location in memory

Spring 2016

wide)

32-bit example

(pointers are 32-bits

m A pointeris a data object that holds an address

m The value 351 is stored at address 0x04
= 351,,=15F;,=0x0000015F

00 00 01 S5SF

0x00
0x04
0x08
0x0C
Ox10
Ox14
Ox18
Ox1C
0x20
Ox24

20

W UNIVERSITY of WASHINGTON

Addresses and Pointers

m An address is a location in memory

Spring 2016

wide)

32-bit example

(pointers are 32-bits

m A pointeris a data object that holds an address

m The value 351 is stored at address 0x04

= 351,0=15F;5=0x000001 5F

m A pointer stored at address 0x1C
points to address 0x04

Y

>

00 00 01 S5SF

00.00:00:04

0x00
0x04
0x08
0x0C
Ox10
Ox14
Ox18
Ox1C
0x20
Ox24

21

W UNIVERSITY of WASHINGTON

Addresses and Pointers

m An address is a location in memory

Spring 2016

wide)

32-bit example

(pointers are 32-bits

m A pointeris a data object that holds an address

m The value 351 is stored at address 0x04

= 351,0=15F;5=0x000001 5F

m A pointer stored at address 0x1C
points to address 0x04

= A pointer to a pointer
Is stored at address 0x24

~»{00 00 01 5F

;h 00 00 00 04

—00 00 00]

0x00
0x04
0x08
0x0C
Ox10
Ox14
Ox18
Ox1C
0x20
Ox24

22

W UNIVERSITY of WASHINGTON

Addresses and Pointers

m An address is a location in memory

Spring 2016

32-bit example

(pointers are 32-bits

m A pointeris a data object that holds an address.

m The value 351 is stored at address 0x04

= 351,0=15F;5=0x000001 5F

m A pointer stored at address 0x1C
points to address 0x04

= A pointer to a pointer
Is stored at address 0x24

m The value 12is stored
at address 0x14

= |sitapointer?

wide)
0x00
~—»{00 00 01 5F| 0x04
0x08
DX0C>
| Ox10
00 00 00-0C] 0x14
Ox18
;Loo 00 00 04l 0x1C
| 0x20
—00 00 00 10 0x24

23

W UNIVERSITY of WASHINGTON

Addresses and Pointers

A 64-bit (8-byte) word-aligned view of memory

The value 351 is stored at address 0x08
= 351,,=15F,¢=0x000001 5F

A pointer stored at
address 0x38
points to address 0x08

A pointer to a pointer
Is stored
at address 0x48

~» 00 0000, 00, 00 00 01, 5F

-

&

~» 00 00 00 00 00 00: 00 _0S8

{00 00 00 00 00 00 00 38

Spring 2016

(note hex
addresses)

0x00
0x08
Ox10
Ox18
0x20
0x28
0x30
0x38
0x40
0x48

24

W UNIVERSITY of WASHINGTON Memory & data

Data Representations
Sizes of data types (in bytes)

Spring 2016

Java Data Type C Data Type 32-bit (old) x86-64
boolean bool 1 1
byte char 1 1
char 2 2
short short int 2 2
(k> fat) NS 4
float float 4 4
long int 4 8
double double 8
long <E§E§:> \\::§:> Z:i::>
long double 16

B 0

(reference) pointer x

To use “bool1”inC, you must #include <stdbool.h> [

8
address size = word size
25

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

More on Memory Alignment In x86-64

m For good memory system performance, Intel recommends data
be aligned

= Howeverthe x86-64 hardware will work correctly regardless of alignment of
data.

= Aligned means: Any primitive object of K bytes must have an
address that is a multiple of K.

1 char

2 short

4 int, float
8

long, double, pointers

More about alignment later in the course

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Byte Ordering

= How should bytes within a word be ordered in memory?

Example:
m Store the 4-byte (32-bit) word: w

= |n what order will the bytes be stored?

s Conventions!
= Big-endian, Little-endian
= Based on Gulliver's Travels: tribes cut eggs on different sides (big, little)

27

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Byte Ordering

s Big-Endian (PowerPC, SPARC, The Internet)

= Least significant byte has highest address

s Little-Endian (x86)

