
Name: _______________________________

3. Address Translation (25 pts)
Imagine we have a machine with 16-bit virtual addresses, 12-bit physical addresses, and:

• Page size of 256 bytes.
• Translation lookaside buffer (TLB) with 8 ways and 4 sets.
• One-level cache with capacity of 256 bytes, 16-byte cache block size, and 2-way associativity.

(a) For the virtual address below, label the bits used for each component, either by labelling boxes or with
arrows to indicate ranges of bits. Hint: there may be more than one label for some bits.

(i) Virtual page offset ("VPO")

(ii) Virtual page number ("VPN")

(iii) TLB index ("index")

(iv) TLB tag ("tag")

(b) How many total page-table-entries are there per process in this system? 
 
 
256-byte pages = 2^8, 2^16 / 2^8 = 2^8 VPNs — 256 page table entries per process  
 

(c) How many sets are there in the cache? 
 
256 bytes total / 16 bytes/block = 16 cache blocks total 
16 blocks / 2 ways = 8 sets 
 

(d) Assume that the virtual address above has been translated to a physical address in memory.  
Fill in the known bits of the physical address below, and label the bits for each component as you did
in part (a) — again, some bits may have more than one label.

(i) Physical page number ("PPN")

(ii) Physical page offset ("PPO")

(iii) Cache index ("index")

(iv) Cache tag ("tag")

(v) Cache offset ("offset")

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 0

11 10 9 8 7 6 5 4 3 2 1 0

! of !5 16

TLB
index

VPOVPN

TLB tag

PPN
indextag offset

PPO

1 1 0 1 1 0 0 0

SID: 1234567

7

Question 5: The Stack [12 pts]

The recursive factorial function fact() and its x86-64 disassembly is shown below:

(A) Circle one: [1 pt] fact() is saving %rdi to the Stack as a Caller // Callee

(B) How much space (in bytes) does this function take up in our final executable? [2 pt]

Count all bytes (middle columns) or subtract address of next
instruction (0x40054d) from 0x40052d.

32 B

(C) Stack overflow is when the stack exceeds its limits (i.e. runs into the Heap). Provide an

argument to fact(n) here that will cause stack overflow. [2 pt]

Any negative int

We did mention in the lecture slides that the Stack has 8 MiB limit in x86-64, so since

16B per stack frame, credit for anything between 512 and TMax (231-1).

int fact(int n) {

 if(n==0 || n==1)

 return 1;

 return n*fact(n-1);

000000000040052d <fact>:

 40052d: 83 ff 00 cmpl $0, %edi

 400530: 74 05 je 400537 <fact+0xa>

 400532: 83 ff 01 cmpl $1, %edi

 400535: 75 07 jne 40053e <fact+0x11>

 400537: b8 01 00 00 00 movl $1, %eax

 40053c: eb 0d jmp 40054b <fact+0x1e>

 40053e: 57 pushq %rdi

 40053f: 83 ef 01 subl $1, %edi

 400542: e8 e6 ff ff ff call 40052d <fact>

 400547: 5f popq %rdi

 400548: 0f af c7 imull %edi, %eax

 40054b: f3 c3 rep ret

8

(D) If we use the main function shown below, answer the following for the execution of the

entire program: [4 pt]

void main() {
 printf(“result = %d\n”,fact(3));
}

Total frames
created: 5

Maximum stack
frame depth: 4

 main → fact(3) → fact(2) → fact(1)

 main → printf

(E) In the situation described above where main() calls fact(3), we find that the word 0x2

is stored on the Stack at address 0x7fffdc7ba888. At what address on the Stack can

we find the return address to main()? [3 pt]

0x7fffdc7ba8a0

 Only %rdi (current n) and return address get pushed onto Stack during fact().

