
CSE351 Section 6: Arrays and Structs

We have a two-dimensional matrix of integer data of size ܯ rows and ܰ columns. We are considering 3
different representation schemes:

1) 2-dimensional array int array2D[][], // M*N array of ints
2) 2-level array int *array2L[], and // M array of int arrays
3) array of linked lists struct node *arrayLL[]. // M array of linked lists (struct node)

Consider the case where ܯ ൌ 3 and ܰ ൌ 4. The declarations are given below:
2-dimensional array: 2-level array: Array of linked lists:
int array2D[3][4]; int r0[4], r1[4], r2[4];

int *array2L[] = {r0,r1,r2};
struct node {
 int col, num;
 struct node *next;
};
struct node *arrayLL[3];
// code to build out LLs

For example, the diagrams below correspond to the matrix ൥
0 0
െ4 0
0 0

1 0
5 0
0 0

൩ for array2L and arrayLL:

a) Fill in the following comparison chart:
 2-dim array 2-level array Array of LLs:
Overall Memory Used

Largest guaranteed
continuous chunk of
memory

Smallest guaranteed
continuous chunk of
memory

Data type returned by: array2D[1]

array2L[1]

arrayLL[1]

Number of memory
accesses to get int in the
BEST case

Number of memory
accesses to get int in the
WORST case

b) Sam Student claims that since our arrays are relatively small (ܰ ൏ 256), we can save space by storing the

col field as a char in struct node. Is this correct? If so, how much space do we save? If not, is this an
example of internal or external fragmentation?