= Least significant byte has lowest address

= Example
= Variable has 4-byte representation Oxal b203/di

= Address of variable is 0x100

0x100y 0x101 0x102 0x103

Big Endian al | b2 [c3 | d4

0x100 0x101T 0x102 O0x103

Little Endian «d4) c3 | b2 | al

28

W UNIVERSITY of WASHINGTON

Byte Ordering Examples

Memory & data

Spring 2016

Decimal: 12345

Binary: 0011 0000 0011 1001

Hex: 3 0 3 9
|A32, x86-64 SPARC
(little endian) (big endian)

int x = 12345; 0x091 0x00
0x0T 0x0T
- 0x02 0x02
0x03 0x03
32-bit 64-bit
long int y = 12345: IA32 x86-64 SPARC SPARC
\ 0x00[39—+ 39 | 0x00 0x00 00 00 |ox00
0x0T| 30 =1 30 [0x01 0x01] 0O 00 _|0x0:
0x02[00 =] 00 [0x02 0x02| 30 00 [0x02
0x03|_00 J~—{ 00] 0x03 0x03[39 00 |0x0s
(A long int isthe size W 00 |ox04 —° 00 |oxo04
of a word) 00 | 0x05 00 | 0x05
00 |ox06 30 |0x06
‘OO 0x07 39 |0x07

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Reading Byte-Reversed Listings

m Disassembly

= Take binary machine code and generate an assembly code version
= Does thereverse of the assembler

= Example instruction in memory
= add value 0x12ab to register ‘ebx’ (a special location in the CPU)

Address Instruction Code Assembly Rendition

8048366: _81c3ab120 add $0x12ab,%ebx

30

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Reading Byte-Reversed Listings

m Disassembly

= Take binary machine code and generate an assembly code version
= Does thereverse of the assembler

= Example instruction in memory
= add value 0x12ab to register ‘ebx’ (a special location in the CPU)

Address Instruction Code Assembly Rendition
8048366: 81 c3,ab 120000 add S0x12ab,%ebx
e J pe

Deciphering numbers /

m Value: Ox12ab
m Padto 32 bits: 0x000012ab
= Split into bytes: 000012 ab

= Reverse (little-endian): ab 12 00 00

31

W UNIVERSITY of WASHINGTON Spring 2016

Memory, Data, and Addressing

= Representing information as bits and bytes
s Organizing and addressing data in memory
= Manipulating data in memory using C

m Boolean algebra and bit-level manipulations

32

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

& = ‘address of’

Addresses and Pointers In C+=value at address

o b or ‘dereference’
iy ot ™
. . . * 3 .
Declaresa variable,ptr, thatis a pointerto Is also used with

i i - iable declarati
(i.e., holds the address of) an int in memory] variable declarations

%nt X =9 Declarestwo variables,x and y, that hold
int y = 2; ints, and sets them to 5 and 2, respectively

(4

X

ptr = &x;

ts ptr to the address of x.
Now, “ptr points to x"

["Dereference ptr”

y =1 + xptr; Whatis x(&y) ?

[Sets y to “1 plus the value stored at the address held by ptr, }
because ptr points to x, this is equivalent to y=1+x;

33

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

CSE351: April 1

m Notes

= Slides are posted on the schedule (pdf before lecture, ppt w/ scribbles after)
(https://courses.cs.washington.edu/courses/cse351/16sp/schedule.html)

m Survey

= CvsJava (inyourwords!)

= Lower level language
Not object-oriented,
Allocate memory manually / manual garbage collections
Have to do more things on your own like defining of arrays
Pointers are a big issue and easier to mess up compared to Java
= Alot more tedious than Java

= Concerns
= Have no idea what the assignments will look like

= Fast-paced
= Missing necessary background
= Not familiar with C or Linux

34

W UNIVERSITY of WASHINGTON

: : 32-bit example
ASSlgnment N C (pointers are 32-bits wide)

= A variable is represented by a memory location

= Initially, it may hold any value

m Intx,y;
= XxIis at location 0x04,yis at 0x18

0x00 0x01

Spring 2016

& = ‘address of’
* = ‘'value at address’

or ‘dereference’

0x02 0x03

A7 00

32

00

00 01

29

F3

EE EE

EE

EE

FA CE

CA

FE

2600

00

00

00 00

10

00

01 00

00

00

FF 00

F4

96

00 00

00

00

00:42

17

34

0x00
0x04
0x08
0x0C
Ox10
Ox14
Ox18
Ox1C
0x20
Ox24

35

W UNIVERSITY of WASHINGTON

: : 32-bit example
ASSlgnment N C (pointers are 32-bits wide)

= A variable is represented by a memory location

= Initially, it may hold any value

m Intx,y;
= XxIis at location 0x04,yis at 0x18

0x00 O0x01 0x02 0x03

00 01 29 F3

01 .00 00 00

Spring 2016

& = ‘address of’
* = ‘'value at address’
or ‘dereference’

0x00
0x04
0x08
0x0C
Ox10
Ox14
Ox18
Ox1C
0x20
Ox24

36

W UNIVERSITY of WASHINGTON Memory & data

: : 32-bit example
ASSlgnment N C (pointers are 32-bits wide)

m Left-hand-side = right-hand-side;

= |LHS must evaluate to a memory location

* RHS must evaluate to a value (could be an address!)

