
CSE 351
buffer overflows and lab 3

Buffer overflows

•C performs no bounds-checking on array accesses
• This makes it fast but also unsafe

•ex) int arr[10]; arr[15] = 3;
• No compiler warning, just memory corruption

•What symptoms are there when programs write past
the end of arrays?
• Hint: we saw an example of this in lab 0

2

x86-64 Linux Memory Layout

• Stack
• Runtime stack (8MB limit)
• E. g., local variables

• Heap
• Dynamically allocated as needed
• When call malloc(), calloc(), new()

• Data
• Statically allocated data

• Read-only: string literals
• Read/write: global arrays and variables

• Text / Shared Libraries
• Executable machine instructions
• Read-only

Autumn 2015 Buffer Overflow 3

Hex Address

0x7FFFFFFFFFFFFFFF

0x000000

Stack

Text

Data

Heap

0x400000

8MB

not drawn to scale

Shared
Libraries

Stack layout

• To which byte does buf[17] refer to in

this example?

• In buffer overflow attacks, malicious users

pass values to attempt to overwrite

important parts of the stack or heap

• For example, an attacker could overwrite

the return instruction pointer with the

address of a malicious block of code

4

...

Return Addr

Saved registers

long int b

long int a

char buf[16]

...

Caller
Frame

Callee
Frame

Protecting against overflows

• fgets(char* s, int size, FILE* stream)

• Takes a size parameter and will only read that many bytes from the

given input stream

• strncpy(char* dest, const char* src, size_t n)

• Will copy at most n bytes from src to dest

• Stack canaries

• Use a random integer before return instruction

pointer

• Check if tampered

• Data execution prevention

 Mark some parts of the memory (notably the stack) as non-
executable.

5

Lab 3: Buffer overflow exploits

• The exploitable function in lab 3 is called Gets (capital ‘G’)

• It is called from the getbuf function

•getbuf allocates a small array and reads user input into it

via Gets.

• If the user input is too long, then certain values on the stack

within the getbuf function will be overwritten...

6

Lab 3: Understand the tools

• sendstring – Use to generate your malicious strings

• Takes a list of space-separated hex values and formats them in raw bytes

suited for exploits

• gdb – You will use this a lot to inspect your code
• set args –u <username>

• Set the argument to the program

• x/40wx ($rsp – 40)

• Show the 40 bytes above rsp
• Change w to g to check the value in 8 byte chunks.

• b *(&getbuf + 12)
• Create a breakpoint at 12 bytes away after the start of getbuf

• bufbomb – u [UW_NetID] - Everyone’s lab is different

• Your username alters the lab slightly

11

Level 0 walkthrough

•Goal: Make getbuf() jump to a function
called smoke()

•How? Overwrite the return address with
your own
•Write past the end of the buffer to do this

12

Passing in the 7th argument

https://courses.cs.washington.edu/courses/cse351/16sp/lectures/06-

procedures_16sp.pdf#page=72

13

https://courses.cs.washington.edu/courses/cse351/16sp/lectures/06-procedures_16sp.pdf#page=72

