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Spring 2016 Introduction

Welcome!
10 weeks to see the key abstractions “under the hood” to 
describe “what really happens” when a program runs

§ How is it that “everything is 1s and 0s”?
§ Where does all the data get stored and how do you find it?
§ How can more than one program run at once?

§ What happens to a Java or C program before the hardware can execute it?
§ What is The Stack and The Heap?

§ And much, much, much more…

An introduction that will:
§ Profoundly change/augment your view of computers and programs 

§ Connect your source code down to the hardware
§ Leave you impressed that computers ever work.
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Who: Course Staff
¢ Brandon Holt: 5th year PhD student

§ Excited to teach what was my favorite class in undergrad.

§ I like: compilers, mountains, and sandwiches (esp. w/ avocado).
§ First time teaching an entire class, so help me out!

¢ TAs: 8 (!)
§ Alfian, Anton, Anthony, Kevin, Sarang, Shan, Xi, Yufang
§ all have taken the course and most have TA’d 351 in the past.

¢ Office hours will be figured out ASAP

¢ Get to know us!
§ We are here to help you succeed

§ And to make the course better – with your help!
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Who are you?
¢ ~116(!) registered

¢ CSE majors, EE majors, and more!
§ Most of you will find almost everything in the course “brand new”

¢ Please get to know each other, and help each other out

¢ See me if you are interested in taking the class but are not yet 
registered. 
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Staying In Touch
¢ Course web page: http://cs.uw.edu/351

§ Schedule, policies, labs, homeworks, and everything else

¢ Catalyst discussion board
§ Keep in touch outside of class – help each other
§ Staff will monitor and contribute

¢ Course mailing list cse351a_sp16@u.washington.edu
§ Low traffic – mostly announcements; your @uw.edu is subscribed

¢ Office hours, appointments, drop-ins
§ Spread throughout the week

¢ Staff e-mail (Brandon + TAs): cse351-staff@cs.uw.edu
§ For things that are not appropriate for the discussion board

¢ Anonymous feedback
§ Comments about anything related to the course where you would feel better not 

attaching your name, linked from website, goes directly to Brandon.
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Course Components
¢ Lectures (28)

§ Introduce the concepts; supplemented by textbook

¢ Sections (10)
§ Applied concepts, important tools and skills for labs, clarification of 

lectures, exam review and preparation

¢ Written homework assignments (4)
§ Mostly problems from textbook to solidify understanding

¢ Programming labs/assignments (5, plus “lab 0”)
§ Provide in-depth understanding (via practice) of an aspect of system

¢ Exams (midterm + final)
§ Test your understanding of concepts and principles
§ Midterm Friday, April 29, in class
§ Final time set by the university: Wednesday June 8,  2:30-4:20PM
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Policies: Grading
¢ Exams (45%): 15% midterm, 30% final

§ Many old exams on course website (but now 64-bit, +new instructor)

¢ Written assignments (20%): weighted according to effort
§ We’ll try to make these about the same

¢ Lab assignments (35%): weighted according to effort
§ These will likely increase in weight as the quarter progresses

¢ Late days:
§ 3 late days to use as you wish throughout the quarter – see website

¢ Collaboration:
§ http://www.cse.uw.edu/education/courses/cse351/16sp/policies.html

§ http://www.cse.uw.edu/students/policies/misconduct
§ Do not cheat!!! It’s an affront to the course staff, your fellow students, and yourself.  

CSE courses are special and valuable – keep it that way!
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Textbooks
¢ Computer Systems: A Programmer’s Perspective, 3rd Edition

§ Randal E. Bryant and David R. O’Hallaron

§ Prentice-Hall, 2015
§ http://csapp.cs.cmu.edu
§ 3rd edition includes complete rewrite of Chapter 3

§ All code examples in x86-64
§ http://csapp.cs.cmu.edu/3e/changes3e.html

§ This book really matters for the course!
§ How to solve labs
§ Practice problems typical of exam problems

¢ A good C book – any will do
§ The C Programming Language (Kernighan and Ritchie)

§ C: A Reference Manual (Harbison and Steele)
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Videos / Online course
¢ Gaetano Borriello and Luis Ceze made videos in 2013 covering 

the course content [for an online version of the course]
§ And self-check quiz questions

¢ These are a great resource – encourage you to watch them
§ Generally optional unless class is cancelled or something

§ Occasionally may “require before class” so you don’t get lost in an example

¢ But some content has changed
§ Now “all 64-bit” so some videos may have extra information no longer relevant.
§ This means we may get to new things that class didn’t get to.
§ If in doubt, go with what we talked about in this class.
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Other details

¢ Consider taking CSE 391 Unix Tools, 1 credit, useful skills
§ Available to all CSE majors and everyone registered in CSE351

¢ Office hours will be held this week, check web page for times
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Concise To-Do List
¢ Review syllabus, course goals, collaboration policy, etc.: 

http://cs.uw.edu/351

¢ Make sure you are receiving announcement emails

¢ Beginning-of-course survey, “due” Friday

¢ Lab 0, due Monday, January 11 at 5pm
§ Make sure you get our virtual machine set up and are able to do work
§ Basic exercises to start getting familiar with C

§ Credit/no-credit
§ Get this done as quickly as possible 

¢ Section Thursday
§ Please install the virtual machine BEFORE coming to section
§ BRING your computer with you to section

§ Includes activities to help you get started with Lab 0
12
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Anything I forgot about course mechanics before we discuss, 
you know, hardware and software?
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1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

The Hardware/Software Interface
¢ What do we mean by hardware? software?