= Store RHS value at LHS location
m Intx,y;

m X=0;

0x00 O0x01 0x02 0x03

00:00:00:00|

01 .00 00 00

Spring 2016

& = ‘address of’
* = ‘'value at address’
or ‘dereference’

0x00
0x04
0x08
0x0C
Ox10
Ox14
Ox18
Ox1C
0x20
Ox24

37

W UNIVERSITY of WASHINGTON

Assignment in C

Spring 2016

32-bit example (& ='addressof’
(pointers are 32-bits wide) [* = ‘'value at address

m Left-hand-side = right-hand-side;
= |LHS must evaluate to a memory location
* RHS must evaluate to a value (could be an address!)
= StoreRHS value at LHS location

m Intx,y;
m XxX=0;
my= OXBCDOZQQ;

0x00 O0x01 0x02 0x03

00.00:00 00

(0027 D0 3C

little endian!

or ‘dereference’

0x00
0x04
0x08
0x0C
Ox10
Ox14
Ox18
Ox1C
0x20
Ox24

38

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

. . 32-bit example (& ='addressof’
ASSlgnment |n C (pointers are 32-bits wide) * ='value at address

or ‘dereference’

m Left-hand-side = right-hand-side;
= |LHS must evaluate to a memory location
* RHS must evaluate to a value (could be an address!)

= Store RHS value at LHS location
0x00 0x01 0x02 0x03

m intxy; 0x00
. x=0: 0327 00 3C| 0x04 x

s y=0x3CD02700; 0x0C

0x10

m X=y+3; Ox14
= Getvalueaty,add 3, putitinx 00:27 DO:3Cl 0x18 y

0x1C

0x20

0x24

39

W UNIVERSITY of WASHINGTON

Memory & data

ASSlgnment |n C (pointers are 32-bits wide)

Spring 2016

32-bit example |& = address of

m Left-hand-side = right-hand-side;
= |LHS must evaluate to a memory location
* RHS must evaluate to a value (could be an address!)
= StoreRHS value at LHS location

m Intx,y;

m XxX=0;

m Y=0x3CD02700;
m X=y+3;

= Getvalueaty,add 3, putitinx

m Int*z

0x00 O0x01 0x02 0x03

03 27 DO 3C

00 27 DO 3C

* = ‘'value at address’
or ‘dereference’

0x00
0x04
0x08
0x0C
Ox10
Ox14
Ox18
Ox1C
0x20
Ox24

40

W UNIVERSITY of WASHINGTON

Memory & data

Spring 2016

32-bit example |& = address of

ASSlgnment |n C (pointers are 32-bits wide)

m Left-hand-side = right-hand-side;
= |LHS must evaluate to a memory location
* RHS must evaluate to a value (could be an address!)
= StoreRHS value at LHS location

m Intx,y;
m XxX=0;
m Y=0x3CD02700;

m X=y+3; Pointer arithmetic

= Getvalueaty .uad3, putitinx

m Int*z=8&y+3;

= Getaddressofy,add ???, putitinz

0x00 O0x01 0x02 0x03

03 27 DO 3C

* = ‘'value at address’
or ‘dereference’

0x00
0x04 x
0x08
0x0C
Ox10
Ox14

00 27 DOBCH 0x18
)

Ox1C
0x20 z
0x24

41

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

. . 32-bit example (& ='addressof’
ASSlgnment |n C (pointers are 32-bits wide) * ='value at address

or ‘dereference’

m Left-hand-side = right-hand-side;
= |LHS must evaluate to a memory location
* RHS must evaluate to a value (could be an address!)