Address Contents

<Rest of Stack>

0x7fffdc7ba8a0 Return addr to main()
0x7fffdc7ba898 Old %rdi (n=3)
0x7fffdc7ba890 Return addr to fact()
0x7fffdc7ba888 Old %rdi (n=2)
0x7fffdc7ba880 Return addr to fact()

Name: _______________________________

5. Pointers and Memory (15 pts)
For this section, refer to this 8-byte aligned diagram of memory, with addresses increasing top-to-
bottom and left-to-right (address 0x00 at the top left). When answering the questions below, don’t
forget that x86-64 machines are little-endian. If you don’t remember exactly how endianness works,
you should still be able to get significant partial credit.

(a) Fill in the type and value for each of the following C expressions:

(b) Assume that all registers start with the value 0, except %rax which is set to 8. Determine what
the final values of each of these registers will be after executing the following instructions: 

Expression (in C) Type Value (in hex)

*x int 0xf05101ab

x+1 int* 0x14

*(y-1) long 0x00000010efbeadde

s[4] char 0xEE

& of &9 12

int* x = 0x10;
long* y = 0x20;
char* s = 0x00;

movb %al, %bl

leal 2(%rax), %ecx

movsbw (,%rax,4), %dx

Memory
Address +0 +1 +2 +3 +4 +5 +6 +7

0x00 aa bb cc dd ee ff 00 11

0x08 00 00 00 00 00 00 00 00

0x10 ab 01 51 f0 07 06 05 04

0x18 de ad be ef 10 00 00 00

0x20 ba ca ff ff 1a 2b 3c 4d

0x28 a0 b0 c0 d0 a1 b1 c1 d1

Register Value

%rax 8

%bl 8 or 0x8

%ecx 10 or 0xa

%dx 65466 or 0xffba

(1 pt)

(2 pts)

(2 pts)

(.5pts for each type, 2pts for each value)

SID: ________________

 11

Question 9: Virtual Memory (8 pts)

This election season, the US will computerize the voting system. There were approximately 2ଶ଻ voters in 2012.
There are four candidates in the running and so each voter will submit letter A, B, C, or D. The votes are stored
in the char votes[] array.

The following loop will count the votes to determine the winner. We are given a 1 MiB byte-addressed machine
with 4 MiB of VM and 128 KiB pages. Assume that votes[] and candidates[] are page-aligned and i is
stored in a register.

#define NUM_VOTERS 134217728 // 2^27
int candidates[] = {0,0,0,0}; // initialize to 0s
for (int i = 0; i < NUM_VOTERS; i++) { // Loop 1
 if (votes[i] == ‘A’) candidates[0]++;
 if (votes[i] == ‘B’) candidates[1]++;
 if (votes[i] == ‘C’) candidates[2]++;
 if (votes[i] == ‘D’) candidates[3]++;
}

a) How many bits wide are the following? [2 pt]

VPN __5__ Page Offset __17__

PPN __3__ Page Table Base Register __20__

b) We are given a fully-associative TLB with 4 entries and LRU replacement policy. One entry is reserved for
the Code. In the best case scenario, how many votes will be counted before a TLB miss occurs? [2 pt]

218

Best case: TLB already has code page, candidate page, and 2 votes pages loaded. One page is 217B. votes is
a character array so each page holds 217 votes. 2 * 217 = 218 votes

We want to improve our machine by expanding the TLB to hold 8 entries instead of 4. We also revised our for
loop, which replaces Loop 1. Assume i and vote are stored in registers.

for (int i = 0; i < NUM_VOTERS; i++) { // Loop 2
 char vote = votes[i];
 if (vote == ‘A’) candidates[0]++;
 if (vote == ‘B’) candidates[1]++;
 if (vote == ‘C’) candidates[2]++;
 if (vote == ‘D’) candidates[3]++;
}

c) Now how many votes can be counted before a TLB miss in the best case scenario? [2 pt]

6 * 217

Even though we have 1 access per vote instead of 4 with the new for loop, this does not change the fact that in
the best case, we will only miss in the TLB if we go through all our pre-loaded pages. Since our TLB can now
hold 6 pages for the votes pages, we can get 6 * 217 votes before a miss.

