
CSE 351
Final Exam Review

1

Final Exam Review
• The final exam will be comprehensive, but more heavily

weighted towards material after the midterm

• We will do a few problems from previous years’ finals
together as a class
• PLEASE ask questions if you get lost!

2

Quiz
• We have another quiz we want to spend a few minutes on

3

Quiz
1. A 4-byte integer can be moved into a 32-bit register using a movw instruction.

4

Quiz
1. A 4-byte integer can be moved into a 32-bit register using a movw instruction.

False

5

Quiz
1. A 4-byte integer can be moved into a 32-bit register using a movw instruction.

False

2. On a 64-bit architecture, casting a C integer to a double does not lose precision.

6

Quiz
1. A 4-byte integer can be moved into a 32-bit register using a movw instruction.

False

2. On a 64-bit architecture, casting a C integer to a double does not lose precision.

True

7

Quiz
1. A 4-byte integer can be moved into a 32-bit register using a movw instruction.

False

2. On a 64-bit architecture, casting a C integer to a double does not lose precision.

True

3. Shifting an int by 3 bits to the left (<< 3) is the same as multiplying it by 8.

8

Quiz
1. A 4-byte integer can be moved into a 32-bit register using a movw instruction.

False

2. On a 64-bit architecture, casting a C integer to a double does not lose precision.

True

3. Shifting an int by 3 bits to the left (<< 3) is the same as multiplying it by 8.

True

9

Quiz
1. A 4-byte integer can be moved into a 32-bit register using a movw instruction.

False

2. On a 64-bit architecture, casting a C integer to a double does not lose precision.

True

3. Shifting an int by 3 bits to the left (<< 3) is the same as multiplying it by 8.

True

4. In C, endianness makes a difference in how character strings (char*) are stored.

10

Quiz
1. A 4-byte integer can be moved into a 32-bit register using a movw instruction.

False

2. On a 64-bit architecture, casting a C integer to a double does not lose precision.

True

3. Shifting an int by 3 bits to the left (<< 3) is the same as multiplying it by 8.

True

4. In C, endianness makes a difference in how character strings (char*) are stored.

False

11

Quiz (cont)
5. In C, storing multi-dimensional arrays in row major order makes it possible for pointer
arithmetic to determine the address of an array element.

Quiz (cont)
5. In C, storing multi-dimensional arrays in row major order makes it possible for pointer
arithmetic to determine the address of an array element.

True

Quiz (cont)
5. In C, storing multi-dimensional arrays in row major order makes it possible for pointer
arithmetic to determine the address of an array element.

True

6. A struct can’t have internal fragmentation if the elements of the struct are ordered from largest
to smallest.

Quiz (cont)
5. In C, storing multi-dimensional arrays in row major order makes it possible for pointer
arithmetic to determine the address of an array element.

True

6. A struct can’t have internal fragmentation if the elements of the struct are ordered from largest
to smallest.

True

Quiz (cont)
5. In C, storing multi-dimensional arrays in row major order makes it possible for pointer
arithmetic to determine the address of an array element.

True

6. A struct can’t have internal fragmentation if the elements of the struct are ordered from largest
to smallest.

True

7. An instruction cache takes advantage of only spatial locality.

Quiz (cont)
5. In C, storing multi-dimensional arrays in row major order makes it possible for pointer
arithmetic to determine the address of an array element.

True

6. A struct can’t have internal fragmentation if the elements of the struct are ordered from largest
to smallest.

True

7. An instruction cache takes advantage of only spatial locality.

False

Quiz (cont)
5. In C, storing multi-dimensional arrays in row major order makes it possible for pointer
arithmetic to determine the address of an array element.

True

6. A struct can’t have internal fragmentation if the elements of the struct are ordered from largest
to smallest.

True

7. An instruction cache takes advantage of only spatial locality.

False

8. Caches are part of the instruction set architecture (ISA) of a computer.

Quiz (cont)
5. In C, storing multi-dimensional arrays in row major order makes it possible for pointer arithmetic
to determine the address of an array element.