¢ What is an interface?

¢ Why do we need a hardware/software interface?

¢ Why do we need to understand both sides of this interface?
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C/Java, assembly, and machine code
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if (x != 0) y = (y+z)/x;

cmpl $0, -4(%ebp)
je .L2
movl -12(%ebp), %eax
movl -8(%ebp), %edx
leal (%edx, %eax), %eax
movl %eax, %edx
sarl $31, %edx
idivl -4(%ebp)
movl %eax, -8(%ebp)

.L2:

1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

ê

ê

Assembly Language

High Level Language 
(e.g. C, Java)

Machine Code
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C/Java, assembly, and machine code
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1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

ê

ê

Assembly Language

High Level Language 
(e.g. C, Java)

Machine Code

Compiler

Assembler

ê

ê

if (x != 0) y = (y+z)/x;

cmpl $0, -4(%ebp)
je .L2
movl -12(%ebp), %eax
movl -8(%ebp), %edx
leal (%edx, %eax), %eax
movl %eax, %edx
sarl $31, %edx
idivl -4(%ebp)
movl %eax, -8(%ebp)

.L2:
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C/Java, assembly, and machine code
l The three program fragments 

are equivalent
l You'd rather write C! 

(more human-friendly)
l Hardware likes bit strings!

l Everything is voltages
l The machine instructions are 

actually much shorter than the 
number of bits we would need 
to represent the characters in 
the assembly language
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1000001101111100001001000001110000000000
0111010000011000
10001011010001000010010000010100
10001011010001100010010100010100
100011010000010000000010
1000100111000010
110000011111101000011111
11110111011111000010010000011100
10001001010001000010010000011000

ê

ê

if (x != 0) y = (y+z)/x;

cmpl $0, -4(%ebp)
je .L2
movl -12(%ebp), %eax
movl -8(%ebp), %edx
leal (%edx, %eax), %eax
movl %eax, %edx
sarl $31, %edx
idivl -4(%ebp)
movl %eax, -8(%ebp)

.L2:
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HW/SW Interface: Historical Perspective
¢ Hardware started out quite primitive
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HW/SW Interface: Historical Perspective
¢ Hardware started out quite primitive
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Jean Jennings (left), Marlyn Wescoff (center), and Ruth 
Lichterman program ENIAC at the University of Pennsylvania, 
circa 1946.Photo: Corbis
http://fortune.com/2014/09/18/walter-isaacson-the-women-of-eniac/

http://hightechhistory.com/2011/10/24/the-late-dennis-macalistair-ritchie-
innovator-of-the-%E2%80%9Cc%E2%80%9D-programming-language-and-
the-unix-operating-system-an-appreciation/
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HW/SW Interface: Historical Perspective
¢ Hardware started out quite primitive

§ Programmed with very basic instructions.

§ E.g. a single instruction for adding two integers

¢ Software was also very basic
§ Closely reflected the actual hardware it was running on

§ Specify each step manually

20
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HW/SW Interface: Assemblers
¢ Life was made a lot better by assemblers

§ 1 assembly instruction = 1 machine instruction, but...

§ different syntax: assembly instructions are character strings, not bit strings, a lot 
easier to read/write by humans

§ can use symbolic names

21

Hardware

Assembler specification

Assembler
User 

program 
in 

assembly 
language
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HW/SW Interface:
Higher-Level Languages
¢ Higher level of abstraction:

§ 1 line of a high-level language is compiled into many 
(sometimes very many) lines of assembly language

22
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HW/SW Interface: 
Code / Compile / Run Times

HardwareAssemblerC
compiler

Code Time Compile Time Run Time

Note: The compiler and assembler are just programs, developed using
this same process.

23

.exe file.c file
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The Big Theme: 
Abstractions and Interfaces

¢ Computing is about abstractions
§ (but we can’t forget reality)

¢ What are the abstractions that we use?

¢ What do you need to know about them?
§ When do they break down and you have to peek under the hood?

§ What bugs can they cause and how do you find them?