SID: ________________

 10

Question 8: Caches (10 pts)

We are using a 20-bit byte addressed machine. We have two options for caches: Cache A is fully associative
and Cache B is 4-way set associative. Both caches have a capacity of 16 KiB and 16 B blocks.

a) Calculate the TIO address breakdown for Cache A: [1 pt]

Tag Index Offset
16 0 4

b) Below is the initial state of one set (four slots) in Cache B. Each slot holds 2 LRU bits, with 0b00 being the
most recently used and 0b11 being the least recently used. Circle ONE option below for two memory
accesses that result in the final LRU bits shown and only one block replacement. [2 pt]

 Initial Final

 Slot Tag LRU bits LRU bits

Index 0 0110 1010 00 10

1001 1110 1 0000 0001 10 → 00

 2 0101 0101 01 11

 3 1010 1100 11 01

(1) 0x019D0, 0xAD9D0 (2) 0xAC9E0, 0x129E0

(3) 0xAD9D0, 0x019D0 (4) 0x129E0, 0xAC9E0

c) For the code given below, calculate the hit rate for Cache B assuming that it starts cold. [3 pt]

#define ARRAY_SIZE 8192

int int_arr[ARRAY_SIZE]; // &int_arr = 0x80000

for (int i = 0; i < ARRAY_SIZE / 2; i++) {

 int_arr[i] *= int_arr[i + ARRAY_SIZE / 2];

}

Access pattern is R i, R i+ARRAY_SIZE/2, W i. Array index jump is

4096*4 = 2ଵସ B away, so maps into same set same set (I+O=12<14).
5/6

N=4, so both blocks can fit in cache at once. Indices are not revisited and each block holds 16 B / 4 B = 4
indices, so first index is MMH, other 3 are HHH, so HR = 10/12 = 5/6.

d) For each of the proposed changes below, write U for “increase”, N for “no change”, or D for “decrease” to
indicate the effect on the hit rate of Cache B for the loop shown in part (c): [2 pt]

Direct-mapped __D__ Increase cache size __N__

Double ARRAY_SIZE __N__ Random block replacement __D__

e) Calculate the AMAT for a multi-level cache given the following values. Don’t forget units! [2 pt]

HT = Hit Time, MR = Miss Rate, GMR = Global Miss Rate

L1$ HT L1$ MR L2$ HT GMR MEM HT

4 ns 20% 25 ns 5% 500 ns

HT1 + MR1*HT2 + GMR*HTMEM = 4 + 5 + 25 34 ns

justi
Cross-Out

justi
Text Box
lines

justi
Cross-Out

justi
Text Box
Line

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Text Box
AMAT = 4 + 0.2*500

justi
Text Box
104 ns

Name:

8. Memory Allocation (11 points) Consider the (tiny) heap below using an implicit free-list allocator
with coalescing, where each rectangle represents 4 bytes and a header or boundary tag of the form x|y

indicates a block of size x (in base-10) where y being 1 means allocated. Addresses (in base-10) are
written below the rectangles. Unlike your Lab 5 allocator, the allocator for this heap uses boundary
tags for allocated blocks.

(a) Suppose the next call to the allocator is free(104). Show the state of the heap after this call
completes by indicating in the picture of the heap above what addresses have different contents
and what the new contents are.

(b) Suppose the next allocator call (after part (a)) is malloc(4). Under a first-fit policy, what address
would the call to malloc return?

(c) Suppose the next allocator call (after part (a)) is malloc(4). Under a best-fit policy, what address
would the call to malloc return?

(d) Given your answer to part (a) (i.e., after doing this free), what is the smallest z such that
malloc(z) would not succeed unless the allocator expanded the size of the heap?