= Store RHS value at LHS location
0x00 0x01 0x02 0x03

m intxy; 0x00
. x=0: 03727 DO 3C| 0x04 x

' 0x08

= y=0x3CD027 Pointer arithmetic 8§?8

m X=y+3; can be dangerous Ox14
" Getvalueaty, agy 00 27 DO 3C| 0x18 vy

m Int*z=8&y+3; 0x1C
. ’ o 24 00 00 00| 0x20 =z

= Getaddressofy,add 12, putitinz 0x24

&y = 0x18 = 24 (decimal) I/ N

+_;’§= oo Pointer arithmetic is scaled by size of target type]

42

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

. . 32-bit example (& ='addressof’
ASSlgnment |n C (pointers are 32-bits wide) * ='value at address

or ‘dereference’

m Left-hand-side = right-hand-side;
= |LHS must evaluate to a memory location
* RHS must evaluate to a value (could be an address!)

= Store RHS value at LHS location
0x00 0x01 0x02 0x03

m intxy; 0x00
L =0 0327 DO 3C| 0x04 x
' 0x08
s y=0x3CD02700; 0x0C
0x10
m X=y+ 3; Ox14
= Getvalueaty,add 3, putitinx 00 27 :D0 3C| 0x18 y
ko = : Ox1C
] "-‘t Gzet a(i(ife:s?);y,add'lz putitinz 24 00 00 00 8§%2 z
m *z=Vy,

= What does thisdo?

43

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

. . 32-bit example (& ='addressof’
ASSlgnment |n C (pointers are 32-bits wide) * ='value at address

or ‘dereference’

m Left-hand-side = right-hand-side;
= |LHS must evaluate to a memory location
= RHS must evaluate to a value (could be an address!)

= Store RHS value at LHS location
0x00 0x01 0x02 0x03

m intxy; 0x00
=0 03 27 DO 3C| 0x04 x

' o 0x08

= y=0x3Ch The target of a pointer is 8§?8

m X=y+3; also a memory location Ox14
= Getvalue at -3, putitinx 00:27 DO 3C| 0x18 y

: . : 0x1C

m Int*z=" 3,

"= (_caddressofy,add 12,putitinz 24 00 00 001 Ox20 z

00.27 DO 3C|] 0x24

m *z=Yy,

= Get valueofy, putit at the address storedin z
44

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Arrays are adjacentlocations in memory

Al"l"ayS N C storing the same type of data object
Declaration: int 3[6]; ais a name for the array's address
64-bit example
element type a[-l] (pointers are 64-bits
number of a[3 wide)
name elements al5
Ox0 Ox1 0x2 Ox4 O0Ox5 O0x6 Ox7
0x8 0x9 OxA OxC OxD OxE OxF
0x00 AW\
0x08 AN\
a[0] 0x10 AN
al2] 0x18 \\
al4] 0x20
0x28
0x30
0x38
0x40
0x48

45

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Arrays are adjacentlocations in memory

ArrayS IN C storing the same type of data object

Declaration: int a[6]; a is aname for the array’'s address

Indexing: al@] = 0x015f; The address of a[i] is the address of a[0]
a[5] = al@];

plus i times the elementsize in bytes

OxO0 Ox1 Ox2 O0x3 O0x4 O0x5 O0xe Ox7
Ox8 O0x9 OxA OxB O0OxC O0OxD OxE OxF

46

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Arrays are adjacentlocations in memory

ArrayS IN C storing the same type of data object
Declaration: int a[6]; a is aname for the array’'s address
Indexing: al@] = 0x015f; The address of a[i] is the address of a[0]
al5] = alo]; plus i times the element size in bytes
No bounds a[6] = ©xBAD;
check: a[-1] = ©xBAD;
Ox0O Ox1 Ox2 O0x3 O0x4 Ox5 Ox6 Ox7
Ox8 0x9 OxA OxB OxC OxD OxE OxF
0x00
0x08
a[@0]O0x10|5F 01 00: 00
al2] O0x18
a[4]0x20 5F 01 00 ; 00
0x28
0x30
0x38
0x40
0x48

a7

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Arrays are adjacentlocations in memory

ArrayS IN C storing the same type of data object
Declaration: int a[6]; a is aname for the array’'s address
Indexing: al@] = 0x015f; The address of a[i] is the address of a[0]
al5] = alo]; plus i times the element size in bytes
No bounds a[6] = ©xBAD;
check: a[-1] = 0OxBAD;
Ox0O Ox1 Ox2 O0x3 O0x4 Ox5 O0x6 Ox7
Pointers: intx p; 0x8 0x9 OxA 0xB 0xC OxD OxE OxF
p = a; 0x00
p = &a[@Q]; 0x08 AD: 0B :00 .00
*p = OxA; a[0] 0x10[5F ' 01 00 00
a[2]0X18
a[4]0x20 5F 01 00 ; 00
0x28 |AD: OB 00 : 00
0x30
0x38