True

6. A struct can’t have internal fragmentation if the elements of the struct are ordered from largest
to smallest.

True

7. An instruction cache takes advantage of only spatial locality.

False

8. Caches are part of the instruction set architecture (ISA) of a computer.

False

Quiz (cont)
9. Caches make computers slower by getting between the CPU and memory.

20

Quiz (cont)
9. Caches make computers slower by getting between the CPU and memory.

False

21

Quiz (cont)
9. Caches make computers slower by getting between the CPU and memory.

False

10. On a 64-bit architecture, if a cache block is 32 bytes, and there are 256 sets in the

cache, the tag will be 53 bits.

22

Quiz (cont)
9. Caches make computers slower by getting between the CPU and memory.

False

10. On a 64-bit architecture, if a cache block is 32 bytes, and there are 256 sets in the

cache, the tag will be 53 bits.

False

23

Quiz (cont)
9. Caches make computers slower by getting between the CPU and memory.

False

10. On a 64-bit architecture, if a cache block is 32 bytes, and there are 256 sets in the

cache, the tag will be 53 bits.

False

11. A process’s instructions are typically in a read-only segment of memory.

24

Quiz (cont)
9. Caches make computers slower by getting between the CPU and memory.

False

10. On a 64-bit architecture, if a cache block is 32 bytes, and there are 256 sets in the

cache, the tag will be 53 bits.

False

11. A process’s instructions are typically in a read-only segment of memory.

True

25

Quiz (cont)

12. A shared library can be accessed from multiple virtual address spaces, but with only one copy in physical memory.

26

Quiz (cont)

12. A shared library can be accessed from multiple virtual address spaces, but with only one copy in physical memory.

True

27

Quiz (cont)

12. A shared library can be accessed from multiple virtual address spaces, but with only one copy in physical memory.

True

13. Virtual memory allows programs to act as if there is more physical memory than there actually exists on the
computer.

28

Quiz (cont)

12. A shared library can be accessed from multiple virtual address spaces, but with only one copy in physical memory.

True

13. Virtual memory allows programs to act as if there is more physical memory than there actually exists on the
computer.

True

29

Quiz (cont)

12. A shared library can be accessed from multiple virtual address spaces, but with only one copy in physical memory.

True

13. Virtual memory allows programs to act as if there is more physical memory than there actually exists on the
computer.

True

14. Two running instances of the same process share the same memory address space.

30

Quiz (cont)

12. A shared library can be accessed from multiple virtual address spaces, but with only one copy in physical memory.

True

13. Virtual memory allows programs to act as if there is more physical memory than there actually exists on the
computer.

True

14. Two running instances of the same process share the same memory address space.

False

31

Quiz (cont)

12. A shared library can be accessed from multiple virtual address spaces, but with only one copy in physical memory.

True

13. Virtual memory allows programs to act as if there is more physical memory than there actually exists on the
computer.

True

14. Two running instances of the same process share the same memory address space.

False

15. Java generally has better performance than C.

32

Quiz (cont)

12. A shared library can be accessed from multiple virtual address spaces, but with only one copy in physical memory.

True

13. Virtual memory allows programs to act as if there is more physical memory than there actually exists on the
computer.

True

14. Two running instances of the same process share the same memory address space.

False

15. Java generally has better performance than C.

 False

33

Processes

34

• List the two important illusions that the process
abstraction provides to programs.

• For each illusion, list a mechanism involved in its
implementation.

Processes

35

• List the two important illusions that the process
abstraction provides to programs.

• For each illusion, list a mechanism involved in its
implementation.

• 1. Logical control flow: the process executes as if it has
complete control over the CPU. The OS implements this
by interleaving execution of different processes via
context-switching(exceptional control flow...).

• 2. Private linear address space: the process executes as
if it has access to a private contiguous memory the size
of the virtual address space.

Virtual Memory

36

• One purpose of virtual memory is to allow programs to
use more memory than is available in the physical
memory by storing some parts on disk transparently.
Name some other useful thing that can be done with the
virtual memory system.

Virtual Memory

37

• One purpose of virtual memory is to allow programs to
use more memory than is available in the physical
memory, by storing some parts on disk transparently.
Name some other useful things that can be done with
the virtual memory system.

• 1. Sharing of a single physical page in multiple virtual
address spaces (e.g., shared library code).