Solution:

(a)

(b) 84

(c) 128

(d) 25 (partial credit for 28)

SID: ________________

 7

Question 5: Floating Point (10 pts)

Assume integers and IEEE 754 single precision floating point are 32 bits wide.

a) Convert from IEEE 754 to decimal: 0xC0900000 [3 pts]

S = 1, E = 0b1000 0001, M = 0010…0; െ1.001ଶ ൈ 2ଶ ൌ െ100.1ଶ –4.5

b) What is the smallest positive integer that is a power of 2 that can be represented in IEEE 754 but not as a

signed int? You may leave your answer as a power of 2. [2 pts]
Largest 32-bit signed int is 2ଷଵ െ 1. 231

c) What is the smallest positive integer x such that x + 0.25 can’t be represented? You may leave your

answer as a power of 2. [3 pts]
Need 2ିଶ digit to run off end of mantissa, so
10000000000000000000000.012 = 1.000000000000000000000001ൈ222

222

d) We have the following word of data: 0xFFC00000. Circle the number representation below that results in

the most negative number. [1 pt]

Unsigned Integer
(positive number)

Two’s Complement
(negative number)

Floating Point
(NaN)

e) If we decide to stray away from IEEE 754 format by making our Exponent field 10 bits wide and our

Mantissa field 21 bits wide. This gives us (circle one): [1 pt]
 MORE PRECISION // LESS PRECISION
 Fewer mantissa bits means less precision.

Question 6: Performance (4 pts)

We are using a processor with clock period of 1 ns.

a) Program A contains 1000 instructions with a CPI of 1.2. What is the CPU time spent executing program A?

[2 pts]

CPU Time = 1000 * 1.2 * 1 ns 1200 ns = 1.2 ߤs

b) Program B contains 500 instructions but accesses memory more frequently, what is the maximum CPI that

program B can have without executing slower than program A? [2 pts]

Half as many instructions, so can have twice as big CPI. 2.4

SID: ________________

 2

Question 1: Number Representation (8 pts)

a) Convert 0x1A into base 6. Don’t forget to indicate what base your answer is in! [1 pt]

0x1A = 0b1 1010 = 16 + 8 + 2 = 26 = 4 ൈ 6ଵ ൅ 2 ൈ 6଴ 42଺

b) In IEEE 754 floating point, how many numbers can we represent in the interval [10,16)? You may leave

your answer in powers of 2. [3 pts]

2ଶଶ ൅ 2ଶଵ ൌ 3 ൈ 2ଶଵ

10 = 0b1010 ൌ 1.01 ൈ 2ଷ and 16 = 0b10000 ൌ 1.0 ൈ 2ସ
Count all numbers with Exponent of 2ଷ and Mantissa bits of the form { 1b’0, 1b’1, 21{1b’X} } and { 1b’1,
22{1b’X} }, for a total of 2ଶଵ ൅ 2ଶଶ numbers.

c) If we use 7 Exponent bits, a denorm exponent of -62, and 24 Mantissa bits in floating point, what is the

largest positive power of 2 that we can multiply with 1 to get underflow? [2 pts]

Smallest denorm is 2ି଺ଶ ൈ 0.0000	0000	0000	0000	0000	0001 ൌ 2ି଼଺, 2ି଼଻

which is representable. So the next smaller power of 2 is unrepresentable
and causes underflow.

Local phone numbers in the USA typically have 7 decimal digits, which use the symbols 0 to 9. For example,
Jenny Tutone’s phone number is:

Prefix Line Number
867 5309

d) How many unique phone numbers can be encoded by this scheme? [1 pt]

10଻

e) How many bits would we need to represent a phone number if we treated it as a single 7-digit decimal?

You may use log() and ceil() in your answer and the variable E to represent the correct answer to part
(d). [1 pt]

ceilሺlogଶሺܧሻሻ

Name: _______________________________

2. C to Assembly (25 pts)
Imagine we’re designing a new, super low-power computing device that will be powered by ambient
radio waves (that part is actually a real research project). Our imaginary device’s CPU supports the
x86-64 ISA, but its general-purpose integer multiply instruction (imul) is very bad and consumes
lots of power. Luckily, we have learned several other ways to do multiplication in x86-64 in certain
situations. To take advantage of these, we are designing a custom multiply function, spmult, that
checks for specific arguments where we can use other instructions to do the multiplication. But we
need your help to finish the implementation.