48

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Arrays are adjacentlocations in memory

ArrayS IN C storing the same type of data object

Declaration: int a[6]; a Is a name for the array’s address

Indexing: alo] 3 QXm?f; The address of a[i] is the address of a[0]
al5] = alo]; plus i times the elementsizein bytes
No bounds a[6] = ©xBAD;
check: a[-1] = 0OxBAD;
_ Ox0O Ox1 0x2 O0x3 O0x4 Ox5 O0x6 Ox7
Po|nters 1Nntx* P, Ox8 O0x9 OxA O0xB O0xC O0xD OxE OxF
p = a; 0x00
p = &a[0Q]; 0x08 AD 0B 00 00
*p = OxA; al0] 0x1p{0A" 00 00 00
array indexing = address arithmetic a[2]0x1P
(both scaled by the size of the type) 3[4]0)(2:) oF ' 01 00 . 00
0x2B |AD: 0B: 00 00
p[1] = 0xB; 0x3b
x(p + 1) = 0xB; 0x3B
P=p+ 2; p 0x4Q4 10 00 00 00:00 :00 '00 :00
0x48

49

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Arrays are adjacentlocations in memory

ArrayS IN C storing the same type of data object

Declaration: int a[6]; a is aname for the array’'s address

Indexing: a[o] 3 QXm?f; The address of a[i] is the address of a[0]
al5] = alo]; plus i times the element size in bytes

No bounds a[6] = OxBAD;
check: a[-1] = 0OxBAD;
Ox0O Ox1 Ox2 O0x3 O0x4 Ox5 O0x6 Ox7

p = a; 0x00
p = &a[0]; 0x08 AD: 0B :00 .00
*p = OxA; a[@0]OxT0J0A 00 00; 00J0OB; 00 ' 00 ; 00

array indexing = address arithmetic a[2] Ox1¢
(both scaled by the size of the type) 3[4]8)(; S HA R 5F | 01 00 _ 00

X
gl = @xdey; 0x3[
x(p + 1) = 0xB; 0x3

P=p+ 2, 00 00 00 00 00 00

50

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Arrays are adjacentlocations in memory

ArrayS IN C storing the same type of data object

Declaration: int a[6]; a is aname for the array’'s address

Indexing: a[o] 3 QXm?f; The address of a[i] is the address of a[0]
al5] = alo]; plus i times the element size in bytes

No bounds a[6] = OxBAD;
check: a[-1] = 0OxBAD;
Ox0O Ox1 Ox2 O0x3 O0x4 Ox5 O0x6 Ox7

p=2a; 0x00
p = &al0]; 0x08 AD: 0B ;00 :00

*p = OXA; a[@] 0x10|0A 00 00: 00JOB: 00 ; 00 . OO

array indexing = address arithmetic a[2]Ox110C 00 00 00
(both scaled by the size of the type) a[4]0x2[] 5F 01 00 00
0x2B |AD 0B 00 : 00

p[1] = 0xB;
x(p + 1) = 0xB; Ox3p

P=p+ 2, 00 00 00 00 00 00

51

W UNIVERSITY of WASHINGTON

Representing strings

m A C-style stringisrepresented by an array of bytes (char)

Memory & data

— Elements are one-byte ASCII codes for each character
— ASCII = American Standard Code for Information Interchange

Spring 2016

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

space
!
#
S
%
&

’

(
)

48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

VW oONOCUTDNWN-=-O

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79

OZTr X« —ITOOmMMOUOANm@>0®

80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

> m P N <X XSET<CHWVwWHmO ©

96

97

98

99

100
101
102
103
104
105
106
107
108
109
110
111

O 3 3 —X“—= — DU -~ ON T

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127

l W —mM N X T < C w0 = 00

del

52

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Null-terminated Strings

m For example, “Harry Potter” can be stored as a 13-byte array

72 | 97 | 1141 114|121 | 32 | 80 | 111 | 116 | 116 | 101 | 114 | O
H a r r y P o] t t e r \0

s Why do we put a0, or null zero, at the end of the string?
= Note the special symbol: string[12] ="\0’;

s How do we compute the string length?

