
Name:

5. Fork (5 points) Consider this code using Linux’s fork:

int x = 7;

if(fork()) {

x++;

printf(" %d ", x);

fork();

x++;

printf(" %d ", x);

} else {

printf(" %d ", x);

}

What are all the different possible outputs (order of things printed) for this code? (Hint: There are
four of them.)

Solution:

7 8 9 9

8 7 9 9

8 9 7 9

8 9 9 7

Note: If you actually try this out, you may see 5 numbers printed, which is rather surprising. The
issue is the implementation of printf may buffer output and the second fork call in the code then
copies the not-empty output buffer into the child process. You can fix this in the code by putting
fflush(stdout); after the first call to printf. In terms of the exam, the four outputs above are all
still possible and of course we didn’t expect you to also list the fifth possible output that arises from
this buffered-output issue.

SID: ________________

 6

Question 4: Caches (11 pts)

We have a 64 KiB address space and two possible data caches. Both are 1 KiB, direct-mapped caches with
random replacement and write-back policies. Cache X uses 64 B blocks and Cache Y uses 256 B blocks.

a) Calculate the TIO address breakdown for Cache X: [1.5 pts]

Tag Index Offset

6 4 6

b) During some part of a running program, Cache Y’s management bits are as shown below. Four options for

the next two memory accesses are given (R = read, W = write). Circle the option that results in data from
the cache being written to memory. [2 pts]

Slot Valid Dirty Tag

00 0 0 1000 01

01 1 1 0101 01

10 1 0 1110 00

11 0 0 0000 11

(1) R 0x4C00, W 0x5C00

(R then W into slot 00)
(2) W 0x5500, W 0x7A00

(W into dirty slot 01 – tag matches, W into slot 10)

(3) W 0x2300, R 0x0F00
(W into slot 11, then kick dirty block out)

(4) R 0x3000, R 0x3000
(2 reads into non-dirty slot 00)

c) The code snippet below loops through a character array. Give the value of LEAP that results in a Hit Rate

of 15/16 for Cache Y. [4 pts]
#define ARRAY_SIZE 8192
char string[ARRAY_SIZE]; // &string = 0x8000
for(i = 0; i < ARRAY_SIZE; i += LEAP)
 string[i] |= 0x20; // to lower

32

Access pattern is R then W for each address. To get a hit rate of 15/16, need to access exactly 8
addresses per block (compulsory miss on first R, then followed by all hits). Since block size for Cache Y
is 256 B and char size is 1 B (256 array elements per block), we need our LEAP to be 256/8 = 32.

d) For the loop shown in part (c), let LEAP = 64. Circle ONE of the following changes that increases the hit
rate of Cache X: [2 pts]

Increase Block Size
(hit rate ↑)

Increase Cache Size
(no change to hit rate)

Add a L2$
(miss penalty ↓)

Increase LEAP
(hit rate ↓)

e) For the following cache access parameters, calculate the AMAT. All miss and hit rates are local to that
cache level. Please simplify and include units. [1.5 pts]

L1$ Hit Time L1$ Miss Rate L2$ Hit Time L2$ Hit Rate MEM Hit Time
2 ns 40% 20 ns 95% 400 ns

AMAT = 2 + 0.4 * (20 + 0.05*400) 18 ns

justi
Cross-Out

justi
Cross-Out

justi
Text Box
Line

justi
Text Box
line

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Text Box
line

justi
Text Box
line

justi
Text Box
line

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Cross-Out

justi
Text Box
AMAT = 2 + 0.4 * 400

justi
Cross-Out

justi
Text Box
162 ns