Fill in the blanks with the correct instructions or operands. It is okay to leave off size suffixes.  
Hint: there are reference sheets with x86-64 registers and instructions at the end of the exam.

long spmult(long x, long y) {
 if (y == 0) return 0;
 else if (y == 1) return x;
 else if (y == 4) return x * 4;
 else if (y == 5) return x * 5;
 else if (y == 16) return x * 16;
 else return x * y;
}

& of &4 12

spmult(long, long):

 testq %rsi, %rsi
 je .L3
 cmpq $1, %rsi
 je .L4

 cmpq $4, %rsi

 jne .L1
.case4:
 leaq 0(,%rdi,4), %rax
 ret
.L1:
 cmpq $5, %rsi
 jne .L2

 leaq (%rdi,%rdi,4), %rax
 ret
.L2:
 cmpq $16, %rsi
 jne .else
 movq %rdi, %rax

 salq $4, %rax
 ret
.L3:
 movq $0, %rax
 ret
.L4:

 movq %rdi, %rax
 ret
.else: # fall back to multiply
 movq %rsi, %rax
 imulq %rdi, %rax
 ret

Name:

4. Processes (12 points) In this problem, assume Linux.

(a) Can the same program be executing in more than one process simultaneously?

(b) Can a single process change what program it is executing?

(c) When the operating system performs a context switch, what information does NOT need to be
saved/maintained in order to resume the process being stopped later (circle all that apply):

• The page-table base register

• The value of the stack pointer

• The time of day (i.e., value of the clock)

• The contents of the TLB

• The process-id

• The values of the process’ global variables

(d) Give an example of an exception (asynchronous control flow) in which it makes sense to later
re-execute the instruction that caused the exception.

(e) Give an example of an exception (asynchronous control flow) in which it makes sense to abort the
process.

Solution:

(a) Yes (the question is ambiguous as to what “simultaneous” means. We clarified during the exam,
“Assume it is the case that multiple processes execute simultaneously. Then the question is
whether more than one of these processes can be executing the same program.” Under this
interpretation, only “yes” is plausibly correct.)

(b) Yes

(c) The time of day and the contents of the TLB

(d) Page fault for memory on disk (other answers possible; full credit given just for page-fault even
though that’s ambiguous)

(e) Division by zero (other answers possible)

Name:

10. C vs. Java (11 points) Consider this Java code (left) and somewhat similar C code (right) running
on x86-64:

public class Foo {

private int[] x;

private int y;

private int z;

private Bar b;

public Foo() {

x = null;

b = null;

}

}

struct Foo {

int x[6];

int y;

int z;

struct Bar * b;

};

struct Foo * make_foo() {

struct Foo * f = (struct Foo *)malloc(sizeof(struct Foo));

f->x = NULL;

f->b = NULL;

return f;

}

(a) In Java, new Foo() allocates a new object on the heap. How many bytes would you expect this
object to contain for holding Foo’s fields? (Do not include space for any header information,
vtable pointers, or allocator data.)

(b) In C, malloc(sizeof(struct Foo)) allocates a new object on the heap. How many bytes would
you expect this object to contain for holding struct Foo’s fields? (Do not include space for any
header information or allocator data.)

(c) The function make_foo attempts to be a C variant of the Foo constructor in Java. One line fails
to compile. Which one and why?

(d) What, if anything, do we know about the values of the y and z fields after Java creates an instance
of Foo?

(e) What, if anything, do we know about the values of the y and z fields in the object returned by
make_foo?

Solution:

(a) 24

(b) 40

(c) f->x = NULL does not compile. In C, the field declaration int x[6] creates an inline array, not
a pointer, so it does not make any sense to “assign NULL to the array” — the struct itself has
slots for six array elements.

(d) We know both fields hold 0.

(e) We know nothing. (We know something abou their size, but not their contents – it could be any
bit-pattern.)