53

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Endianness and Strings
C (char = 1 byte)

IA32,x86-64 SPARC
char s[6] = "12345"; 32, x86-6

(little endian) (big endian)

31 |¢ 31 ok

50132 J——l 32 >

0x31 = 49 decimal = ASCII ‘1’ 33 | 1 33 3
34 | " 34 ‘4’

35 | | 35 '5’

00 | + 00 \0’

m Byte ordering (endianness) is not an issue for 1-byte values

= The whole array does not constitute a single value
= Individual elements are values; chars are single bytes

= Unicode characters — up to 4 bytes/character
= ASCII codes still work (just add leading zeros)
= Unicode can support the many characters in all languages in the world

= Java and C have libraries for Unicode (Java commonly uses 2 bytes/char)
54

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Examining Data Representations

m Code to print byte representation of data

= Anydata typecan be treated as a byte array by casting it to char
= C has unchecked casts. << DANGER >>

void show_bytes(charx start, int len) {
int i:
for (i = 0; i < len; i++)
printf("%p\tox%.2x\n", start+i, x(start+i));
printf("\n");

1
void show_int (int x) {
show_bytes((char %) 8&x, sizeof(int)); printf directives:
} %p Print pointer
\t Tab

%X Print value as hex
\n New line

W UNIVERSITY of WASHINGTON

show_bytes Execution Example

int a = 12345, // represented as 0x00003039
printf("int a = 12345;\n");

ShOW_int<a); // show_bytes((char) &a, sizeof(int));

Result (Linux x86-64):

int a = 12345;

OxTfffb7fr1dbc ©0x39
OxTfffb7f71dbd 0x30
Ox7fffb7f71dbe 0x00
OxTfffbT7f71dbf 0x00

Spring 2016

56

W UNIVERSITY of WASHINGTON Spring 2016

Memory, Data, and Addressing

= Representing information as bits and bytes
s Organizing and addressing data in memory
= Manipulating data in memory using C

m Boolean algebra and bit-level manipulations

57

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Boolean Algebra

m Developed by George Boole in 19th Century

= Algebraic representation of logic
= Encode“True” as 1 and “False” as 0

= AND: A & B =1 whenbothAis1andBis 1
= OR: A | B =1 wheneitherAis1orBis1
= XOR: A ~B =1 wheneitherAis1orBis 1,butnot both
= NOT: ~A = 1 when Ais 0 and vice-versa

= DeMorgan'slLaw: ~(A | B) = ~A & ~B
~(A & B) = ~A | ~B

AND OR XOR NOT
& | 0 1 | 0 1 Nl eoo1 ~
O |0 0O © 10 1 | © 10 1 0 | 1
1 0o 1 1 1 1 1 1 0 1 9]

58

W UNIVERSITY of WASHINGTON

Memory & data Spring 2016

General Boolean Algebras

m Operate on bit vectors
= QOperations applied bitwise

01101001 01101001 01101001
& 01010101 | 01010101 N 01010101 ~ 01010101
01000001 01111101 00111100 10101010

= All of the properties of Boolean algebra apply

01010101
N 01010101
915%14151%.415)

= How does this relate to set operations?

59

W UNIVERSITY of WASHINGTON Memory & data

Representing & Manipulating Sets

= Representation

= A w-bit vectorrepresents subsets of {0, .., w—1}
= g =1iffjEA

01101001 {0,3,5,6}
0543210
01010101 {0,2,4,6}
6543210
m Operations
= g Intersection 01000001 {0,6}
= Union 91111101 {0,2,3,4,56}
= A Symmetric difference 0111100 {2,3,4,5}

= ~ Complement 10101010 {1,3,5,7}

Spring 2016

60

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Bit-Level Operations in C

m & | N~
= Apply to any “integral” data type
» long, int, short, char, unsigned
= View arguments as bit vectors

s Examples (char data type)

" A~Ox41 ——> OxBE
~01000001 , ——> 10111110,

" AOX00 —> OxFF
~00YVYVA , ——> 11111111,

= Ox09 & OxH5 ——> 0x41

01101001, & 01010101, —> 01000001,

" Qx69 | @xB5 —> x7D
01101001, | 01010101, ——> 01111101,

s Some bit-twiddling puzzles in Lab 1

61

W UNIVERSITY of WASHINGTON Memory & data Spring 2016

Contrast: Logic Operations in C

m Contrast to logical operators
=&] !
= 0is “False”
= Anything nhonzero is “True”
= Alwaysreturn0 or1
= Early termination a.k.a. short-circuit evaluation

s Examples (char data type)
= 10x41 --> 0x00

l0x00 —> 0x01
ox41 —> 0x01

Ox68 && ©Ox055 —-—-> 0x01
Ox68 || 0x55 -—-> 0x01
p && xp++ (avoids null pointer access, null pointer = 0x0000 0000 0000 0000)

62