• 2. Memory protection mechanisms (e.g., page-granular
read/write/execute permissions or protecting one
process’s memory from another).

TLBs
• Does a TLB (Translation Lookaside Buffer) miss always

lead to a page fault? Why or why not?

38

TLBs
• Does a TLB (Translation Lookaside Buffer) miss always

lead to a page fault? Why or why not?

• No. The TLB caches page table entries. After a TLB miss,
we do an in-memory page table lookup. A page fault
occurs if the page table entry is invalid.

39

Java vs C
• Name some differences between Java references and C

pointers.

40

Java vs C
• Name some differences between Java references and C

pointers.

• 1. C allows pointer arithmetic; Java does not.
• 2. C pointers may point anywhere (including the middles of

memory objects); Java references point only to the start of
objects.

• 3. C pointers may be cast arbitrarily (even to non-pointer types);
casts of Java references are checked to make sure they are
type-safe.

41

Structs
Consider the following definition of the struct below, answer the questions regarding the struct.

typedef struct data_struct
{

int a;
char b[3];
short c;
void * d;

} data_struct;

1) Assume you have an data_struct array of size four, on the stack diagram on the following page please

shade in and label the memory blocks for each field of each struct.

2) What is the total size of this struct?

3) Would re-ordering the fields from largest to smallest reduce the size of the struct?

4) What would be the assembly code for getting the value of field d out of the struct? Assume that the

register %rdi points to the beginning of the struct. Return the value in register %rax.

Structs

48

typedef struct data_struct {
int a;
char b[3];
short c;
void *d;

} data_struct;

a b[0]-b[3] c d

x+0 x+4 x+7 x+8 x+10 x+16 x+24

Memory		Address
+0 +1 +2 +3 +4 +5 +6 +7

0x00

(array	index	1)à
0x08

0x10

0x18

(array	index	2)	à
0x20

0x28

Memory		Address
+0 +1 +2 +3 +4 +5 +6 +7

0x00

(array	index	1)à

a

0x08

0x10

0x18

(array	index	2)	à
0x20

0x28

Memory		Address
+0 +1 +2 +3 +4 +5 +6 +7

0x00

(array	index	1)à

a b[0]

0x08

0x10

0x18

(array	index	2)	à
0x20

0x28

Memory		Address
+0 +1 +2 +3 +4 +5 +6 +7

0x00

(array	index	1)à

a b[0] b[1]

0x08

0x10

0x18

(array	index	2)	à
0x20

0x28

Memory		Address
+0 +1 +2 +3 +4 +5 +6 +7

0x00

(array	index	1)à

a b[0] b[1] b[2]

0x08

0x10

0x18

(array	index	2)	à
0x20

0x28

Memory		Address
+0 +1 +2 +3 +4 +5 +6 +7

0x00

(array	index	1)à

a b[0] b[1] b[2]

0x08 c

0x10

0x18

(array	index	2)	à
0x20

0x28

Memory		Address
+0 +1 +2 +3 +4 +5 +6 +7

0x00

(array	index	1)à

a b[0] b[1] b[2]

0x08 c

0x10 d

0x18

(array	index	2)	à
0x20

0x28

Repeat the process…

Memory		Address
+0 +1 +2 +3 +4 +5 +6 +7

0x00

(array	index	1)à

a b[0] b[1] b[2]

0x08 c

0x10 d

0x18

(array	index	2)	à

a b[0] b[1] b[2]

0x20 c

0x28 d

Structs
What is the total size of this struct?

24 bytes, (17 bytes plus 7 byte of internal padding)

Would re-ordering the fields from largest to smallest reduce the size of the struct?

No external fragmentation would still keep the size the same (however remember that
you should always order from largest to smallest because it helps more often than not)

What would be the assembly code for getting the value of field d out of the struct? Assume
that the register %rdi points to the beginning of the struct. Return the value in register %rax.

movq 0x10(%rdi), %rax
ret

Structs

a d[0]-d[3]b c

x+0 x+14x+8 x+12 x+15 x+24

typedef struct data_struct {
void * a;
int b;
short c;
char d[3];

} reordered_data_struct;