¢ How does the hardware (0s and 1s, processor executing 
instructions) relate to the software (C/Java programs)?
§ Become a better programmer and begin to understand the important concepts that 

have evolved in building ever more complex computer systems

24



Spring 2016 Introduction

Roadmap
car *c = malloc(sizeof(car));
c->miles = 100;
c->gals = 17;
float mpg = get_mpg(c);
free(c);

Car c = new Car();
c.setMiles(100);
c.setGals(17);
float mpg =

c.getMPG();

get_mpg:
pushq   %rbp
movq    %rsp, %rbp
...
popq    %rbp
ret

Java:C:

Assembly 
language:

Machine 
code:

0111010000011000
100011010000010000000010
1000100111000010
110000011111101000011111

Computer 
system:

OS:

Memory & data
Integers & floats
Machine code & C
x86 assembly
Procedures & 
stacks
Arrays & structs
Memory & caches
Processes
Virtual memory
Memory allocation
Java vs. C
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Little Theme 1: Representation
¢ All digital systems represent everything as 0s and 1s

§ The 0 and 1 are really two different voltage ranges in the wires
§ Or magnetic positions on a disc, or hole depths on a DVD, or even DNA…

¢ “Everything” includes:
§ Numbers – integers and floating point
§ Characters – the building blocks of strings
§ Instructions – the directives to the CPU that make up a program
§ Pointers – addresses of data objects stored away in memory

¢ These encodings are stored throughout a computer system
§ In registers, caches, memories, disks, etc.

¢ They all need addresses
§ A way to find them
§ Find a new place to put a new item 
§ Reclaim the place in memory when data no longer needed
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Little Theme 2: Translation
¢ There is a big gap between how we think about programs and data 

and the 0s and 1s of computers

¢ Need languages to describe what we mean

¢ These languages need to be translated one level at a time

¢ We know Java as a programming language
§ Have to work our way down to the 0s and 1s of computers
§ Try not to lose anything in translation!

§ We’ll encounter Java byte-codes, C language, assembly language, and machine 
code (for the X86 family of CPU architectures)
§ Not in that order, but will all connect by the last lecture!!!
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Little Theme 3: Control Flow
¢ How do computers orchestrate everything they are doing?

¢ Within one program:
§ How do we implement if/else, loops, switches?
§ What do we have to keep track of when we call a procedure, and then another, and 

then another, and so on?

§ How do we know what to do upon “return”?

¢ Across programs and operating systems:
§ Multiple user programs
§ Operating system has to orchestrate them all 

§ Each gets a share of computing cycles
§ They may need to share system resources (memory, I/O, disks)

§ Yielding and taking control of the processor
§ Voluntary or “by force”?

28



Spring 2016 Introduction

Writing Assembly Code??? In 2016???
¢ Chances are, you’ll never write a program in assembly

§ Compilers are much better and more patient than you are

¢ But: understanding assembly is the key to the machine-level 
execution model
§ Behavior of programs in presence of bugs

§ High-level language model breaks down
§ Tuning program performance

§ Understand optimizations done/not done by the compiler
§ Understanding sources of program inefficiency

§ Implementing system software
§ Operating systems must manage process state

§ Fighting malicious software

§ Using special units (timers, I/O co-processors, etc.) inside processor!
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Course Outcomes
¢ Understanding of some of the abstractions that exist 

between programs and the hardware they run on, why 
they exist, and how they build upon each other

¢ Knowledge of some of the details of underlying 
implementations
§ Less important later, but cannot “get it” without “doing it” and “doing it” requires 

details

¢ Become more effective programmers
§ Understand some of the many factors that influence program performance
§ More efficient at finding and eliminating bugs

§ Facility with more languages that we use to describe programs and data
§ Better understand new hardware

¢ Prepare for later classes in CSE
30
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CSE351’s role in the CSE Curriculum
¢ Pre-requisites

§ 142 and 143: Intro Programming I and II

§ Also recommended: 391: System and Software Tools

¢ Complementary to:
§ CSE311->CSE369->EE371 / EE271->EE371: hardware design “below us”

§ “arranging wires to do addition and stuff”
§ EE/CSE474 embedded systems: CSE351 invaluable but not a pre-req [EE]

§ CSE331/332/341: high-level software design and structures

¢ Essential pre-req for:
§ CSE401: compilers – write a program to do CSE351 translations

§ CSE333: building well-structured systems in C/C++
§ Courses after CSE333: OS, networks, distributed systems, graphics, …
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Course Perspective
¢ CSE351 will make you a better programmer

§ Purpose is to show how software really works

§ Understanding the underlying system makes you more effective
§ Better debugging
§ Better basis for evaluating performance
§ How multiple activities work in concert (e.g., OS and user programs)

§ Not just a course for hardware enthusiasts!
§ What every CSE major needs to know (plus many more details)
§ See many patterns that come up over and over in computing (like caching)

§ Like other 300-level courses, 
“stuff everybody learns and uses and forgets not knowing”

¢ CSE351 presents a world-view that will empower you
§ The intellectual tools and software tools to understand the trillions+ of 1s and 0s that 

are “flying around” when your program runs
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HTTP://XKCD.COM/676/
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